

Computer Science:
Achievements and Opportunities

Report of the NSF Advisory Committee for Computer Research
John E. Hopcroft and Kenneth W. Kennedy, Chairs

This volume is dedicated to Kent K. Curtis,
whose leadership and encouragement led to the
intellectual development of computer research.

Published by the
Society for Industrial and Applied Mathematics

Philadelphia
1080

BRVIe2

Cover illustration: The 2500 MFlops/2500 Mips CM-2 is the newest member of the
Connection Machine® family of data parallel computers. The 5-foot cube houses the
system’s 64,000 processors. The Data Vault?™ storage system uses dozens of small
disk drives to provide very rapid access to 10 Gbytes of data. Connection Machine
systems are currently installed in major corporations, government laboratories, and
universities. Photograph used with permission of Thinking Machines Corporation.

Any opinions, findings, conclusions, or recommendations expressed in this report are
those of the Panel and do not necessarily reflect the views of the funding agencies.

Copyright (©1989 by the Society for Industrial and Applied Mathematics

For additional copies write
Society for Industrial and Applied Mathematics
3600 University City Science Center
Philadelphia, Pennsylvania 19104-2688

Contents

Preface

Scientific Contributions of Computer Science
Introduction

Foundations
Stephen A. Cook, John E. Hopcroft, and Michael Rabin

Computer Languages
David Gries, C.A.R. Hoare, Kenneth W. Kennedy, Fernando
C.N. Pereira, and Dana S. Scott

Computer Systems
Forest Baskett, David Clark, A. Nico Habermann,
Barbara Liskov, Fred B. Schneider, and Burton Smith

Artificial Intelligence
Drew McDermott and Tomaso Poggio

Applications of Computer Science
Edward Feigenbaum, Richard F. Riesenfeld, Jacob T. Schwartz,
and Charles L. Seitz

Initiatives Report
Kenneth W. Kennedy, Clarence A. Ellis, John E. Hopcroft,
and Burton J. Smith

Introduction

Software Engineering
Parallelism

Robotics and Automation

Summary and Recommendations

15

29

41

51

65

67
67
71
74
77

Preface

This report was commissioned by the Advisory Committee to the Na-
tional Science Foundation Division of Computer Research, which I chaired
from 1985 to 1987 and John Hopcroft chaired from 1987 to 1989. The Advi-
sory Committee was concerned about the low Ph.D. production in computer
science—less than 300 per year before 1985. For the discipline to achieve a
healthy steady state, it would need to significantly expand the number of
high-quality computer science departments in the United States. Such an
expansion would require, at the minimum, a doubling of the annual Ph.D.
production to 600. Such an increase is not without cost. It was clear to
us that we would be unable to sustain this increase in Ph.D. production
without a corresponding increase in funding from government agencies. To
achieve the required resources, computer science would need whole-hearted
support from scientists in other disciplines. We perceived that two factors
were making it difficult to garner that support: a lack of understanding of
the intellectual contributions of computer science by other scientists and the
absence of a clear-cut plan for future research in the discipline. The two
reports contained in this volume represent an attempt to overcome these
factors. '

First, we set out to document the intellectual importance of computer
science research. To do that, the Advisory Committee asked John Hopcroft
to develop a report summarizing some of the most important contributions
of computing research over the past three decades. Hopcroft enlisted the
assistance of distinguished computer scientists all over the world and the
result is the “Scientific Contributions of Computer Science,” often referred to
as the “Hopcroft Report,” which is found in the first section of this volume.

Second, the Advisory Committee decided to identify the important prob-
lem areas where increased support for computing research might bear fruit.
The result was the “Initiatives Report,” the second section in this book. In
it, the Advisory Committee recommended three areas— software engineer-
ing, parallel processing and robotics and automation—as ripe for significant
progress. In addition, they identified some critical resources needed to make
these initiatives successful. The reader should bear in mind that these rec-
ommendations were made in 1986-87 and do not reflect changes in priorities
that have arisen since that time.

When the committee began its work, it had responsibility for all ar-

eas of computer research except computer engineering {which includes all

aspects of microelectronics except VLSI theory). Therefore, the report ex-

v

vi Preface

cludes computer engineering from its purview. This explains the absence of
microelectronics from the discussion of contributions and initiatives.

Both of these reports were unanimously accepted by the Advisory Com-
mittee for Computer Research and passed on to the National Science Foun-
dation in 1987. Some of the recommendations have been adopted and steady
progress toward the goals has been achieved. I hope the publication of this
volume will help continue the progress which is needed to make computer
science a healthy, stable academic discipline.

On behalf of the Advisory Committee, I would like to thank all the peo-
ple who contributed to making this report possible, along with the National
Science Foundation and SIAM for all their assistance in producing and pub-
lishing this work. Finally, I would like to acknowledge the contribution of
the late Kent Curtis, Director of the Division of Computer Research during
most of my tenure on the Advisory Committee. He encouraged us to write
this report and ensured that it would have great impact at the National
Science Foundation. This book is dedicated to his memory.

Kenneth W. Kennedy
Rice University

Contributors
Forest Baskett Nancy A. Lynch
David Clark John McCarthy
Stephen A. Cook Drew McDermott
Clarence Ellis Arno Penzias
Edward Feigenbaum Fernando C.N. Pereira
Michael J. Fischer John T. Pinkston, ITI
Charles W. Gear Tomaso Poggio
David Gries Michael Rabin
A. Nico Habermann Edward Riesenfeld
C.A.R. Hoare Fred B. Schneider
John E. Hopcroft Jacob T. Schwartz
Kenneth W. Kennedy Dana §. Scott
S. Rao Kosaraju Charles L. Seitz
Butler Lampson Burton J. Smith
Lawrence H. Landweber Lawrence Snyder
Wendy G. Lehnert Andries Van Dam

Rarhara Tickaw

AL L & LIIDAUY

Acknowledgements

Donna Patteson was instrumental in bringing the section “Scientific Con-
tributions of Computer Science” to completion—organizing and editing the
section, maintaining contact with the many authors throughout the various
stages of the report, and ensuring that the activity did not lose its momen-
tum. Leah Stratmann prepared the report for publication by managing the
translation to a consistent format (assisted by the TgX formatting expertise
of William LeFebvre) and dealing with the SIAM office. Support for pub-
lication was provided by the National Science Foundation and SIAM. John
Hopcroft and I gratefully acknowledge all of the contributions, without which
this undertaking would have been much more difficult.

vit

Scientific Contributions
of Computer Science

Prepared by

Forest Baskett

David Clark

Stephen A. Cook
Edward Feigenbaum
David Gries

A. Nico Habermann
C.A.R. Hoare

John E. Hopcroft
Kenneth W. Kennedy
Barbara Liskov

Drew McDermott
Fernando C.N. Pereira
Tomaso Poggio
Michael Rabin
Richard F. Riesenfeld
Fred B. Schneider
Jacob T. Schwartz
Dana S. Scott

Charles L. Seitz
Burton Smith

Introduction

The impact of computers and computing on our culture is recognized by
everyone; what may not be generally apparent is that computer science; as a
discipline, is emerging as one of the most intellectually challenging areas of
both technical and theoretical study. In the past, scientists made major in-
roads toward gaining a greater understanding of such issues as the nature of
matter, the origin of the universe, and the laws of motion; in the future, the
focus of research will shift increasingly toward the exploration of knowledge,
reasoning, and intelligence. In the past, tools were developed that increased
human physical capacities, improving our physical strength, discrimination,
and agility; in the future, tools will be developed that will enable us to
multiply our intellectual abilities. Research in the sciences brought about
advances in materials and design that made high-speed computers possible;
in turn, the use of computers is now completely changing how science is
done.

In narrow terms, computer science is the study of symbolic representa-
tions and the manipulation of these representations. However, we do not
manipulate symbols devoid of meaning. The symbols being manipulated
embody knowledge of physical and abstract objects such as atomic parti-
cles, biochemical compounds, human behavior, and economic trends. Thus,
in broad terms, computer science is concerned with representing and ma-
nipulating knowledge. It is apparent that its impacts are far-reaching and
that the possibilities engendered by it can be used to expand the knowledge
base of many disciplines. All disciplines can incorporate the advances made
by computer science and use them to learn more about the world, to solve
present problems, and to make predictions about the future. Computer sci-
ence has gone and will continue to go far beyond mere computation; it will
contribute to our understanding of language, abstraction, knowledge rep-
resentation, problem solving, and reasoning and play a role across a wide.
spectrum of intellectual endeavors.

The impact of computer science has been particularly strong on the phys-
ical and mathematical sciences. The development of large-scale scientific
computing has opened up new dimensions of scientific inquiry that previ-
ously were inaccessible.

Symbolic manipulation systems have made possible calculations that
were once beyond the reach of researchers for reasons of sheer size. Nu-
merical routines now permit the solution of large systems of equations de-

scribing mechanical systems, fluid flow, and other processes that otherwise

3

4 Scientific Contributions of Computer Science

would have remained intractable. In addition, numerous computer applica-
tions have been developed that enable computers to be used to search for
oil, to build more fuel-efficient aircraft, and to solve environmental problems,
among other things.

Besides advancing science, computer science plays an important role in
technology. We are witnessing unexpected and unprecedented technologi-
cal developments in chip design. In computer architecture, there is a need
to conceive and analyze completely new computer structures made possible
by new technology. Computer-readable electronic media promise to change
the very notion of scholarly material as researchers execute programs to ex-
tract, correlate, and otherwise manipulate the contents of books, data bases,
and digitally stored objects. These unprecedented opportunities to access
knowledge will require significant research into knowledge structures and ac-
cessing techniques. For the time being, the technological possibilities are
outrunning our imagination to use them; we need new ideas, concepts, and
theories. These developments make it imperative that computer science de-
velop quickly in order to guide and exploit the potential opened up by these
technological advances. '

The purpose of this report is to bring the intellectual achievements of
computer science to the attention of the scientific community and thereby
illuminate its future potential. Computer science is far more than a support
tool; it is more than data processing or scientific computation. It is an
intellectual discipline in its own right, and the deeper the understanding of
it, the more significant role it can play for other disciplines. Moreover, the
newness of the field and the abstract nature of the concepts with which it
deals—language, meaning, computation, and complexity—all contribute to
a lack of awareness of the revolution in thinking that is quietly taking place.
It is important that our science establishment understand these aspects of
computer science.

In a report such as this, brevity and selection are very important. No
attempt has been made to cover all aspects of the subject. Rather, the
intent is to provide a range of topics that indicates the breadth and depth of
the field, to demonstrate the impact of computer science on mankind, and
to show the necessity of developing the science of computing if the nation
is to demonstrate intellectual, scientific, and technological leadership in the
next century. Chosen as areas for inclusion were foundations, languages,
computer systems, artificial intelligence, and technologies.

Foundations

Stephen A. Cook John E. Hopcroft
Michael Rabin

Research in foundations is concerned with the intrinsic nature of computa-
tion and with the formal models underlying computing technology. In the
first area, research has given us a framework in which we can formally study
the intrinsic complexity of natural computational problems. The theory
has yielded the tool of NP-completeness, which has been used to establish
the intractability of literally thousands of natural computational problems,
ranging from those encountered in daily life such as optimal routing and
packing to esoteric mathematical ones. It has also given us a methodology
for designing efficient algorithms. Some fundamental problems such as linear
programming, matching, and network flow have been solved to satisfaction,
whereas great progress has been made on others, such as primality testing
and graph isomorphism. From research in formal models, we have identified
and determined the capability of fundamental models of computation, and
we have developed tools for using these models effectively. For example, we
now have theories for programming languages and programming language
translators. Research in the foundations of computer science has directly
resulted in more applied areas, such as very large scale integration (VLSI)
design, theory of data bases, distributed computing, and cryptography.
There are dramatic examples of theoretical work in the 1950s and 1960s
that made a substantial and permanent impact. Work in linguistics and pro-
gramming languages merged, providing the basis for the formal description
of programming languages. The theory that was developed allows automa-
tion of a programming language translator, so that today it is a trivial task.
Whereas the first Fortran compiler required about fifty programmer-years of
effort, today an undergraduate student writes a compiler for a language that
is far more sophisticated as a term project. In fact, there now exist com-
piler compilers that automatically generate some parts of compilers from
programming language descriptions. Because of the basic research in for-
mal language theory, we can today economically tailor languages to specific

6 Scientific Contributions of Computer Science

applications. The same formal development has led to methods for natural-
language recognition, for filament grammars for certain biological systems,
and for constructive solid geometries used in computer-aided design (CAD)
systems for describing solid objects and parts. Early work on developing
a calculus for describing activity in neural nets led to the notion of regular
expressions for describing sets of strings of digits or characters. Subsequent
work on modeling telephone switching networks led to a model called the fi-
nite state automaton. These two models proved to be equivalent. Today the
model is indispensable in pattern recognition algorithms used to search bib-
liographic references, modify text, search data bases, and design command
structures in operating systems and in compilers.

In this chapter we have selected three topics of current research interest
to present in more depth: complexity theory, parallel computing, and ran-
domized algorithms. These three topics promise to play important roles in
the next decade in improving performance of computing beyond the limits
of deterministic sequential computation.

Complexity Theory

At the heart of foundations research is the intrinsic computational complezity
of problems. There are both impossibility proofs, which provide minimum
requirements for resources such as time and space needed to solve a prob-
lem, and possibility proofs, which provide algorithms that attempt to meet
those minimum requirements. These two kinds of results supply both lower
bounds and upper bounds on computational resources. However, the lower
bounds are much harder to prove, because all possible algorithms for a given
problem must be considered. The idea of proving a problem NP hard (a
notion explained subsequently) was developed to circumvent this difficulty.

Basic to complexity theory is the notion of a polynomial time algorithm.
For example, if the time required is bounded by a fixed power of the length n
of the input, say n? or n®, then the algorithm is polynomial time. In practice,
polynomial time algorithms are feasible for reasonably sized inputs, whereas
those that run in exponential time, say 2", are not. The class P consists of
all problems with polynomial time algorithms.

A nondeterministic algorithm is one with the ability to select or guess
a sequence of choices that will lead to a correct outcome, avoiding the ne-
cessity of systematically exploring all possibilities. The class of problems
solvable by so-called nondeterministic polynomial time algorithms is called

NP. Many real-world problems not known to be in P are in the class NP. A

Foundations 7

problem in NP is said to be NP complete if every problem in NP is efficiently
reducible to it. Thus, if some NP complete problem turns out to be in P,
then the classes P and NP would coincide. The great success of this notion
stems from the fact that many combinatorial problems concerning packing,
routing, and scheduling, as well as a wide variety of problems in virtually
every field of science, have been shown to be NP complete. If someone found
a polynomial time algorithm for any one of these NP complete problems, this
would lead to polynomial time algorithms for all of them. Whether P = NP
is the main open question in complexity theory and a major open question
in mathematics generally.

In the last ten years computational complexity theory has also provided
the basis for new foundations for cryptography theory. A cryptographic en-
coding scheme requires a decoding function that is easy to compute given
the key but too difficult to compute without the key. Thus, computational
lower bounds, which are negative results from the point of view of algo-
rithm designers, become necessary to ensure the security of cryptosystems
(see subsequent section on randomization in computing). The cryptographic
implications go far beyond national security needs. Modern computer net-
works and electronic transactions in the commercial sector have created a
need for a method of transmitting data that is secure from electronic eaves-
dropping and tampering and for electronic signatures that will stand up in
legal proceedings.

Lower bounds in complexity theory are important, but far more energy
has been directed to upper bounds, that is, toward developing general tech-
niques for designing efficient algorithms. The result is a new generation of
algorithms for combinatorial and number theoretical problems, retrieving
information, text processing, computer-aided design/computer-aided manu-
facturing (CAD/CAM), graphics, and VLSI design. Taken together, these
techniques have had enormous impact on our ability to apply computers to
problems.

Parallel Algorithms

There are two quite different kinds of parallel algorithms: distributed and
tightly coupled. A distributed algorithm applies to a group of computers,
possibly in different locations. Each computer has its own input data that
must be combined with other inputs, usually as part of an ongoing pro-
cess. For example, a distributed algorithm may be used to implement an
airline reservation system. A tightly coupled parallel algorithm, on the other

8 Scientific Contributions of Computer Science

hand, typically applies to a single computer with many processors all work-
ing together to solve one problem. The development of protocols or rules
to coordinate the activity of different computers is a fundamental research
problem for distributed algorithms. However, in this section we concentrate
on discussing tightly coupled algorithms and assume for simplicity that the
processors are synchronized and execute instructions simultaneously.

The recent dramatic decrease in the cost and size of hardware makes
very natural the idea of building a highly parallel computer with a great
many processors. Parallel computers with more than 64,000 simple proces-
sors already exist. This development raises fundamental questions: Which
problems can substantially benefit from a high degree of parallelism? How
can one design parallel algorithms to reap the benefit? Are there problems
that cannot significantly benefit and are in some sense inherently sequential?

Which problems can substantially benefit from parallelism? A useful way
to formalize “substantial” is to require that the running time of a parallel
algorithm be bounded by a polynomial in the logarithm of the input size
n, for example, logn or (logn)2. (Notice that such algorithms would take
many fewer steps in general than the input size n.) The class of all problems
solvable by parallel algorithms that are fast in the sense just described and
that use a feasible (polynomially bounded) number of processors is called
NC. This class NC is a precisely defined mathematical class that has been
studied extensively and contains many real-life problems.

Notice that a sequential computer with one processor can simulate a
parallel computer with p processors in p steps (assuming no overhead or
arbitrary-size steps). Thus, it is clear that every problem in NC is in P (i.e.,
can be solved by a sequential algorithm in polynomial time). Hence, one
good way of making precise our first question is to ask, “Which problems in
P are in NC?” We give some examples later.

Among the simplest examples of NC problems are the four arithmetic
operations—addition, subtraction, multiplication, and division— applied to
integers. Here the input size n is taken to be the total number of input
digits. In fact, there are parallel algorithms for all four operations that
require order log n time and, at most, n? processors. Similar statements can
be made for iterated addition and multiplication and for sorting numbers or
words. These problems can be shown to be in NC using methods that have
been around since the early days of computers, and many of these methods
are standard in the switching circuits of today’s computers.

tiallvy laroa annlicatian araa for narn"n] combputers

9
d t}\ Gat rep “t enu.lmxj AL BT QP PLIVGUIVIL QLU0 LV POl QaiTl VUL VT S

an
COLL

Foundations ‘ 9

These methods come from a general theorem that shows how to solve many
algebraic problems quickly in parallel. In fact, any polynomial function of
degree d that can be computed sequentially in C steps can be computed in
parallel in order of (logd)(logC + logd) steps using a reasonable number
of processors. A polynomial function is a function of several variables that
can be computed by a fixed sequence of additions, subtractions, and multi-
plications. A good example is the determinant of an n by n matrix, which
is a polynomial of degree n in n? variables. A sequential method is known
for evaluating the determinant in a polynomial number of steps using only
addition, subtraction, and multiplication as operations. Thus, the theorem
shows how to compute the determinant of an n by n matrix in order (log n)?
steps and puts this problem in NC. The standard sequential method for
determinants, based on Gaussian elimination, gives no hint how to do this.
Once the determinant is known to be in NC, other techniques can be ap-
plied to show that most standard problems of linear algebra, such as solving
a system of linear equations, are in NC. Since linear algebra problems are
central to a large fraction of scientific computing, the potential applications
are enormous.

The preceding linear algebra examples illustrate a theme: fast algorithms
suitable for highly parallel computers are often very different from their fast
sequential counterparts. This tends to be true, in particular, of graph algo-
rithms. For example, consider a bipartite graph, that is, a collection of two
kinds of nodes, say, boys and girls. Suppose certain couples, each consist-
ing of one boy and one girl, are designated as satisfying some relation (say,
they like each other). In general, one boy can like more than one girl, and
a girl can like more than one boy. The matching problem is to pair off as
many boys and girls as possible into mutually liking couples; such a pairing
is called a matching. The problem is of central importance in graph theory;
it has been studied since late last century, and extensive effort has been put
into finding good sequential algorithms for it. All of these algorithms are
combinatorial in nature, and the most sophisticated one runs in time nZz,
where n is the number of boys and girls.

Recent parallel algorithms devised for the matching problem are quite
algebraic in nature and are based on the following fact. Let M be the matrix
all of whose entries are 0, except there is a variable X;; in the i *® row and
j th column if boy 4 and girl j like each other. Then the rank of the matrix
M is the largest number of mutually liking couples that can be formed. At
present, the only good way known of finding the rank of such a matrix re-

JNS SR _-“J-N it an sanana .
quires a random number generator. The variables X;; are replaced by small

10 Scientific Contributions of Computer Science

random integers, and the rank of the resulting matrix is computed using the
parallel methods for linear algebra discussed previously. The result will be
the true rank with high probability, and the experiment can be repeated any
number of times to build confidence in the result.

The preceding algorithm is intended to find the size of the largest match-
ing. To find a largest matching itself requires a more sophisticated random
experiment, followed by the inversion of a related matrix. The upshot is
that the matching problem can be solved, perhaps not in NC, but at least
in RANDOM NC: that is, within the time and processor constraints re-
quired by NC but requiring the parallel computer to have a random number
generator, while allowing the answer to be slightly uncertain.

Presumably not all problems can benefit substantially from large-scale
parallelism. An example is the general linear programming problem. This
was recently shown to be solvable in polynomial time, but it is thought
not to be in the class NC. In fact, one can prove that linear programming
is complete for P, in a sense analogous to NP complete. Thus, if linear
programming is in NC, then every problem solvable in polynomial time is in
NG, an unlikely outcome. Other problems have been shown complete for P
and, hence, are likely not in NC. This knowledge may save wasted energy
trying to find super-fast parallel algorithms where none exist.

There are also a number of basic problems in P that no one has been
able to put in any of the categories NC, RANDOM NC, or complete for P.
Two examples involve operations on integers that are useful in modern cryp-
tographic schemes: given two positive integers a, b, compute their greatest
common divisor; given three positive integers a, b, ¢, compute a® mod ec.
(Here the operation z mod ¢ means take the remainder after dividing by
c.)

In general, parallel algorithms are useful not only in programming par-
allel computers but also in the design of computer circuits. A parallel al-
gorithm intended for a highly parallel computer can be adapted to design
a circuit that solves the same problem in time that grows at the same rate
as in the original algorithm. Conversely, fast computer circuits can be con-
verted to fast parallel algorithms. For example, the arithmetic operations
are usually built in to the hardware of the computer, and on large computers
the circuits usually incorporate algorithms that put these operations in NC.
Also, we can easily imagine special-purpose VLSI chips for solving systems
of linear equations, using the fast methods described previously. Special-
purpose chips for cryptography that compute a® mod ¢ have already been

Foundations 11

built, and a good parallel algorithm for this problem could have immediate
application.

In many ways, the class NC may be more appropriate for circuit design
than for parallel program design. In practice computer programs that re-
quire more than order n processors may not be very practical, even though
the corresponding circuits are practical.. The bald classification of a problem
as to whether it is in NC or not is still of fundamental interest, but more
generally it is of interest to study the so-called speedup ratio of a problem.
This is the ratio of the speedup factor to the number of processors, where
the speedup factor is itself the ratio of the sequential execution time to the
parallel execution time. The speedup ratio of a problem can never be greater
than one, by arguments given earlier, and it is a function of the number of
processors. Problems with speedup ratios close to one have parallel algo-
rithms that make efficient use of their processors.

In summary, the design of a parallel algorithm can be fundamentally
different from that of the corresponding sequential algorithm, and yet the
study of parallel algorithms has already led to simpler sequential algorithms.
The mathematics involved is interesting and deep and offers the potential
for far-reaching applications as large-scale parallel computers come into their
own. The theory has some difficult open mathematical questions. The most
basic is whether P = NC; that is, can every problem solvable sequentially in
polynomial time be solved in time polynomial in log n with a feasible number
of processors? The answer seems to be no, but like the P = NP question,
this question has evaded the best efforts of mathematicians in the theory of
computing.

Randomization in Computing

The preceding discussion brings up another fundamental question in the
theory of both parallel and sequential algorithms: must random number
generators play an essential role? It also illustrates how studying parallel
algorithms can lead to improved sequential algorithms, since random algo-
rithms have interesting sequential versions. The past decade saw a dramatic
burst of research on algorithms based on the following seemingly paradoxi-
cal proposition: when computational problems such as determining whether
a given integer is prime or solving certain algebraic equations are beyond
the reach of existing algorithms, try to find an efficient practical algorithm
that involves use of a sequence of random bits produced, say, by flipping

e araTleiring randarm aon

a coin. As is well known, computations employing ranaom sejuences were

12 Scientific Contributions of Computer Science

used in the classical Monte Carlo Method for solving differential and other
equations. To solve a Laplace or a diffusion equation, a discrete stochastic
process governed by an approximate form of that equation is formulated.
The process is then simulated on a computer, and an approximation to the
solution is obtained.

What distinguishes the new applications of randomness in computing is
that they address discrete problems and produce exact yes or no answers
to questions such as whether an integer is a prime or produce an exact dis-
crete structure such as a matching in a graph. The new algorithms are not
intended to emulate a continuous process.

Suppose we have a set of elements, some of which are faulty but at least
half of which are good. Suppose further that there is a fast computation
for determining if an element is good but no deterministic fast algorithm
for producing any good element. Assuming that we can randomly select
elements of the set with nearly equal probability, we can choose elements
and test them until a good element is encountered. The expected number
of trials is two, independent of the size of the set. This basic idea is used in
numerous sophisticated variations in randomized algorithms.

Let us consider the problem of determining whether a large integer n,
say of a size about 103%, is prime. The problem of testing large integers for
primality is of great importance in modern cryptography, yet despite recent
advances, no practical deterministic method applicable to large numbers is
known. Based on Fermat’s Small Theorem, a property Wh(z) of integers
1 < z < n is defined that satisfies the following conditions. If n is prime,
then no integer x < n satisfies W,(z), but if n is composite, then at least 3-%
of the z < n satisfy W, (z). Furthermore, to check whether a given z < n
satisfies Wy, (z) requires logn arithmetical operations. Given an integer n,
we now test it for primality by randomly and independently choosing fifty
integers z1,%2,...,Ts50, all in the range 1 < z < n. We check whether
Wi(z1),...,Wa(zso) are true. If for any i, Wy(z;) is true, we output “n
is composite”; if all W, (z;) are false then we output “n is prime”. It is
readily seen that if n is actually prime the algorithm will always correctly
declare it to be so. But if n is composite, it may happen that the algorithm
will erroneously declare it prime. However, for any given n, and any one
application of the algorithm, the probability of such an error occurring is
provably smaller than 27199, Thus, in this mode of applying randomness,
we tolerate a negligible possibility of error in return for a vast improvement
in efficiency of the algorithm.

Foundations 13

As another example, consider the problem of finding an irreducible poly-
nomial (i.e., one that does not factor into a product of polynomials) of degree
k with coeflicients in a finite field Z, of residues modulo a prime p. This
is, even in the case Z3, a problem of practical importance for the theory of
error correcting codes and for the design of important computer circuits. It
turns out that it is easy to test whether a given polynomial is irreducible.
Also, approximately p¥/k out of the totality of p* polynomials of degree
k are irreducible. Thus, a straightforward application of the idea of ran-
domly choosing a polynomial of degree k and checking it for irreducibility
will produce an irreducible polynomial in an expected number of k& trials.
This example presents an algorithm that always produces a correct answer,
although we do not know in advance exactly how many iterations will be
required. Again, it provides a solution in a situation where no efficient de-
terministic algorithm is known.

Randomization also has important applications in parallel and distributed
computing. One architecture for a parallel computer places N = 2" proces-
sors at the vertices of the n-dimensional hypercube. Connections between
the processors are wires along the edges of the hypercube, so that each pro-
cessor is directly connected to n other processors. The whole structure is, of
course, wired together in ordinary 3-space. Messages between processors are
routed along edges through intermediate nodes. Thus, in the case of n = 3,
the eight vertices are represented by 000,...,111; and 000 is directly wired
to 100, 010, and 001. To route a message from 000 to 111, we send it to
100 then to 110, and finally to 111. Thus, for a parallel computer with N
processors, a single message from any node to any other node will require,
at most, log, N time units for transmissions.

In every phase of the computation, all n processors may wish to send
messages to other processors. Even if all the destinations are pairwise differ-
ent, it may well happen that, when routing in the preceding manner, some of
the links and intermediate nodes will become bottlenecks where an excessive
number of messages queue up. The solution to this difficulty is to have each
processor choose randomly and independently an intermediate destination.
The totality of messages is then simultaneously routed in deterministic mode
to their intermediate destination and from there to their final destinations.
It can now be proved that the probability that any queue of messages, or any
delay, will be greater than ¢ -logn is smaller than n~°. Thus, through the
use of randomization we ensure congestion-free routing with overwhelming

probability.

14 Scientific Contributions of Computer Science

An interesting area of the application of randomness is to modern cryp-
tography. A well-known public-key cryptosystem, the RSA system, employs
a number n, called a key, that is the product of two large primes n = p-gq.
(The key 7 is published, but p and ¢ are kept secret.) If a method were found
to factor large numbers, then the RSA system could be broken; however, it
is conceivable that the RSA system can be compromised even without an
algorithm for factoring numbers. By use of randomization, an encryption
algorithm employing a public-key n = p - ¢ of the preceding type can be
constructed, which provably is as intractable to breaking as the problem of
factorization. As a matter of fact, to date the best known algorithms for
factoring numbers, though falling short of being practical for really large
numbers, employ randomization. Randomized algorithms also play a role in
the evaluation and testing of proposed cryptosystems. A well-known pro-
posal for a public-key encryption system based on the knapsack problem was
broken by a randomized algorithm.

As to other applications of randomized algorithms, let us only mention
the areas of synchronization and fault-tolerant control in distributed com-
puting, protection of transactions (such as contract signing and exchange
of secret information), and finding parallel versions for algorithms such as
sorting.

In the past decade there appeared hundreds of articles applying this rad-
ically novel approach of randomization to all facets of computer science.
Despite all these applications, however, no one has been able to prove that
randomization helps in an essential way. The following fundamental ques-
tion remains open: is there a problem that cannot be solved in polynomial
time by any deterministic algorithm but that can be solved in polynomial
time by a randomized algorithm? Regardless of the answer to this question,
the concept of randomness will continue to play an important role in the
design of algorithms.

Computer Languages

David Gries C.A.R. Hoare
Kenneth W, Kennedy Fernando C. N. Pereira
Dana S. Scott

In every field of scientific endeavor, significant advances have been accom-
panied by the emergence of new notations (and the rules governing them)
as outward and visible signs of deeper conceptual understanding. Often the
invention of a notation has been the key to better understanding and has
resulted not only in new concepts but also in simplification and unification.
Good notation rarely has come easily but has been the result of much thought
and experiment. Omne is reminded, for example, of the battle beginning in
the sixteenth century between Newton’s notation § and Leibnitz’s notation
dy/dz for the derivative, with Leibnitz’s emerging as superior in the more
general setting.

The advent of the computer some forty to fifty years ago brought about
the need for a new kind of notation, for expressing algorithms. Such a no-
tation is called a programming language, because one writes a program—a
plan to be followed—in it. In the early days, implementation of a language
on a computer was a major hurdle, and the existence of an implementation
was a sufficient condition for scientific integrity of research in programming
language design. Economy of space and time was the chief concern, and
because of this, early languages mirrored quite closely the machine language
itself. Now, we are much more concerned with other design goals, such as
simplicity, economy of notation, generality, expressiveness, and manipulative
ability.

The conflict between efficiency of implementation and other design goals
remains an intriguing and important part of our field, which differentiates it
from the search for notations in other fields. Since the early days, computer
scientists have been experimenting with many algorithmic notations, trying
to solve the conflict for a particular context or trying to find better ways of
defining, analyzing, and comparing notations (which explains to some extent
the existence of hundreds of implemented and unimplemented programming

15

16 Scientific Contributions of Computer Science

languages). Often, a significant breakthrough has come not from creating a
new concept but in finding just the right balance between the desired goals.

The theme of conflict between goals will appear throughout this chapter.
Naturally, our discussion must be limited, and we have chosen to provide
three views of the field. In the next section, we look at the achievements of
a few major, established languages of computer science and mention some
less traditional languages of scientific import. Of importance, however, are
not the languages themselves but the underlying scientific issues that they
are designed to test. Thus, in the following section, we look at issues involved
in groups of languages under consideration today: the procedural, parallel,
functional, and logic languages. Finally, we review some of the theoretical
achievements underpinning the field. The increasingly complex notions in-
volved in programming languages and the unprecedented rigor demanded
of implementations have given rise to many new theories of programming
languages, which rely heavily on mathematics and logic. And, as often hap-
pens, our applications of mathematics have generated new problems that
have attracted the attention of mathematicians.

Significant Language Designs and Their Implementations

The early languages: Fortran, Algol, Lisp

We typically take programming languages for granted, forgetting that at
one time they did not exist and that their design and implementation were
difficult. We forget, for example, that the oldest and best-known language,
Fortran, took some fifty programmer-years to design and implement in the
middle 1950s. Fortran paved new ground as the first widespread program-
ming notation that was independent of the underlying machine instruction
set and the first to permit nested arithmetic expressions and multidimen-
sional arrays. With no previous implementations to learn from and with
a requirement of extreme efficiency to encourage acceptance, Fortran was
indeed a significant achievement.

Algol 60, developed several years after Fortran under the auspices of the
International Federation for Information Processing, introduced more of a
sense of simplicity, structure, and conciseness, for it was designed more with
manipulation and human understanding in mind. It generalized the principle
of nesting of expressions to other constructs, and it introduced the recur-

npm] oo anna ~Ff avnrasaing cnrma al rithrmo mars cirmnly and
sive uxubbuu4€ a8 & iieéans Gi uAy;\.ucuu.s OULLIT Oriviiias msre Giilipiry wdiik

mathematically—before it was known how to 1mplement recursion. Later,

Computer Languages 17

research showed that Algol 60 could be implemented quite efficiently, so that
the recursive procedure came for free. The designers of Algol 60 managed
to advance our knowledge in many ways. Algol 60 sparked much research
activity in implementation and optimization, and many of the techniques
discovered then are still in use today.

Lisp, also developed in about 1960, was designed for computing with sym-
bolic expressions (rather than numbers). Pure Lisp, modeled after Kleene’s
lambda calculus and having the list of values as its major data type, had no
assignment but only the (recursive) function definition and function applica-
tion; it was simply a formal notation for doing certain kinds of mathematics.
Today, Lisp and its newer variants are the lingua franca of the Artificial
Intelligence (AI) community.

The efficient implementation of Lisp required new techniques and data
structures to be developed, including extensive use of indirect addressing,
dynamic allocation of computer memory, and sharing of substructures of
data. Remarkably, these techniques were hidden from view and did not
appear in the notation. However, efficiency still remained a key problem,
and the only way found to overcome it was to incorporate into pure Lisp
procedural concepts such as the assignment and loop. This made the notions
of implementation evident in the notation itself, compromising manipulative
ability and ease of understanding,.

Later designs: Pascal, Ada

Work in programming language design ranges from the simple language de-
veloped by a single person to the large, complex language developed by a
committee, group, or company. Both extremes have their place and can
generate significant advances. Here, we describe two such extremes, Pascal
and Ada.

Pascal was developed in the late 1960s by a single person, in academia,
with the goal to generalize Algol 60 but to keep the language as simple and
transparent as possible. It was a tremendous engineering achievement, and
today, without a push from any manufacturer or large group, it has become
the major tool for teaching programming in high schools and colleges in the
United States. A major thrust of Pascal was the extension of the notion of
type: it introduced the subtype, the enumeration type, and the record (akin
to the cross product of sets in mathematics) as major data-structuring tools.
But a prime reason for its success was the simplicity of its design.

18 Scientific Contributions of Computer Science

The language Ada was developed under the auspices of the United States
Department of Defense (DoD) with input from many sources. Ada illustrates
how difficult and time-consuming language design can be—not because of
political or economic problems but because of scientific and technical con-
siderations.

From 1973 to 1974, a cost study showed that the DoD was spending $3
billion a year on computer software, over half of it for software on embedded
computers, computers that form part of a larger system such as a radar
system. The software was written in many different languages, most of them
ten to fifteen years old, and it was felt that a single, new, well-designed
language could have a significant impact, especially if it contained more
modern concepts on parallelism, tasking, types, and program structuring.

In 1975, requirements for a language were published. Proposals for the
language design were solicited and screened; four contracts were let; pro-
gramming language experts reviewed the results of the preliminary designs
and chose two designs to be further developed; and after further work, one
was chosen as the language Ada. The language was submitted to the Ameri-
can National Standards Institute (ANSI) for consideration, and after further
extensive modification, it was finally accepted by ANSI in 1983, eight years
after the process had begun.

Care and thoroughness were used throughout the development of Ada.
Much time was spent dealing with technical design requirements before any
designs were proposed, and the requirements were modified four times over
a three-year period. Throughout the process, computer scientists and others
in computing were asked for comments, which were extensively studied. In
a sense, Ada was something of a group effort. Few thought, however, that
the development of Ada would take so long. In 1975, one computer scientist
was scoffed at for saying that it would be ten years before a usable compiler
for the language was finished; ten years later, he was vindicated.

From the DoD’s standpoint, Ada is indeed successful. More and more
companies and programmers are using it, and through Ada they are learning
newer concepts of languages and programming. Ada would not have been
possible ten years earlier, because the field simply had not advanced enough
at that point. Nevertheless, many computer scientists are unsatisfied with
Ada. They believe that reliability requires simple notational tools, and they
find Ada far too complex and cumbersome. Thus, the search for better
notations continues.

Computer Languages 19

Less traditional languages: BNF, troff, TgX, Postscript

Besides the more traditional kinds of programming languages just discussed,
there are other kinds of computing languages, whose sentences look less like
programs, but nevertheless fall in our field of language design. We discuss
several such languages here. All of them represent significant achievements,
and the later ones, those dealing with editing and typesetting by computer,
have had a marked effect on the productivity of thousands of people.

During the design of Algol 60, the language BNF, or Backus-Naur Form,
was developed to describe the syntax of Algol. BNF and its variants quickly
became standard tools for describing the syntax of languages and opened up
the rich field of formal languages, discussed in a later section. This quite
theoretical field has been of major practical import, for it has led to the me-
chanical generation of parsers or recognizers for a language from its syntac-
tic description, thus speeding up implementation of a language considerably.
Here, we see how the concerns of the programming language community led
to the development of a whole new field and its application in other areas
(such as linguistics).

The languages troff and TgX, developed by computer scientists to auto-
mate the formatting of documents, have changed the world of typesetting. In
fact, TEX is now used by the American Mathematical Society for setting its
journals, and authors can contribute electronic versions of their documents
ready for printing, thus bypassing the traditional typesetting and proofread-
ing. Troff and TEX are indeed programming languages: a document consists
of a sequence of commands and text, with the commands describing how
the text is to be typeset. Employing many concepts developed in the field
of programming language design, these languages have spurred a good deal
of research into the structuring of documents. These languages are a clear
indication that computer scientists can apply their programming language
talents in neighboring areas to achieve tremendous increases in productivity
and economic benefit.

Further progress has come in the form of so-called WYSIWYG (What
You See Is What You Get) editors in which the document in its final form is
displayed on the screen and edited, so that the user need not deal with the
internal form of the document as a set of commands and text. WYSIWYG
editors were developed and implemented some ten years ago in computer
science laboratories, but suitable hardware was not available; it required
the advent of the inexpensive, fast personal computer, with suitable display
facilities, to make them as popular as they are today.

20 Scientific Contributions of Computer Science

As another achievement in document processing, we note that the rel-
atively new language Postscript, designed purely for computer and not for
human use, is revolutionizing how typesetting programs interact with laser
printers. Computer science has many scientific achievements, such as Post-
script, that have tremendous import in the way computers are used but that
are hidden from the view of the layperson.

Advances in Language Design Concepts

Widespread notoriety and application are not the only touchstones of sci-
entific progress, and scientific improvements are found in many research
languages developed over the years. In this section, we organize our discus-
sion of scientific achievements around ideas rather than individual languages,
touching on concepts in procedural, parallel, functional, and logic languages.

Procedural languages

The need for efficiency has sparked a great deal of research into the auto-
matic analysis of programs in languages such as Fortran, Pascal, and Ada,
with the goal being a theory of program optimization. Some of this work is
purely theoretical in nature; some of it is theoretical but with very practical
results. Register optimization, recursion elimination, analysis of redundant
operations, identification of variables that are not used before their values
are redefined, and interprocedural analysis are examples of the kinds of op-
timizations developed by computer scientists that have been incorporated in
commercial compilers.

Research in language implementation and optimization has also influ-
enced new machine architectures. An important example is provided by re-
search on reduced instruction set computer (RISC) systems, in which higher
performance is achieved in the machine architecture by relying on the com-
piler to perform some of the tasks normally done in hardware. These ideas,
developed by the 801 project at IBM Research, the RISC project at Berkeley,
and the MIPS project at Stanford, have been incorporated into the design
of more than ten commercial computers.

The structuring of large programs or systems (sometimes over 1 million
lines) is of tremendous practical import, and for years researchers have been
investigating the structural and notational issues involved in such systems.
Some key ideas for providing structure, beyond the conventional subroutine,

Computer Languages 21

* have involved the notion of type, and in the rest of this section we discuss
advances concerning this notion.

The type of a variable defines the set of values with which the variable
can be associated, and this in turn defines the set of operations that can be
applied to it. For purposes of efficiency.as well as early detection of errors,
Algol 60 (and later Pascal) employed strong typing: the type of a variable
depended only on the syntax of the program and not on its execution. Lisp,
on the other hand, for reasons of expressiveness and flexibility, used weak
typing: the type of a variable could change during execution. Here, again, we
see the conflict between expressiveness and manipulative ability, as opposed
to efficiency, a conflict that in this case has not yet been resolved.

One attempt to provide a compromise between strong and weak typing
is polymorphism: type remains a syntactic property, but the type of some
variables (for example, a procedure parameter) varies in a disciplined man-
ner. For example, it should be reasonable to write a single procedure to sort
an array of elements of any type as long as that type has an ordering <
on it. Incorporating the concept of polymorphism cleanly into a language
has been difficult, partly because the notion of type was not well defined.
The languages ML and Ada allow forms of polymorphism, as do most other
newer languages.

A second way to make a language more powerful is to enrich its set of
types. For example, Pascal introduced the record as a finite collection of
named objects, akin to the cross-product of sets in mathematics. Also, the
language APL (ca. 1968) was built completely around the multidimensional
array and provided extremely concise notation for operations on it. Brevity
was a chief concern, and one could write a task in one APL line that might
take fifty in another language. Unfortunately, these one-liners were too con-
cise, and rarely were programs modified because they could not be read.
APL showed that brevity by itself was not enough; attention to human un-
derstanding and to rules for manipulation are needed. Further, because of
the dependence on the array, APL programs were typically inefficient.

The language SETL (ca. 1972) introduced the set and the sequence (i.e.,
the tuple of any length and of values of any type) as primitive types. SETL
is extremely expressive, and a program that can make effective use of these
types can be developed in perhaps one tenth of the time required in a more
conventional procedural language. The extreme expressiveness in SETL,
however, made its implementation inefficient. This conflict has generated a
great deal of research on implementing such general types and on analyzing

22 Scientific Contributions of Computer Science

a program to detect whether more restrictive and efficient implementations
can be used for it.

The most flexible scheme is to allow the programmer to define new types
and their implementations. This notion is intertwined with data abstraction:
a programmer abstracts away from the implementation and simply defines
the set of values of interest and the operations to be performed on them. A
program is then written and understood in terms of variables of the newly
defined type, and not in terms of the implementation of the type. In fact, the
programmer is prohibited from referring to details of the implementation.
This allows the level of understanding to be raised as high as the problem
domain itself, if types supporting the ideas and notation of the problem
domain can be developed. This idea was embodied in the language Simula
67 (in about 1967), but the recognition that a mathematical entity called a
type was involved became apparent only during the 1970s.

During the 1970s, researchers began experimenting with structuring mech-
anisms built around the notion of types. Some strongly typed languages with
such mechanisms are CLU (ca. 1974), Modula (early 1980s), and Ada, with
its generic package. Other languages, called object-oriented languages, have
been developed, of which Smalltalk is a prime example. Object-oriented
languages have generally been weakly typed, allowing greater freedom of
expression but a corresponding decrease in execution efficiency and early
detection of errors. With object-oriented languages, the notion of type in-
heritance has been of interest and has received formal study.

A final technique developed was type inference. Typically, in a strongly
typed language the programmer is required to declare explicitly the type
of each variable used in a program. The language ML pioneered the idea
that strong typing could be achieved without all explicit declarations if the
language processor could infer the type of each variable based on its use.

The notion of type has played a central role in all the work on structuring,
and this has required study of the type itself, beginning with the notion
of a type as a set of values. The development of theories of type, type
inheritance, and type inference has involved algebra, category theory, logic,
and philosophy and has attracted the attention of scientists in these other
fields.

Parallel languages

The notion of parallelism, or concurrency, originated in operating systems.

4N § P, Act o

In the 1970s, it became the purview of programming language design, for

Computer Languages 23

one could not study various ideas concerning parallelism, such as synchro-
nization and message passing, without notations for expressing them. Thus,
studies of parallelism were begun by computer scientists before distributed
programming and parallel-machine architectures had become economically
important.

The von Neumann computer itself handled parallelism using the inter-
rupt: at any time, an event such as the end of an input/output operation
could cause execution to be interrupted and begun at a different place. To
provide any hope of understanding parallelism, this completely undisciplined
interrupt had to be hidden from the programmer’s view, and various nota-
tional mechanisms were introduced for this purpose. The semaphore was
one such early mechanism. Also, the monitor was introduced as a structur-
ing mechanism to encapsulate all operations whose parallel operation might
interfere (because they operated on shared data) into a single program part.

Two general models of parallelism have been studied: the shared-memory
model, in which different processes share and operate on the same variables,
and the message-passing model, in which each process has its own variables
and communicates with other processes only by message passing. Notations
and theories for each model have been introduced, and for each model various
methods for proving programs correct have been put forth.

Among notable examples of languages that cater to various forms of
parallelism are Concurrent Pascal, Modula-2, Ada, and CSP. CSP, which
has become the lingua of researchers in the theory of concurrency, deserves
special mention. It is an example of a serious notation that needed no imple-
mentation, for its prime purpose at the time was the study of issues rather
than the implementation of programs. Some time after its appearance in
1978, however, CSP became a major influence in the architectural design of
a machine composed of hundreds or thousands of communicating computers.

Today we have massively parallel computers, as well as vector machines
like the Cray and architectures like the Floating Point array processor. Tak-
ing advantage of the parallelism in the different architectures requires new
languages. Another approach is to develop new methods for extracting par-
allelism from a program written in an existing language. Study of this ap-
proach has resulted in many advances in analyzing the structure of programs,
which have been incorporated into prototype systems and thereafter into a
number of commercial compilers.

24 Scientific Contributions of Computer Science

Functional programming

A major criticism about procedural languages is the obstacle they present
to manipulating and analyzing programs. Procedural languages typically
do not allow the simple replacement of one program segment by another or
the building of programs on a higher level; their mathematical laws are too
complex.

In 1978, the language FP (for Functional Programming) was introduced
as an alternative to the procedural language. Like pure Lisp, an FP program
consists mostly of function definitions and applications. But it also can
include various combining forms used to build and manipulate higher level
programs. Most important, FP is based on an algebra of programs that gives
rules for manipulating programs written in terms of these combining forms.
Thus, one can manipulate and solve programmatic equations in unknowns
using algebraic laws, just as one does with arithmetic expressions.

This idea of a programming language based purely on mathematical rea-
soning is a great idea, but efficient implementation has continued to be a
problem and has therefore been studied intensively. Other functional lan-
guages, such as SASL and Miranda, have been developed; research has been
performed on the theory of functional languages; and research into the de-
sign of parallel architectures to support efficient implementation is underway.
The idea has become intimately connected with the concept of data-flow lan-
guages, whose development began in the early 1970s.

Functional programming has given us a new way of viewing algorithms;
it has provided us with new scientific tools for writing, manipulating, and
analyzing programs that are just beginning to be explored.

Logic programming

A program specification can be thought of as a sentence of some predicate
logic: it describes the relation among the input variables that must hold
initially and a corresponding relation of the output variables that hold upon
termination. Programming would indeed be simplified if such a specification
could be used directly as program: give the computer a specification and
input values, and it generates the corresponding output values! However,
this is equivalent to automatic theorem proving, for a proof of the existence

of output values that satisfy the specification has to be generated. Theorem
proving is known to be extremely inefficient, and the scheme seems infeasible.

1L, 4224 22

Computer Languages 25

Two breakthroughs made logic programming feasible. First, the logic
used was restricted to a form known as Horn clauses, which reduced sig-
nificantly the amount of searching needed in generating a proof. Second,
the technique called unification, which had been in use in research in the-
orem proving, was found to be useful. The first demonstration of logic
programming was with the language Prolog in the 1970s. Today we find
logic programming systems on our personal computers, and the idea of rep-
resenting knowledge bases as logic programs was a key part of the Japanese
fifth-generation computer project.

However, efficiency continues to be a problem. Different forms of the
same specification can require drastically different times for proof gener-
ation, and the writer of the specification has to know enough about the
underlying theorem prover to use the most efficient form. Sometimes, the
writer must place hints to the theorem prover directly in the specification,
compromising the simplicity of the scheme. The need for efficiency—while
retaining the simplicity of logic programming—continues to stimulate fur-
ther research. Ongoing work includes attempting to eliminate the need for
the operational requirements in the specification, developing new theories
that reduce execution time, developing computer architectures expressly for
executing logic programs, and exploiting the parallelism in existing architec-
tures. The field has grown to cover wide theoretical and practical ground,
with important overlaps with AI, theoretical computer science, computer
architecture, data-base theory, linguistics, and logic.

Programming Language Theory

The need for understanding, analyzing, and comparing languages and pro-
grams, together with the computer’s requirement for precision and rigor,
has spawned several supporting theoretical subfields that have grown into
significant research areas in their own right. These subfields have a rich,
deep, and significant structure. In this section, we are limited to discussing
three theoretical areas: formal language theory, denotational semantics, and
axiomatic semantics.

Formal language theory

In the 1960s and 1970s, intense study of the syntax of formal languages re-
sulted in many theoretical achievements. But the field was influenced from

26 Scientific Contributions of Computer Science

the beginning by the practical need to write parsers for programming lan-
guages, to be used in the translation of programs into the machine language
of a computer. This influence led to the development of programs that
mechanically produce a parser for a language from its syntactic description.
Today, many programming language processors are written using such parser
generators. Further, these parser generators are used not only for traditional
programming languages but for other notations as well. The same formal
development has led to methods for natural language recognition, gram-
mars for certain biological systems, and constructive solid geometries used
in CAD systems, to name a few. This work has also helped in the auto-
matic production of “syntax-directed editors”, which allow a program to be
edited in terms of its syntactic structure and not only as a linear sequence
of characters.

Denotational semantics

One aim of our programming language theory is to create a rigorous context
for explaining the precise semantics of the full range of programming con-
cepts. Moreover, this foundation must support the development of practical
tools for reasoning about programs. The first definitions of the semantics
of a programming language were operational in nature—they were in terms
of how some (abstract) machine would execute a program. Although in-
tuitively satisfactory, operational definitions were not suitably amenable to
mathematical analysis, and various questions one might pose about a lan-
guage simply could not be answered.

Significant progress was made in semantics with the development of de-
notational semantics in the early 1970s. A denotational definition of a lan-
guage is a function that for each input state of a program yields its output
state. This approach has several advantages, most of which stem from the
fact that a denotational definition is amenable to mathematical analysis.

For example, by restricting attention to programs whose denotational
definitions are continuous (a class of programs that include those used in
practice), we can analyze the semantics of a programming language in terms
of fixed points of continuous functions. Thus, the meaning of a loop or
recursive procedure is defined as the least fixed point of a certain function,
and the existence of the fixed point can be proved. As another example,
denotational semantlcs can be used to prove the soundness of an axiomatic
proof rule (see the next subsection) in a rather natural way; using a purely

1 1
operational definition of semantics, this would be far more difficult.

Computer Languages 27

The development of denotational semantics resulted from the introduc-
tion of domains and domain equations, which generalized earlier ideas of
algebraic semantics, in particular by allowing domain constructions to in-
clude mathematical spaces of procedure denotations and other operators. In
the past fifteen years there has been intense development of denotational
semantics, and denotational semantics has begun to influence the design of
new languages. Examples include Standard ML, HOPE, CLEAR and SASL.

Aziomatic semantics

A specification of a sequential program § is often given in terms of a relation
P that its input variables must satisfy and a corresponding relation R that
its output variables must satisfy. The notation {P} § {R} has the meaning:
execution of program § begun in a state in which P is true is guaranteed
to terminate in a state in which R is true. In the late 1960s, the problems
of understanding programs gave rise to the idea of defining a language not
in terms of how § is executed but in mathematical terms by which state-
ments {P} § {R} could be proved. In such an axiomatic definition, each
statement of a language is defined by an inference rule H / {P} S {R},
where the hypotheses H state the conditions under which {P} S {R} can
be inferred. This axiomatic approach, a direct application of formal logic,
has been a major influence ever since. For example, the axiomatic approach
has influenced language design, for it was evident that the simplicity of an
axiomatic definition was often reflected in the simplicity of a language as a
whole.

Program logics, as well as rules for meaning-preserving transformations
of programs, raise the fundamental logical problems of soundness and com-
pleteness, and their investigation has drawn upon many techniques of logic.
However, they have also suggested new logical problems. For example, the
notion of relative completeness arose in the course of proving the complete-
ness of a programming logic. Novel logics for specifying program behavior,
such as dynamic logic, have been developed. In the realm of parallel program-
ming, temporal logics and trace logics have been developed and analyzed to
deal with the problems of nondeterminancy and infinite execution sequences.
Thus, it can be seen that mathematical logic has been the inspiration of a
great deal of work in programming language theory. This work in turn has
caught the attention of logicians and is proving a fruitful source of interesting

iy 1y PN

problems for them.

28 Scientific Contributions of Computer Science

Investigations of program development have also led to the use of a pro-
gram logic as a calculus for the derivation of programs, the goal being a
collection of heuristics for program development that are based on devel-
oping a program and its formal proof of correctness hand-in-hand. The
material is working its way into textbooks and influencing the teaching of
programming.

The use of the computer requires an unprecedented amount of detail,
precision, and rigor. Experiments indicate that this seemingly inherent com-
plexity of programming can be overcome in many cases by the judicious use
of formal manipulations according to a program calculus and an underlying
predicate logic. In a sense, Hilbert’s program of formalizing mathematics
and proofs is finding direct application in programming; for some scientists,
formal proofs of theorems as sequences of applications of inference rules are
an everyday occurrence. The formal derivation of programs is far from per-
vasive. Nevertheless, the results are impressive. Older algorithms have been
described more simply, and the techniques have been used to develop new
sequential and parallel algorithms.

Finally, we mention significant advances in the mechanization of conven-
tional and programming logics. The Boyer-Moore theorem prover has been
used to prove theorems in many fields. The implemented language Gypsy
has been used to prove various properties of programs for communications
processing applications. Nuprl, a language for doing constructive mathe-
matics and designed around the notion that the type of a logical proposition
is the set of its proofs, presents an interesting alternative to programming.
From a constructive proof of a theorem (in a certain form), Nuprl can extract
a program, thus reducing program construction to proof construction.

Computer Systems

Forest Baskett David Clark
A. Nico Habermann Barbara Liskov
Fred B. Schneider Burton Smith

Research in computing systems is concerned with developing principles and
tools to enhance the accessibility and power of computers. The goal is to
bridge the gap between the demand for computing imposed by applications
and the supply provided by extant technologies. Research is performed by
designing systems, analyzing systems, and—most importantly—abstracting
key problems and devising mechanisms to facilitate their solution. Thus, in
addition to producing systems, researchers make important contributions by
inventing new abstractions and devising ways to manipulate them.

The nature of computing systems research is diverse. As in more tra-
ditional sciences, there is an empirical element. Programs do not behave
in random ways, and knowledge of how they do behave allows the struc-
tures that execute them to be optimized. Unlike the natural sciences, how-
ever, the phenomena being studied are of our own making. Changing the
phenomena~—that is, the hardware or software—is a perfectly acceptable way
to avoid a problem. Finally, computing systems research has a significant
engineering component. Computing systems tend to be complicated enough
that building them is the only way to evaluate certain ideas.

We cannot hope to survey research in computing systems in a short
space. The field is enormous, spanning aspects of hardware and software
design. However, it is possible to get a taste of computing systems research
by looking at a few of its scientific contributions. We do this as follows. The
examples selected are representative of the type and style of research in the
area, although they reflect our biases.

Operating Systems

Sharing is one way to make an expensive resource, like a computing system,
more accessible to a collection of users. To put this principle into practice,

&

30 Scientific Contributions of Computer Science

computing systems researchers designed systems programs, called operating
systems. These allowed a processor and peripheral devices to be shared
among a collection of users, giving each user the illusion of having a virtual
computer to himself or herself. Achieving this illusion was not a simple
task, however. Program execution had to be controlled to prevent different
users from interfering with each other and to ensure efficient use of available
resources.

The processor was shared by time-multiplexing it among user programs.
Task switching was performed by the operating system, which received con-
trol in response to hardware-generated interrupts. However, designing in-
terrupt handlers proved to be a difficult task. Predicting in what state an
interrupt handler would start execution was impossible, and consequently it
was difficult to ensure that the handler would always do the correct thing.
Indeed, an interrupt handler might even itself be interrupted!

The insight that processors with interrupts were just a form of asyn-
chronous parallel processes provided a liberating abstraction and an elegant
way to think about the problem. A variety of primitives and algorithms
were quickly developed to synchronize asynchronous processes. These, in
turn, allowed the interrupt handler problem as well as a host of others to
be viewed in a single framework, which allowed intrinsic properties of so-
lutions to be separated from implementation details associated with a par-
ticular machine. And the framework allowed questions to be formulated
that had never even been articulated before. For example, although mem-
ory access in early machines appeared as an indivisible operation, computer
scientists also investigated models in which it was not atomic. Some of
the standard problems—known to be important in implementing operating
systems—could be solved in this model; others could not be. The existence
of this body of research meant that answers were readily available as (then)
unforeseen advances in very large scale integration (VLSI) technology and
computer architecture have permitted construction of memory that does not
satisfy this atomicity assumption.

Today, the study of asynchronous parallel processes has had impact be-
yond computing systems research. Within computer science, an active re-
search area in the theory community concerns communication and compu-
tation costs inherent to parallel algorithms. Researchers in semantics and
cognitive sciences have investigated various models of parallelism. In ad-
dition, renewed interest by logicians in temporal and other modal logics is
largely a consequence of recognition by computer scientists of the suitability

UL SR S o mrmnartioe ~AF mavnn Nt o vy

Y SN, T | . £ 23 am P I PN . a
O@ SUCH 10g1CS 101 PIUVILE DIupcliies Ul palaiitl pivglatliis.

Computer Systems 31

Sharing a computer among users involves more than just sharing pro-
cessor cycles among programs. To maintain the illusion that each user has
a private machine, memory usage must also be controlled. This is because
programs written in isolation might use identical names to designate (what
should be) different memory locations. One solution to this problem, devel-
oped by computing systems researchers, was virtual memory, an abstraction
that, like real memory, maps names to memory locations. Virtual memory
is managed by the operating system. Tables are maintained describing the
mapping in effect, and information (in units called pages) is moved from
relatively slow peripheral storage devices to main memory and back as it
is needed by executing programs. As a result, it is possible for each user’s
virtual machine to behave as if it has a private memory that is larger than
the one actually connected to the processor.

Virtual memory makes it possible to write programs without concern for
the actual memory size of a computer. It illustrates a pervasive theme in
computing systems research: defining and implementing abstractions that
package technology for easier use. As another example, file and data-base
systems implement abstractions that allow information to be saved and re-
trieved without concern for how or where the information is stored. In fact,
the success of many operating systems, including the popular UNIX system,
can be attributed directly to the clean, high-level abstractions they present
to their users. These abstractions allow programmers to devote more time to
their applications and less time to dealing with idiosyncrasies of the system.
Inventing clean, high-level abstractions is difficult, but then, designing tools
that will be used for as yet unimagined tasks is always hard.

Virtual memory illustrates another important aspect of computer sys-
tems research: controlling resource use to achieve high utilization. To load
a new page into main memory, we might have to move back an old page
to the peripheral storage device. The obvious question is which page to
evict. Empirical studies of program behavior reveal that page references
are not entirely random. Programs tend to exhibit locality: a recently ref-
erenced page is more likely to be referenced sooner than a page that has
not been referenced for some time. Locality can be exploited in designing a
page replacement algorithm, allowing a virtual memory system to perform
considerably better than if page-out decisions were made randomly. Here,
experimental evidence concerning program behavior allowed an aspect of the
system to be optimized.

Processor cycles and memory pages are just two examples from a diverse

s

RS any Ao ts

collection of resources that an operating system mus

+ manaon Th angnre
v illaiiagT. 40U CTusuas

32 Scientific Contributions of Computer Science

adequate system performance, access to all of these resources must be con-
trolled. In early systems, scheduling policies drew heavily from previous
work in telephony. However, it soon became apparent that new policies
were required. Resource requests in computing systems (unlike telephone
systems) are characterized by high-variance distributions, as exemplified by
the rule that a large percentage of a resource will be required by a small
number of the requesters. To ensure high resource utilization with these
high-variance distributions, researchers derived new scheduling and alloca-
tion methods. Contributions to traditional job-shop scheduling theory were
also made. Problems in analyzing computing systems led to advances in
traditional operations research methods, including new methods for solving
queuing models.

One might think that today’s personal computers render much of this
work obsolete, since machines are no longer shared by users. Just the con-
trary is true. First, expensive resources, like high-resolution printers and
file storage systems, must still be shared. Second, most personal computers
allow a user to run several programs concurrently. Window facilities, for
example, allow the user to interact concurrently with a number of programs,
thereby supporting a synergism between these tools. Although the processor
is not being shared among users, it is being shared among these tasks, and
the theory and solutions developed for implementing multiuser time-sharing
systems still apply.

Computer Architecture

The needs of some applications are defined in terms of cost and raw com-
puting, communication, and storage capacity. Computer architecture is the
area of computing systems research concerned with designing computers to
satisfy those needs. The term architecture is particularly appropriate be-
cause design is done at a fairly high level of abstraction. At any given time,
current technology provides building blocks—arithmetic, logic, and storage
elements—with certain performance characteristics. The computer architect
attempts to combine these building blocks so that they cooperate harmo-
niously to implement a structure that satisfies performance and cost goals.
By intelligent choice of abstractions and/or their implementation, we can
exploit the latest technological breakthrough or overcome a technological
bottleneck.

One example of an innovation in the implementation of an abstraction

rogrammer

Computer Systems 33

is told—that is, provided with the abstraction—that instruction execution
occurs as a sequence of five operations:

1. The instruction is fetched from memory.
The instruction is decoded.
Operands are fetched from memory.

The operands are combined as prescribed by the instruction.

AN oS

Results are stored in memory.

The naive implementation of this five-operation cycle would be to process
one instruction completely, then the next, and so on. For technological rea-
sons, accessing memory usually involves a significant delay. Measured in
units of memory-access delay, the elapsed time between completing each in-
struction would be at least 3 memory access times—one access time for each
of steps 1, 3, and 5. Notice, also, that the memory is left idle during steps
2 and 4. A pipelined implementation of instruction execution could com-
plete instructions at close to twice this rate. A pipeline works just like an
assembly line and exploits the empirically observed absence of dependencies
between adjacent instructions. In this case, while one instruction is being
decoded, the next is fetched, and so on. The result is that an instruction
can be completed every 3 memory-access delays. Moreover, memory is kept
busy all the time.

The idea of pipelining is not restricted to instruction processing. It can
be applied at various levels in the design of a computing system. Pipelined
arithmetic units enable time-consuming operations, like multiplication, to be
accomplished at a high rate. Pipelining can also be applied at the highest
level of the system. A class of computers, called systolic arrays, is able to
achieve extremely high throughput because these computers consist of a col-
lection of functional units connected into one large pipeline that implements
the data transformation described by a program.

Caching is another example of how computer architects are able to achieve
high performance by conceptual breakthroughs rather than relying on tech-
nological ones. High-speed memory tends to be expensive, and all memory
has limited bandwidth. Ideally, we desire cheap, high-speed, high-bandwidth
memory. The question is how to implement a memory abstraction with these
performance characteristics; caching provides the answer. A cache is a small,

34 Scientific Contributions of Computer Science

high-speed memory that serves as a front end to a larger, slow-speed mem-
ory. Information is moved into the cache when it is needed and moved out
when it is no longer needed. Because programs exhibit locality in memory
references, the cost of moving information into a cache can be amortized,
and most memory accesses will be to the high-speed cache. Caches that
are smaller than 1 percent of the total memory size are sufficient for dra-
matic performance improvements (i.e., over 95 percent memory accesses can
be satisfied by the cache). Thus, a relatively high-speed memory is imple-
mented by using a large amount of slow-speed memory, a small amount of
high-speed memory, and mechanisms to transfer information between them.

The issues in implementing a cache are similar to those associated with
implementing a virtual memory. It is not rare for both hardware and soft-
ware to involve the same abstractions. Consequently, both can benefit from
new abstractions and innovations in implementing old ones. In fact, the
computer architect often must choose between realizing an abstraction di-
rectly in hardware and choosing more primitive abstractions to implement,
leaving it to systems software to realize that abstraction. This also means,
however, that work in computer architecture can be responsible for new
research directions in programming languages, compiling, and algorithms.
For example, recent investigations into reduced instruction set computers
(RISC), which are based on the premise that small and simple instruction
sets are best, have stimulated research into compiler techniques.

Most agree that still more computing power will be needed to execute
applications programs that unravel new complexities in, for example, par-
ticle physics, quantum chemistry, and genetics and to handle engineering
applications such as computer-aided design and computer-controlled manu-
facturing. Future computers will meet these goals not only by innovation in
electronic component technology but also by an architectural revolution—
altering the instruction processing abstraction from the single-stream (one
instruction at a time) Von Neumann model to a model in which multiple
instruction streams are processed in parallel. The correct choice of parallel
processing abstraction, if indeed there is a correct choice, remains a hotly
debated topic. Past work from operating systems gives some insight into
parallel processing, but only for instruction execution abstractions that cor-
respond to parallel asynchronous processes. Other computational models
have also been proposed. Examples of such abstractions are the data-flow
and functional programming models. In both, a set of equations of a par-
ticular form, rather than a sequence of instructions, defines a computation.

Computer Systems 35

As a result, the instruction stream is not defined prior to execution but is
created as the computation proceeds.

Most of the problems associated with parallel architectures based on par-
allel processes are associated with the communications abstraction. Some
architectures employ a shared memory for communication. However, im-
plementing this abstraction requires an extremely high bandwidth mem-
ory because the memory must service many (fast) processors. New caching
schemes, in which each processor has its own cache and program variables
might reside concurrently in more than one cache, are currently being inves-
tigated as a way to solve this bandwidth problem. A second communication
abstraction under investigation is the use of message passing. Realizing this
abstraction requires communications channels that interconnect processors.
For the extremely large numbers of processors contemplated, it is techno-
logically infeasible to connect every pair with a direct link. Yet, restricting
the topology of interconnections makes an architecture poorly suited for
programs in which there is a clash between the processor interconnection
topology and the program’s communications topology.

Additional research will be required to resolve these problems. Abstrac-
tions will be proposed, and experiments will affirm or deny their viability.
The experiments will be costly because designing and engineering a large
computing system can require significant time and resources. Moreover, it
does not suffice to build just the hardware. For abstractions that differ
significantly from those with which we have experience, software must be
constructed and programming methods must be developed. And, although
computers are universal machines and therefore any new computing system
could be simulated, it is still necessary to build the hardware because sim-
ulation is just too slow to gain meaningful experience. However, the payoff
can be great. All the sciences can benefit from the tools that result.

Networks and Distributed Systems

Not all application requirements can be translated into access, capacity; and
cost. Sometimes, an application imposes constraints on the structure of a
system, usually in terms of physical placement of system components. For
example, an organization might need to share information that is located
on computers at various branch locations, requiring that the computers at
these locations be linked. Process control applications are another example
in which placement of computers is dictated by the application. Here, pro-
cessors must be located near the sensors and actuators that interact with

e

36 Scientific Contributions of Computer Science

the physical process being controlled. Finally, implementing the fault toler-
ance needed for high availability requires that when components fail, they
do so independently. Processors that are physically separated and linked by
a communications network exhibit this failure independence.

A distributed system is a collection of computers interconnected us-
ing a computer communications network that provides (relatively) narrow-
bandwidth, high-latency communications channels. At first, we might think
that an understanding of telephony would be sufficient to enable networks
to be implemented and that an understanding of parallel asynchronous pro-
cesses (from operating systems) would be sufficient to enable applications
to be designed for distributed systems. Unfortunately, computer commu-
nications demands are not well served by traditional telephone switching
technology. In addition, the use of narrow-bandwidth, high-latency com-
munications channels changes the coordination problems that can and must
be solved, in addition to changing the costs of various solutions. Comput-
ing systems research in networks and distributed systems has tackled these
problems, in some cases uncovering fundamental limitations and results in
fault tolerance and coordination of communicating processes.

The central proposition of modern data networking is that a useful com-
munications abstraction can be implemented using packet switching (as op-
posed to circuit switching). In packet switching, a communications channel
is multiplexed serially by sending small packets. Each packet contains rout-
ing information and a small element of data. Information to be transferred
between two sites is decomposed into packets, each of which independently
wends its way to the destination, perhaps even taking different routes. The
use of packets permits a higher rate of multiplexing, and hence a high degree
of sharing of expensive communications bandwidth. Even telephone compa-
nies have now embraced packet switching to implement the circuit-switching
abstraction they present to their customers.

Packet switching does not itself prevent the offered load from exceeding
available bandwidth; nor does it prevent statistical fluctuations in load from
causing short-term overloads. These congestion problems have occupied net-
work designers for the last century. Algorithms designed to control conges-
tion are difficult to construct because congestion might arise and disperse
faster than the system can respond. A good analogy here is with air-traffic
control. Imagine the difficulty of managing the air-traffic control system if
controllers could only communicate by putting messages into airplanes and
flying them from airport to airport! Actual air-traffic controllers have access

Computer Systems 37

to low-delay communications paths (e.g., telephone and radio) for control; a
computer communications network must use its own data paths for control.

In addition, process execution speeds in a distributed system are high,
relative to the speed with which processes can change or sense the state of
the system. As a result, system processes can observe the same set of events
in different orders, unless those events are causally related. Researchers
have developed theories to reason about computing systems subject to this
phenomenon, resulting in new abstractions about computation, new appli-
cations for logics of knowledge and belief, and even new insight into the
nature of causality. Those familiar with special relativity are not surprised
to find that time-space diagrams have received application in these theories
and that anomalies predicted by special relativity are actually observable in
distributed systems.

Another major concern to networking researchers is the correct choice
for the communications abstraction provided to users of the network. Raw
packet delivery is unsatisfactory as an abstraction because the network may
lose or reorder packets. The virtual circuit abstraction ensures that packets
are delivered in the order sent; unfortunately, it is impossible to implement
this abstraction without admitting the possibility of unbounded delivery de-
lays. For this reason, both less powerful and more powerful abstractions have
been investigated. Devising suitable abstractions is particularly difficult be-
cause of the great variation that can be found in the channels composing a
network. Channels can vary in bapdwidth and end-to-end delay by as much
as six orders of magnitude.

One outgrowth of research in networks and distributed systems is an
increased understanding of fundamentals for achieving fault tolerance. In
most centralized systems, no serious attempt was made to keep the system
running if a component failed, and the whole system failed as one. In dis-
tributed systems, it became desirable to keep parts of the system running,
even if other parts failed. This has resulted in new methods for partitioning
function and responsibility and a new set of abstractions for thinking about
fault tolerance.

The traditional view of fault tolerance is in terms of stochastic mea-
sures, like MTBF (mean time between failures). A more recent view, t-fault
tolerance, characterizes fault tolerance in terms of the maximum number
t of failures that can occur before the system will violate its specification.
Clearly, stochastic measures can be derived from ¢ fault tolerance if given
stochastic characterizations for system component failures. The advantage

Figiy, PRI & A

of # fault tolerance is that it permits evaluation of fault tolerance that is

38 Scientific Contributions of Computer Science

achieved through design—independent of the reliability characteristics of
the components used to implement that design. Fault tolerance can now be
viewed in a technology-independent manner. This view of fault tolerance -
has led to some surprising insights. One is that distributing an input or co-
ordinating the actions of the components in a replicated system can be very
expensive and sometimes impossible. Results associated with the so-called
Byzantine Generals problem give bounds on the costs. The results also give
insight into types of failure that less expensive implementations are unable
to tolerate. They show that TMR (triple-modular redundancy), a widely
used fault tolerance technique in computer engineering, is based on some
previously unstated assumptions that are not always valid.

Computer scientists have enjoyed the benefits of computer networking
and distributed computation since the 1960s, when the ARPANet was first
constructed. Initially developed as an experimental network connecting com-
puter science research facilities, the network is now widely used by computer
scientists (and others) for day-to-day communications activities, including
electronic mail, remote login, and file transfer and sharing. Electronic mail
has revolutionized communications patterns among users and has led to
commercial ventures and standards of use in all disciplines. Office automa-
tion and exploitation of personal computers are possible only because of our
understanding of computer communications networks and distributed sys-
tems. And, mundane as they are, these largely clerical uses, made possible
by computing systems research, are changing the way business is conducted,
financial resources are managed, and people conduct their daily lives.

Concluding Remarks

Computing systems research, like much of computer science, is about prop-
erties and implementation of abstractions. The ultimate utility of these ab-
stractions derives from the extent to which they make computing resources
available to applications. A reasonably small set of abstractions—concerned
with cooperation and sharing resources—finds utility over and over at various
levels of a computing system, leading one to believe that these abstractions
are, in some sense, fundamental. New breakthroughs in electronic compo-
nent technology can be exploited and new applications demands sated with
minimal disruption to users’ views of computing by virtue of these abstrac-
tions.

Although there is a large engmeermg component in computing systems

tility af tha oh

arch __Ann 1\111]da uury O1 i€ ao-

rese(ld. CEiLT WUIIC UUlIJuo

Artificial Intelligence 39

stractions they implement—it would be a mistake to view engineering as the
primary research activity. The main contribution of the natural sciences is to
observe, predict, and explain phenomena, not the experiments that validate
those explanations. Similarly, the main contribution of computing systems
research is the abstractions and our understanding of why they work.

Artificial Intelligence

Drew McDermott Tomaso Poggio

Prior to the invention of the computer, information was something that
was transmitted and stored, but it could be processed only when exam-
ined by a human being. The human was what made it information, by
giving it meaning. However, the computer has made it possible to build
autonomous, formal agents that process and condense information while re-
specting its meaning. For example, a payroll program performs a long series
of uninspired actions that produce the right answer. The objectification of
information made it conceivable that our original picture of the relation-
ship between humans and information processing could be turned around:
instead of humans making information processing possible, perhaps informa-
tion processing makes humans possible. This hypothesis, that the operation
of the mind is to be understood in terms of many small acts of computing
going on in the brain, has captured the imagination of an entire generation of
researchers since it was first proposed by Alan Turing. Not everyone agrees,
however, that all mental activity can be explained in terms of computation,
but it is obvious by now that large parts of what the brain does (say, in vision
and natural-language processing) can be analyzed as symbolic or numerical
computing. It seems pointless to draw boundaries around other parts of the
mind where computing must not trespass.

Artificial intelligence (AI) can thus be defined as the science that studies
mental faculties with computational models. How much of the mind can
ultimately be accounted for this way is as yet unknown. It is important
to note that computational model does not refer exclusively to a Turing
machine or a programming language. Parallel computers, analog networks,
and cellular automata represent acceptable models of certain computations.
A new branch of psychology, called cognitive science, came into being in the
late 1950s, inspired by the work of Newell and Simon in AI. The work of
the cognitive scientists has helped replace behaviorism with less simplistic
models of humans. For example, work on visual imagery, which had all but
died out, is now alive and well. Philosophy has been influenced by Al as well.

41

42 Scientific Contributions of Computer Science

One of the most debated questions in the philosophy of mind is the status
of “functionalism,” which explains mental states as analogs of the states
of computers. Many philosophers believe that this kind of model explains
much of psychology; the debate is whether it is compatible with the facts of
consciousness and intentionality. This debate could not be held without the
production of actual models of mind.

It is not easy to describe Al tidily. At this early stage, it is not clear
whether Al is based on a few fundamental principles or is a loose affiliation
of several different subfields, each concentrating on a different part of the
mind or on different applications. This report discusses some of the most
active areas of Al as examples of the kind of work being done.

Knowledge Representation and Reasoning

One candidate for a unifying principle in Al is the idea of knowledge represen-
tation. Although in some sense any computer program embodies knowledge
(if only of what to do next), Al programs are unique in that they often make
inferences from complex pieces of knowledge expressed in general notations.
The knowledge implicit in a procedure is made manifest only by executing
that procedure, whereas knowledge represented declaratively as a set of facts
is explicit from the start and is accessible in more than one way. Indeed, such
knowledge can be assembled, analyzed, and corrected before we have decided
upon any particular way of using it. We can take as an analogy the laws
of Newtonian mechanics, which can be expressed in abstract mathematical
equations, and then later applied for many different purposes.

An important requirement for a useful representation language is that the
meaning of its sentences should depend compositionally only on the mean-
ings of the constituent structures of the sentence and not on the meanings
of other sentences or on other surrounding context. As a way of ensuring
this property, we are naturally led to the use of logic-based notations, in par-
ticular, various versions of the first-order predicate calculus. Starting in the
late 1960s, Al researchers came to realize that computers could not achieve
sophistication in various reasoning tasks unless they had formal encodings
of large quantities of information about their problem domains that could
be processed efficiently. This realization soon led to the elaboration of new
problems:

1 YW haot Lind
i. a

VY MGy Ddiil

avnracead in farmal 1
11

X7

0o A | . h I E L _ I W R U4 P S S S,
2. What is the pest metnod to embody Knowiedge 1n data str

Artificial Intelligence 43

3. What reasoning algorithms can be brought to bear?

4. How is new knowledge acquired?

Many of these problems now have at least partial solutions, which we discuss
briefly.

Concerning the most basic question of what can be expressed in formal
languages, experience has been encouraging. There are by now several de-
tailed frameworks for representing general facts about time, physics, and
the mental states of agents, as well as more specific facts about medicine,
business, geology and other subjects (particularly in the territory of expert
systems). It remains to be seen, however, whether these pieces can be put
together into a whole that covers a large chunk of human knowledge in a
unified way.

It is worthwhile studying formal languages in isolation, but for the com-
puter to make use of them, the formal assertions must be both connected
to information stored in data bases and themselves embodied in data struc-
tures that summarize relations between assertions. There are now several
known ways of doing this, depending on the application. Many of them in-
volve translating logical assertions into systems of nodes, with links between
them that can be followed by computer programs to perform inferences ef-
ficiently. Such semantic nets are also very useful for storing information
about hierarchical classifications of objects.

The study of reasoning algorithms has a somewhat different flavor. The
initial focus of work in this area was on making deduction more efficient. The
result was the discovery of elegant algorithms, based on Robinson’s resolution
principle, and employing the unification algorithm. Our understanding of
how to carry out deduction has been revolutionized by discoveries like this.
But for any given application there are many nondeductive components.
Hence, there has been a blossoming of several different reasoning algorithms
and an undermining of the notion of a general foundational principle for
Al In practice, each reasoning algorithm follows its own domain-dependent
strategies and tends to demand somewhat different knowledge representa-
tion techniques. On the other hand, since it would be very useful to have
a general theory of reasoning, this state of affairs has exerted a pull on Al
theory to come up with broader reasoning algorithms.

One result of the study of reasoning in AI has been the invention of
nonmonotonic logics, or pseudodeductive systems in which conclusions are
revocable given more information. There are several paradigms for accom-
plishing this extension of traditional deduction. Most of the results are in

44 Scientific Contributions of Computer Science

what is known as a circumscription framework. Circumscribing a predicate
P in a theory means adding an axiom schema or second-order axiom to the
effect that “Any predicate P’ that satisfies the same laws as P and is as
strong as P is no stronger.” This new axiom allows us to conclude not P in
more circumstances than we can from laws for P alone. In semantic terms, it
rules out all models of the original facts about P except the minimal models.
Different versions of the circumscription axiom yield different kinds of min-
imality. Circumscription is nonmonotonic because adding more laws about
P and recircumscribing can eliminate conclusions.

Many of the new reasoning patterns discovered by AI researchers have
not been reduced to deduction, and it is not clear whether deduction can be
extended to capture them; hence, they must be taken on their own terms.
One example is work in qualitative physics. Quantitative simulation is in the
domain of scientific computing, but human engineers can often predict or ex-
plain the behavior of a system without needing detailed numbers describing
its components. Elegant methods now exist for predicting, as specifically as
possible, the behavior of a system starting from a qualitative description of
how its parts interact. One can think of these descriptions in a certain sense
as qualitative differential equations, which specify the directions in which
state variables influence each other but without specifying the magnitudes.
The prediction algorithms note the directions in which quantities are chang-
ing and the interesting thresholds towards which they are heading. If just one
quantity can reach its threshold next, that tells the program unambiguously
what the next qualitative state of the system will be. Qualitative states can
be defined technically as regions in state space in which all quantity-influence
relations remain the same. In many cases, the behavior of the system is un-
derspecified, and more than one qualitative state is a possible successor to
the current one. The system pursues all possibilities. The ultimate result
is a finite graph of qualitative states showing all possible behaviors of the
system.

An investigation of the Al literature reveals a multiplicity of knowledge
representation reasoning methods. It is not yet clear what unifying principles
underlie them, if indeed any do.

Machine Learning

If knowledge, its representations, and reasoning algorithms to manipulate it
are indeed central to AI, then the problem of machine learning (the auto-
matic acquisition of new facts and reasoning methods) is crucial. Here, too,

Artificial Intelligence 45

various powerful techniques have been discovered but no unifying principles.
In fact, the absence of unifying principles may be counted as a major discov- .
ery of AL The idea that all mental activity might be explainable in terms
of learning, in an organism that starts as a tabula rasa, has been discredited
by the discovery that certain apparently plausible unifying mechanisms are
in fact meaningless. For hundreds of years, psychologists and philosophers
have thought that the basic mechanism of learning was the transference of
successful behavior in a situation to novel but similar situations. When we
attempts to realize this idea on computers, we discover that there is no such
thing as intrinsic similarity. Two situations are similar if some algorithm
says they are, and any algorithm must neglect some differences; hence, for
any two situations some algorithm will say they are similar, and we are left
with the problem of devising algorithms for particular domains. It is now
clear that an algorithm for, say, learning cognitive maps will have little to
do with one for learning language. There is no choice but to study such
problems on their own terms. As a result, in learning as elsewhere, we now
know a little bit about a profusion of different learning tasks.

Some general principles have emerged, however. We can make a distinc-
tion between internal and ezternal learning. The former is learning conse-
quences of what we already know, as when we improve our skill at applying
methods of symbolic integration. External learning is acquisition of gen-
uinely new facts, as when we learn physical laws through observation. The
former can profit from the powerful technique known as ezplanation-based
learning. This method consists of extracting from a particular problem-
solving session a general principle that will allow similar problems to be
solved faster later by skipping over intermediate steps.

For external learning, guaranteed explanations are not obtainable. When
learning a new law, a learning program must search through the space of
possible versions of the law, trying experiments or making observations to
rule incorrect versions out. When the language of the law is simple enough
that all possible versions can be expressed as a lattice of more general and
less general candidates, then we can keep track of exactly which versions are
still viable by keeping track of the upper and lower bounds in the lattice
within which the correct version lies. As more observations come in, they
can be used to narrow the bounds. When applicable, this idea allows a
“binary search” through the set of candidate laws.

46 Scientific Contributions of Computer Science

Computer Vision

Not all subfields of AI are oriented directly around knowledge manipula-
tion. Computer vision, the attempt to understand how information can be
extracted from the light bouncing off objects, is a good example. As we
will discuss later, vision algorithms must embody a lot of knowledge about
optics, but they do not need to represent it declaratively. This distinction
has not prevented the field of computer vision from developing some of the
most satisfying results in AI. Before computational methods were brought
to bear, vision theory had progressed little beyond optics. Electrodes could
be stuck into cells in the visual cortex, but their signals were generally a mys-
tery. Since approximately 1970, vision researchers have produced a plethora,
of detailed models of different aspects of vision. Many workers believe that
the job of the visual system is to build a symbolic description of what it is
locking at, and the role of computer science is to tell us what a symbolic
description is. We may not know where to locate it in the brain, but we
know we are looking for it.

Problems in vision are usually classified as part of low-level (or “early”)
vision or part of high-level vision. Early vision performs the first steps in
processing images through the operation of a set of visual modules such
as edge detection, motion, shape-from-contours, shape-from-texture, shape-
from-shading, binocular stereo, surface reconstruction, and surface color. Its
goal is to yield a map of the physical surfaces around the viewer. High-level
vision can be identified with the “later” problems of object recognition and
shape representation. Here, questions of knowledge representation will enter
in an essential way.

The problem of vision begins with a large array of numbers recording
an intensity value for each pixel (picture element) in the image. The pre-
cise value at each pixel depends not only on the color and texture of the
three-dimensional (3-D) surface that is reflecting the light but also on the
orientation and distance of the surface with respect to the viewer; on the
intensity, color, and geometry of the illumination; on the shadows cast by
other objects; and so on. The goal of early vision is to unscramble the infor-
mation about the physical properties of the surfaces from the image data.
In a sense early vision is the science of inverse optics. In classical optics (or
computer graphics) the basic problem is to determine the two-dimensional
(2-D) images of 3-D objects, whereas vision (whether biological or artificial)
is confronted with the inverse problem of recovering 3-I surface from 2-D

ic ta dacada tha
P> U

imaoag In cnlar gcangine far instanca. the onal of vicl o decode the

nn
ALIGETO. XXl LULIUL OULIOLILEy UL JLPDUVGIILU, vUT /UGl Ul Vioiula

Artificial Intelligence 47

measured lights in terms of the reflectance of the surfaces and the spectral
power distribution of the illuminant.

The problems of inverse optics are very difficult to solve, despite the
apparent ease and reliability with which our visual system gives meaningful
descriptions of the world around us. The difficulty is at least twofold. First,
the amount of information to be processed is staggering: a high-resolution
television frame is equivalent to 1 million pixels, each containing eight bits
of information about light intensity, making a total of 8 x 108 bits. The
image captured by the human eye is even more densely sampled, since in
the human eye there are in excess of 100 million photoreceptors. Real-time
visual processing must be able to deal with many such frames per second.
It is therefore not surprising that even the simplest operations on the flow
of images (such as filtering) require billions of multiplications and additions
per second. Second and more important, the images are highly ambiguous:
despite the huge number of bits in a frame, it turns out that they do not
contain enough information about the 3-D world. During the imaging step
that projects 3-D surfaces into 2-D images, much information is lost. The
inverse transformation (from the 2-D image to the 3-D object that produced
it) is badly underdetermined.

The natural way to approach this problem is to exploit a priori knowl-
edge about our 3-D world to remove the ambiguities of the inverse mapping.
One of the major achievements of computer vision work in the last decade is
the demonstration that generic natural constraints (the term generic is used
here in the same sense as in the mathematical theory of dynamical systems)
that is, general assumptions about the physical world that are correct in
almost all situations are sufficient to solve the problems of early vision; and
very specific, high-level, domain-dependent knowledge is not needed. Two
main themes are therefore intertwined at the heart of the main achievement
of early vision research: the identification and characterization of generic
constraints for each problem and their use in an algorithm to solve the prob-
lem.

Some of the most powerful constraints reflect generic properties of 3-D
surfaces. One of the best examples is the recovery of structure from mo-
tion. Perceptual studies show that a temporal sequence of images of an
object in motion yields information about its 3-D structure. Consider for
instance a rotating cylinder with a textured surface: its 3-D shape becomes
immediately evident as soon as rotation begins. It has been proved that a
3-D shape can be computed from a small number of identified points across

o evmall sl o 0L (¥ PR TP | e . s 1 X7 e
a4 SIfldall nuinper Ol 1Irames — lf OIe assumnes that the suriace 1s rigia. vari-

48 Scientific Contributions of Computer Science

ous theorems characterize almost completely the minimum number of points
and frames that are required. Continuity of surfaces is another useful as-
sumption: surfaces are typically regions of coherent aggregates of matter, do
not consist of scattered points at different spatial locations, and are usually
smooth. These constraints are very powerful for solving the correspondence
problem in stereo and motion and for reconstructing surfaces from sparse
depth points. Of course, constraints of this type are occasionally violated,
and in these cases algorithms that strictly enforce them will suffer from
“visual illusions.”

It is natural to ask whether a general method exists for formalizing con-
straints in each specific case and translating them into algorithms. An in-
teresting answer to this question has emerged in the last two years. We will
describe it from a representative point of view, though by no means the only
possible one. This unifying theoretical framework is based on the recogni-
tion that most early vision problems are mathematically ill posed problems.
A problem is well posed when its solution exists, is unique, and depends
continuously on the initial data. Il posed problems fail to satisfy one or
more of these criteria. In vision, edge detection (the detection and localiza-
tion of sharp intensity changes) is ill posed when considered as a problem of
numerical differentiation, because the result does not depend continuously
on the data. Another example is the reconstruction of 3-D surfaces from
sparse data points, which is ill posed for a different reason: the data alone,
without further constraints, allow an infinite number of solutions, so that
uniqueness is not guaranteed without further assumptions. The main idea
in mathematics for “solving” ill posed problems (i.e., for restoring them to
well posed problems) is to restrict the space of admissible solutions by intro-
ducing suitable a priori knowledge. In vision, this is identical to exploiting
the natural constraints described earlier. Mathematicians have developed
several formal techniques for achieving this goal that go under the name of
regularization theory.

In standard regularization the solution is found as the function that min-
imizes a certain convex functional. This functional can be regarded as an
“energy” or a “cost” that measures how close the solution is to the data and
how well it respects the a priori knowledge about its properties. Consider
the direct problem of finding y, given z and the mapping A:

Az =1y

The inverse and usually ill-posed problem is to find » from y. Standard
regularization suggests transforming the equation into a variational problem

Artificial Intelligence 49

by writing a cost functional consisting of two terms. The first term measures
the distance between the data and the desired solution z; the second term
measures the cost associated with a functional of the solution ||Pz|| that
embeds the a priori information on 2. In summary, the problem is reduced
to finding 2z that minimizes the quantity

|4z ~ lI* + Al|P2]|

where A, the regularization parameter, controls the compromise between
the degree of regularization of the solution and its closeness to the data.
Mathematical results characterize various properties of this method such as
uniqueness and behavior of the solution. Solutions of this type have been ob-
tained for several early vision problems: edge detection, optical flow, surface
reconstruction, spatiotemporal approximation, color, shape from shading,
and stereo.

Computer vision has always had a special two-way relationship with brain
sciences: suggestions from visual physiology and psychophysics have played
a role in many developments of computer vision. For instance, discoveries
of neurons that seem to behave as edge detectors in the visual cortex of pri-
mates had a significant influence in the development of early computer vision
programs. In turn, computational theories of vision are now influencing the
psychophysics and the physiology of vision. It is very likely that this trend
will grow more important for both fields. Mainly because of the theoretical
advances of the last decade, it seems that early vision is now on its way to
a systematic solution. Much less has been accomplished in high-level vision,
however. At the level of object recognition and scene description, the vi-
sion system begins to blend with the rest of the mind, about which elegant
unifying theories do not yet exist.

Concluding Remarks

In summary, Al is in a way the branch of computer science that is most
nearly a classical empirical science. It studies the world at the computa-
tional level, in much the same way that chemistry studies the world at the
chemical level. It is not a priori obvious that there is a chemical level; in
principle, everything is just physics. But in many situations it is possible—
and necessary—to 1gnore the details of elementary-partlrle interactions and

.
n"u g On |"i|sa| Ql“fiﬁﬁ\ in |ﬁ?|us o1 ’:‘rlllpl ’itif"n" nnqa: ﬂﬁ&Pﬁi’P i’n'ﬁ’ii‘i‘i:n’i"iﬁ??‘y,

QL LIVIIS 1 TULTILC, SLULINIUINC YT

reaction rates, and so on. Similarly, in principle, the brain’s functioning can

50 Scientific Contributions of Computer Science

be explained in terms of the behavior of its neurons and their membranes.
Attention should be focused not only on these details, but also on the in-
formation that the neurons are transmitting and the computations they are
doing. If this is approximately correct, then it may be just as necessary to
focus on this higher level in understanding the brain as it is to focus on the
chemical level in understanding chemical systems.

The nervous system is not the only place in the universe where nature
has exploited computation. Another good candidate is the operation of the
cells of organisms. Although in principle the behavior of DNA is describable
chemically, the important thing about a particular DNA molecule is the
message encoded in its nucleotides; this message is completely arbitrary from
a chemical point of view. In many cases the only reasonable way to describe
the operation of a cell is at a computational level in which genes are thought
of as switching each other on and off, so that the set of active genes behaves
like the state of a computing device, the next state and the outputs (proteins)
being functions of the current inputs and the previous state. The study of
such molecular computers—if they really do exist—might or might not be
assimilated to Al Indeed, it is not clear whether in the long run AI will be
stable as a single discipline or split up along mental-module boundaries that
are yet to be discovered. The point to absorb is that computation appears
to exist in nature as well as in artifacts; its study is now emerging as a new
empirical science.

Applications of Computer Science

Edward Feigenbaum Richard F. Riesenfeld
Jacob T. Schwartz Charles L. Seitz

As stressed in the preceding chapters, computer science has developed con-
cepts and techniques that begin to compare in depth and virtuosity with the
best that much older and better established disciplines (e.g., mathematics)
have to offer. Nevertheless, computer science remains, as its name proclaims,
an applied science. This is to say that computer science is a discipline in
which the influence of both technology and application is particularly strong,
in which theory needs to be guided not only by aesthetic concerns but also
by vital (though possibly indirect) connections to practice, and in which the
ability of practice to fructify theory (a fundamental influence even in math-
ematics, as emphasized by John von Neumann) is particularly vivid and
direct. The present chapter of this report will illustrate this point by tracing
the relationship between computer practice and theoretical research in a few
salient cases. Our aim is to show both the significant way in which research
has been able to contribute to practice and the manner in which practical
experiments and problems have brought basic questions to the attention of
the research community.

VLSI design

It is commonplace that the steady (yet amazingly rapid) evolution of micro-
electronics technology is a key driving force of the computer age. Contin-
uing development of the technology of very large scale integration (VLSI)
has required not only steady improvement in the physical aspects of inte-
grated circuit manufacture (especially miniaturization, reduction of power
consumption, and sophisticated packaging) but also continuous innovation
in design and verification methods for these miniaturized but extremely com-
plex systems. Indeed, by the mid-1970s the very large number of circuits that
could be integrated onto a single digital integrated circuit (“chip”) meant
that VLSI technology was as fundamentally limited by design costs as by

51

52 Scientific Contributions of Computer Science

problems of semiconductor device fabrication. For this reason, the many
techniques for complexity management and design verification developed
by computer scientists for large software systems have suggested complexity
management tools that are now crucial for continuing improvements in VLSI
design.

The most complex chips of a decade ago typically required a year to de-
sign, using modest computing aids for graphical assistance in their physical
design or layout. Today, even though VLSI chips have become as much as
100 times more complex than those produced only a decade ago, many chips
can be designed largely in an automatic way from high-level specifications.
Moreover, even where this remains impossible, the design of at least sections
of complex chips is supported by software tools that greatly simplify such
important design tasks as optimization of switching functions, assembly of
logic arrays, circuit placement, power routing, and wire routing. These de-
sign tool advances, and the improved productivity that they permit, exploit
efficient new design algorithms and couple these algorithms into interactive
design environments.

Equally important advances have been made in simulation and verifica-
tion techniques. Trying, after chip fabrication, to locate design errors that
cannot be sensed directly owing to the very small internal signal energies
involved is an all but hopeless task. Instead, VLSI chips are now designed
using formal construction rules and design disciplines that both minimize
errors and exclude constructs that would make it difficult to verify or to
simulate chip behavior. In addition, static or “syntactic” checks are applied
to VLSI designs to verify compliance with geometrical and electrical design
rules and to pinpoint paths critical for timing. It is important to emphasize
that the algorithms used for these tasks exploit geometric and combinato-
rial computation techniques supplied by the basic research community. One
significant new simulation technique is event-driven switch-level simulation,
which, since it is much less computationally demanding than circuit-level
transient analysis, allows complete VLSI chips to be simulated. As a result
of many individual improvements in VLSI analysis tools, complex chips are
expected to function correctly, and usually do, on the first test after being
fabricated.

In addition to these vital pragmatic contributions, theoretical research
has clarified our understanding of the ultimate factors that constrain VLSI
technology because they constrain the power of any computing apparatus
of given density and volume. Once appropriate th i C

terizing the fundamental physical resources re

re P S b A

P P % DR
retical Inodels cnarac-

Applications of Computer Science 53

defined, it became possible to establish results of this kind using estimation
techniques pioneered in computational complexity theory, the study of the
ultimate performance of algorithms. However, significant extensions of these
older ideas were required. The complexity theory developed for the study
of algorithms executed on sequential computers regards the number of op-
erations and storage space required by a program as fundamental resources
but neglects what on a chip is the most expensive part of a computation,
namely communication. In VLSI, it is the area of the wires on a chip and
the time and energy required to change their state that dominate the cost
and performance of computations. All computing technologies that operate
close to physical limits will be most seriously limited by communication, and
so they must be treated explicitly as “distributed” systems in order to be
successfully modeled.

This important architectural conclusion emerged clearly from the first
theoretical studies of the limits of VLSI technology, which analyzed the way
in which communication between the processing elements on a chip limits
the extent to which chip area A and processing time T required for a compu-
tation can be simultaneously minimized. Basically, these results state that
AT? cannot be less than a function determined by the theoretical nature
of the problem to be solved and by the technology used. For example, in
multiplying two n-bit binary integers, area and time together are bounded
with AT? growing at least as n?2.

Theoretical insights such as these have allowed designers to devise ideal
layouts that attain theoretical performance limits and provide useful guid-
ance to practical design efforts. For example, such AT? results explain why
it has proved so costly to push high-speed arithmetic design by making com-
puters perform single operations as rapidly as possible. They also show why
it can be less costly for computers to perform many operations concurrently.
The cost of a computation such as a multiplication can be viewed as using
(“renting”) an area A of silicon for time T, which has a cost proportional
to AT. The AT? lower bound on computational cost shows that the cost of
a single multiplication is expected to vary as T~1. It follows that a multi-
plication need not cost as much if you are not in a hurry to have its result.
Hence, if N multipliers are used in parallel, computations involving many
multiplications that can be performed simultaneously (as in computing a
Fourier transform) can be performed N times faster at a given cost or in a
given time at a cost reduced by the factor IV, compared to single multiplica-
tions performed at maximum speed. This comparison illustrates the point
that computations that can use many “parallel” or “concurrent” threads

54 Scientific Contributions of Computer Science

of control are fundamentally less costly than computations in which each
intermediate result depends on a previous result. Many of the computing
problems discussed in this report, as well as many other scientific and engi-
neering computations, allow such parallel execution and can be expected to
exploit parallel machines as these become available.

Thus, VLSI theory has given computer scientists a fundamental rea-
son to develop highly parallel computing systems, and VLSI technology has
made such machines practical. In consequence, during the last few years in-
creasingly more and more highly concurrent commercial computers have ap-
peared; they include message-passing “hypercube” multicomputers, systolic
arrays, and large fine-grained systems such as the connection machine. It is
not surprising that most of these systems originated from university VLSI re-
search, specifically at university computer science departments involved both
with technology and with theory. Thus, the contributions of basic computer
science (as distinct from physical device research) to real-world VLSI prac-
tice have been very substantial. However, in so deeply technological an area
as VLSI design it would be a mistake to ignore the major infrastructure
development that this advance has required. The ability of universities to
prototype chips economically has been vital to their creative involvement in
VLSI practice and theory. Currently, this capability is supported principally
by the “MOS Implementation Service” (MOSIS) project at the University of
Southern California Information Sciences Institute under Defense Advanced
Research Projects Agengy and National Science Foundation sponsorship.
Designs are sent in standardized interchange formats by electronic mail to
MOSIS, where hundreds of designs from tens of organizations are automat-
ically batched together for realization on the semiconductor wafers that are
the basic handling unit of microelectronic fabrication.

Computer-Aided Graphics and Geometric Design

Construction of an animated graphic image (in an array of 1024 by 1024
pixels) requires the computation of 1 million items of information updated
at least 15 times per second to create an impression of smooth motion; thus,
computer graphics has always had a large appetite for raw computer power.
For this reason, the VLSI developments summarized in the preceding sec-
tion can be expected to extend substantially the availability and quality of
computer graphics over the next few years, ultimately approximating resolu-
tions (in arrays of 2000 by 2000 pixels) at which computer-generated images

. et 1 ey
will be hard to distinguish from photographs. However, the data structures

Applications of Computer Science 55

used to define and display graphics images can be very complex, and ac-
cess to them is required to be performed in real time. Accordingly, graphics
programs are often large and complex, making their realization dependent
on the most powerful available programming languages and methodologies.
Moreover, since image generation can often be performed in parallel (e.g.,
for the 1 million pixels of a 1024 by 1024 image), graphics programmers
have been actively involved in parallel and distributed programming, and
graphics applications help spur the current high level of interest in parallel
machine architectures.

Very practical problems of computer graphics have raised subtle issues
for the algorithm designer. For example, to construct the image of an ar-
tificial graphic scene containing multiple objects, we must distinguish those
object surfaces that lie behind and are hidden by other objects from those
surfaces that are visible from a given viewpoint and need to appear in the
image being constructed. This is the hidden surface problem, a question
entirely unanticipated before being encountered by early computer graph-
ics experimenters. Its study has raised very interesting problems and has
led to significant theoretical developments. For example, the hidden surface
problem sometimes must be solved for complex artificial scenes containing
hundreds or even thousands of separate items. Imagine a scene containing
many spheres with known centers and diameters, many of the them entirely
hidden behind combinations of spheres. How rapidly can these hidden ob-
jects be identified and eliminated from the construction of the scene? Com-
putational geometers have found more and more sophisticated and efficient
techniques for handling potentially important graphics-related problems of
this kind.

Graphics is also necessary for the closely related subject of computer-
atded geometric design, which provides tools that the engineer and indus-
trial designer can use to define the shapes of products that are to be cut
out of metal, molded, or assembled. This practical activity leads at once to
further challenging theoretical problems. For example, how best can free-
form surfaces be represented within a computer? This problem, motivated
by the need to describe the exterior surfaces of aircraft, has been under
active investigation since the early 1960s. A general class of surfaces (subse-
quently known as Coons patches), which interpolates between four arbitrary
boundary curves that can be specified with considerable generality, was de-
fined. These “patches” became the object of considerable study and formal
analysis.

56 Scientific Contributions of Computer Science

The polynomial approximation ideas implicit in Coons’s work relate
closely to spline approzimation methods, initially developed by numerical an-
alysts in the one-dimensional case but recently extended to two (and more)
dimensions, partly for use in geometric modeling and computer graphics.
Multivariate spline theory has become an important specialized area of nu-
merical analysis, with strong geometric overtones. Not only have theoretical
studies of multivariate splines been influenced by needs and insights arising
in geometric modeling, but geometric modeling programs also have furnished
useful tools for the spline theorist. The mathematical constructs used to de-
fine multivariate splines can be abstract and complex, leading in directions
that are difficult to visualize without sophisticated graphic tools, which as-
sist significantly in the comprehension of the behavior of functions, geometric
structures, and mechanisms. Thus, the requirements of geometric modeling
have moved spline theory in new directions, which graphic modeling tools
have made easier to explore.

An important technique for modeling complex bodies is to construct
them as Boolean combinations of basic geometric forms, allowing the free
addition and subtraction of forms such as solid spheres, cylinders, and poly-
hedra. Extensions of these techniques, however, to handle surfaces of freer
forms, such as 2-D spline surfaces, pose deep problems in computer algebra,
numerical analysis, and data structure design. In particular, if careful atten-
tion is not focused on questions of computational robustness, computations
can easily become unstable. Even small numerical errors in the calculation
of surface intersections can cause the outside of a 3-D figure to be confused
with its inside, leading to wildly erroneous values for the volume of the
figure. Other less catastrophic numerical errors can lead to miscalculation
of hidden surfaces, resulting in production of images with artifacts or even
paradoxical, bizarre graphic images.

Other computer graphics problems arise from the necessity to transform
the results of geometric computations performed for continuous bodies into
discrete pixel-intensity arrays ready for display. If this is not done properly,
odd-looking sampling artifacts (the so-called staircase effect or jaggies) can
appear. Originally it was naively assumed that acceptable pictures could be
generated if one applied computing power sufficient to calculate an inten-
sity value at the center point of every pixel in a sufficiently fine pixel array.
Experience proving this to be false triggered many theoretical and empir-
ical studies of the anti-aliasing problem. This development has improved
considerably our understanding of the lighting models required to produce

smiagas and mare canegralle ~f +ho .\a....‘l«,\l,u.-.

i o svnthe HP af
lcduubb.lb'lUUl(1HE DYy ht:t.lb 1illages a,uu., 1lIULIT ETLUTIAllY, UL LT POy LLHUIVE Y O1

Applications of Computer Science 57

image perception. Exposure to intriguing visual phenomena appearing un-
expectedly in the course of extensive graphic experimentation was essential
to this progress.

Graphic modeling and display technology interacts in essential ways with
other applied research areas reviewed in this report. For example, appro-
priate graphic display is vital to understanding the results of large scientific
computation. In raw numerical form, the result of simulating the flow of air
around an aircraft hull is an enormous and bewildering array of numbers;
reduced to graphic form, the structure and salient features of the flow (and
even obvious program errors) become much clearer. Robotic applications
also furnish many other illustrations. The practical use of the geometric
motion-planning techniques reviewed subsequently requires use of geometric
modeling systems to prepare the data that motion planning routines require.
As these and many other examples show, research in graphics display and
modeling has significantly increased the effectiveness of other computer re-
search and applications efforts.

Scientific Computing

Scientific computing draws out the consequences of basic physical laws by
embodying them in large-scale numerical computer simulations, often re-
quiring massive computing power. The practical importance is very great,
since numerical simulation is now routinely used in such crucial engineering
tasks as studying the stresses in reactor containment vessels, the deforma-
tion of metal under high-pressure molding, and the way in which atmospheric
motions and sea currents interact to shape the world’s climate. These are
problems that are difficult or impossible to investigate empirically. Success
in the endeavor requires the right combination of appropriately simplified
mathematical models, numerical procedures, and fast and flexible software.
Since assembling all this for application to large problems is normally too
much for the individual researcher, scientific computing projects have often
required collective effort by computer scientists, mathematicians, scientists,
and engineers. The efficacy of these efforts has been much enhanced by the
development of first-class software libraries and by a well-established tra-
dition of software sharing, which can stand as a model for other areas of
computing.

Consideration of just one fundamental computational procedure, namely

which computer science research has contributed to the more

the ways in which computer science research h ibuted he mor

58 Scientific Contributions of Computer Science

applied activity of scientific computing. Many physical systems are linear,
in the sense that their response to the sum of two external influences is the
sum of the separate responses that could be generated by presenting each
of the two influences separately. Moreover, the analysis even of nonlinear
systems, which do not behave in so simple a fashion, tends to begin with
analysis of linear approximations, because the sufficiently small deviations
of nonlinear systems form an initial state of equilibrium that will almost
always be linear. Consequently, once the physical equations for a system
have been discretized to prepare them for computational treatment, it is
often desirable to solve some system of linear equations that can be written
in matrix notation simply as Az = b. However, since the size of the matrix
A defining such a system can be very large, the ordinary, largely qualitative,
mathematical analysis (by linear algebra) of the properties of such systems
does not provide adequate guidance for their numerical solutions. It was
necessary to develop techniques that solve such systems by exploiting the
special structural properties of important special cases. Such structures arise
for various reasons, such as the locality of the physical force systems that
the equations represent, from conditions of invariance, or from geometric
considerations. The field of numerical linear analysis on which we touch
here is vast, and it is impossible for us to refer to more than a tiny sample
of the results obtained; nevertheless these very few examples serve to typify
the essential interaction of this field with computer science research.

A major task of scientific computing is to solve partial differential equa-
tions, linear and nonlinear. There are two basic ways to make such a problem
discrete. Omne is to cover the domain in which the equation is to be solved
by a finite mesh of points and replace derivatives by differences; this is the
so-called finite difference method. The other is to choose a finite number of
functions and approximate the desired solution by a combination of those
trial functions. In the finite element method these approximating functions
are polynomials of low degree. This technique now has become very pop-
ular, especially for large structural problems in engineering. For fluid flow
problems, other methods are active competitors: finite difference methods,
so-called spectral methods (discussed in more detail later), vortex methods,
and recently developed cellular automata techniques, which exploit large-
scale parallelism in particularly effective ways.

Each of the trial functions used in a finite element solution of a numerical
problem is nonzero over some limited domain within the overall region in
which the solution to a given numerical problem is sought. The pattern in

whisrh thacn damaing gnnhd
[41¢81

. . . .
which these domains su region is normally one in which each sub-

a
@ LTRIV 10 HULLLEQeiy VAT di Wil T@uer Sk

Applications of Computer Science 59

region contacts only a few other subregions. For this reason, the matrices
A that appear in the linear system Az = b to which a finite element proce-
dure gives rise are generally sparse (each row of A contains very few nonzero
elements). Systems with this property can often be solved most effectively
by eliminating successive variables in an order chosen to introduce as few
nonzero coefficients as possible in the resulting series of linear systems of
progressively smaller size. Effective elimination orders of this kind can be
found by analyzing the graph defined by the pattern of nonzero entries in
the original matrix A. The efficient graph-analysis algorithms devised for
this purpose exploit sophisticated graph algorithms developed during more
than a decade of work on graph-related computational procedures.

In the analysis of a large, complex engineering structure (a ship’s hull or
the steel frame of a bridge) for finite element analysis, even the initial setup
of the large system of linear equations with which numerical analysis will be-
gin is a major task. Its automation requires the development of systematic
procedures for decomposing general 3-D regions into an arbitrarily fine mesh
of regions of simple shape (say, small triangular pyramids). This also applies
to many other numerical techniques for dealing with regions whose bound-
aries are irregular (or variable, as in tracking the surface of an expanding
bubble of steam within water or water within oil). For this reason, the large
finite element codes based on current engineering practice need to interface
to geometric design systems like those discussed in the preceding subsection.
They also need to incorporate sophisticated procedures for automatic trian-
gulation of complex geometric regions. These requirements link engineering
practice very directly to some of the most ambitious current research efforts
in computational geometry and data structure design.

A second important strategy for dealing with numerical problems that
originate in geometric contexts is recursive subdivision. In this approach,
one divides the region in which the problem is originally stated into a small
number of subregions, recursively solves the numerical problem for each of
these subregions, and then integrates the resulting partial solutions into an
overall solution for the region by solving a set of auxiliary problems to match
values along all the boundary cuts separating adjacent pairs of subregions.
This computational approach, which has become quite important, has prof-
ited from sophisticated theoretical analysis of the combinatorics of planar
graphs, which have demonstrated that favorable subdivisions of arbitrary
plane patterns can always be found.

Whenever a linear physical process being studied numerically is invari-

ant in space or invariant in time, Fourier analysis applies, making analysis

60 Scientific Contributions of Computer Science

of the system in terms of its resonant modes possible. This is called spec-
tral analysis, and the so-called fast Fourier transform accelerates all such
calculations in a sensational way. Its availability, and progressive refinement
through a continuing series of studies that have significantly reduced the cost
of Fourier-related computations, has revolutionized many fields from signal
processing to radio astronomy.

The new possibility of doing thousands of calculations in parallel is influ-
encing numerical scientific computation profoundly. To exploit this opportu-
nity effectively will require the best talents of numerical analysts, computer
scientists interested in parallel algorithm design, and computer hardware ar-
chitects. Since many of the best current numerical techniques are serial in
form and, thus, not obviously suited to the aim of sending whole rows of
matrix computations directly through systolic arrays of parallel processors,
much penetrating inquiry will be required to handle trade-offs between inge-
nious processing order and brute-force computation effectively. The advent
of parallel machines also makes it necessary to rework the large numerical
code libraries on which scientific computation depends. Thus, we stand on
the threshold of an exciting period in which the connections between scien-
tific computing and computer science will be reaffirmed and strengthened.

Robotics

Robotics is another field in which sophisticated algorithmic techniques sup-
plied by basic computer science research play a steadily increasing role.
Robots can be defined as computer-controlled devices that reproduce human
sensory, manipulative, and self-transport abilities well enough to perform
useful work. Presently, both the sensory capabilities of robots and their
ability to deal with unexpected events are quite limited. For this reason,
today’s robots are effective only in highly structured, largely industrial en-
vironments in which the position and path of motion of all the objects are
known accurately at all times. Research during the past decade has aimed
to relax this restriction, in order to make robots usable in less predictable
environments. To achieve this, the robot’s user must be able to specify the
behavior of the robot in a wide variety of environments in general terms,
and then have the computer controlling the robot fill in missing lower-level
details automatically.

By simplifying the otherwise onerous task of specifying many detailed
robot motions, automation of this basic procedure and others like it can

PRI ~ otor PRHGTYY P 4l A A ad writh whialk Ia —<r

RS H H (¥ —~ y A am . ssat PR
CUllt[lbutC mgnuwa.uuy tU LIIE Clll(;lcllby ana bPeCu WIUVIL WILICILL llldubbly Caltk

Applications of Computer Science 61

introduce robots into manufacturing. For example, we should be able to
specify the product of some assembly process and ask the system to con-
struct a sequence of assembly substeps. At a less demanding level, we would
like to ask a robot to plan collision-free motions that involve picking up
the individual subparts of an object to be inserted, transporting them to
their assembly positions, and inserting them into their proper places. Deep
and interesting research issues have been brought to light by work on these
practical goals. For example, the geometric part of the second of the two
tasks defines the so-called problem of automatic motion planning, which has
received much attention during the past few years. Studies in this area
have shown it to have significant mathematical content: tools drawn from
classical geometry, topology, algebraic geometry, and combinatorics have all
proved relevant. Particularly close relationships have developed with re-
search in computational geometry. Although space limitations preclude any
full account of the extensive work that has been done in this intriguing area,
it is worth summarizing some recent investigations of the motion planning
problem, with the intent of indicating the surprising depth of the algorith-
mic ideas that have found application to questions that may at first glance
appear shallow and purely pragmatic.

The simplest form of the motion planning problem follows: given a known
initial position and desired final position of a rigid robot R moving in an
environment full of obstacles, decide whether there exists any continuous
obstacle-avoiding motion that can take R from the specified initial position
to the specified final position; and, if such motions exist, produce one of
them. The intrinsic difficulty of this problem is suggested by the complex
series of motions sometimes required to move an inconvenient object, like a
table or a long ladder, along a winding corridor or up a narrow stairway. Of
the many approaches to this problem that have recently been considered, we
will note here only the so-called retraction technique, developed during the
last three years. The central idea of this method is as follows: suppose there
does exist a path P connecting the specified initial and final robot positions.
One can take each position P(t) that occurs along the path P, find the ob-
stacle O to which this position is closest, and push the robot R away from
the closed obstacle O, for example by translating R in the direction opposite
to its lines of closest approach to O without allowing it to rotate. Pushing
can continue until the robot reaches a position equidistant from at least two
separate obstacles. It is not hard to guess that, by applying this operation
in a uniform way to every one of the positions P(t) that occur along the
path P, we can transform P into a path that (aside from initial and final

62 Scientific Contributions of Computer Science

phases of motion directly away from and toward the obstacles closest to the
specified initial and final positions I, F') consists entirely of positions that
are simultaneously closest to at least two obstacles. In more intuitive terms,
these are paths that try to stay as far as possible from the obstacles by
always remaining midway between the two closest obstacles.

This approach to motion planning generates some of the most efficient
planning procedures known. When developed into a detailed algorithm, it
makes use of important ideas that arose independently and earlier in pure
computational geometry, namely the notion of Voronoi diagram. In its orig-
inal 2-D plane incarnation, this diagram is defined as the partition of the
plane into a set of regions Nj,..., Ng, where N; is simply the set of all
points p closer to a particular point p; than to any other point in a given
set {p1,...,pr} of points. In the more general situation arising in motion
planning by the retraction approach that we have outlined, we instead divide
the (multi dimensional) space S of all positions of a moving robot R into the
set of regions Nj,..., N, where N; is defined to be the set of all positions
p in which R is closer to the obstacle O; than to any other obstacle.

The computational cost of a path-finding procedure based on this ap-
proach will clearly depend on the size of the Voronoi configuration defined
by a set of k geometrically simple obstacles. Study of this geometric question
has led to a whole series of geometric studies and problems. In this way, the
practical, ultimately industrial, problems of robotics have suggested new
theoretical issues to geometers, partially repaying them for the important
contributions they have already been able to make.

Expert Systems

Historically, one of the most important motivations for Al research has been
the creation of programs that solve problems of considerable intellectual dif-
ficulty at high levels of competence. Partly this is an engineering activity,
involved with the construction of intelligent artifacts; partly, like all good
engineering activities at an early stage in the scientific development of an
area, it has given rise to scientific endeavors of importance.

Starting in 1965 with the creation of the DENDRAL program for the
elucidation of organic chemical structures, a class of programs called expert
systems arose. These computer programs consist of two parts. One is the
knowledge base, a collection of data structures in which the task-specific
knowledge of the domain of discourse is represented and stored. The knowl-
ting to the domain but also the

adaons haan rrantai + 1 +
edge base contains not only the fac a

Applications of Computer Science 63

heuristics of expert-level performance (the experiential, judgmental knowl-
edge that reflects “the art of good guessing” for problem solving in the
domain). The other component is the inference engine, the collection of
reasoning methods used to construct lines of reasoning leading to the solu-
tion of problems, formation of hypotheses, satisfaction of goals, and so on.
These reasoning methods are drawn from symbolic logic or from work on
problem-solving methods done by Al researchers.

At present, the modeling of expertise (i.e., the building of an expert sys-
tem) is primarily an activity of capturing and representing the knowledge
that human experts have, and only secondarily is it involved with captur-
ing the reasoning methods that experts use. Priority has been given to the
problem of automatic acquisition of the domain-specific knowledge. As usu-
ally done in expert system construction, this is a cumbersome, expensive,
time-consuming process. Scientific research over the past decade has yielded
results in this form of machine learning, particularly a variety of induction
methods that are driven by examples, by user interactions, and by basic
principles of the task domain. All are grounded in the principle that au-
tomatic knowledge acquisition is itself to be viewed as a knowledge-based
task. The next phase of development will tackle the many difficult problems
of inference.

Expert system applications are already having considerable economic
payoff, and their importance will grow considerably in the years ahead. We
need the inexpensive replication of an otherwise scarce resource: human
expertise. But more important, an expert system can process lines of rea-
soning and use a body of knowledge about an area far more systematically
than people can. In such areas as diagnosis, we can expect that expert sys-
tems will improve substantially the quality of medical care by giving primary
care physicians quick and reliable access to tertiary care expertise. We can
also expect expert systems in other scientific fields to propose hitherto undis-
covered hypotheses and theories and to propose important novel designs and
solutions. As the sophistication of these systems grows, they will become
more and more tools of research.

Initiatives Report
Prepared by

Kenneth W. Kennedy
Clarence A. Ellis
John E. Hopcroft
Burton T. Smith

Introduction

As a part of the assessment of Computer Science and Engineering Re-
search and its needs for the immediate and long-term future, the Computer
Research Advisory Committee has been considering potential initiatives and
research opportunities that should be given special attention over the next
five to ten years. In addition to identifying the areas, our report will spend
some time addressing the problem of how best to foster the kinds of advances
needed in these areas.

The committee is agreed on three areas that should be the subject of spe-
cial initiatives: software engineering, parallelism, and automation. Each of
these initiatives is involved to some extent with productivity—productivity
in software development, productivity of machine execution and productiv-
ity in manufacturing. The following sections explore the fundamental issues
to be addressed in these research initiatives.

Software Engineering

Software engineering is concerned with the conception, specification, de-
sign, analysis, implementation, and maintenance of large complex software
systems. There are well-documented problems of size and complexity that
form the core of the software engineering problem domain. In particular, as
the size of software systems grows very large, it becomes virtually impossi-
ble with current technology to attain acceptable levels of reliability, perfor-
mance, correctness, cost, and so on. The size of software systems which we
attempt to develop is continually increasing; likewise, the urgency of need
for solid research targeted at the above problems is continually increasing.
Therefore we advocate expanded research into foundations and methods for
development of large complex software systems. An example emphasizing
the previously stated problems is the recent public debate over software en-
gineering and the SDI research program. Regardless of individuals’ stances
on this issue, the debate underscored the extreme importance of research to
stimulate marked improvements in the software engineering area. Thus, the
committee feels that there is opportunity for dramatic progress in this area.

Therefore we propose a major initiative in software engineering with
the goal of researching foundations and methods that will significantly im-
prove software engineering productivity and quality over the next decade.
To achieve this goal, we will need to bring the best university and industry

research to bear on the problems and make sure that the results of that

67

68 Initiatives Report

research are widely disseminated to stimulate further research, and where
appropriate, rapidly moved into production use.

This research should be directed toward developing theories, techniques,
and environments that directly apply to very large systems. There is a
need for theories that take into account in a unified manner the various
properties (reliability, performance, correctness, etc.) of systems and the
various techniques (structured analysis, top down design, etc.) of software
engineering. Likely existing properties and techniques need to be rethought
and amended for consistency, completeness, and especially for scalability to
very large systems. Likely new modularizations and layerings that encourage
integrated design and implementation are needed.

Techniques that might be developed within this initiative would allow
software engineers much needed assistance in designing, implementing, main-
taining, and reusing large systems components. A primary element of soft-
ware development is analysis, which needs uniform techniques so that it can
be applied evenly throughout the phases of the software development pro-
cess. Analysis means the critical examination across a range of properties
of essential features of the artifacts produced throughout the software pro-
cess including requirements, specifications, performance models, code, and
simulations.

The process of software engineering should proceed within a unified com-
putationally adequate software environment. An environment must provide
a uniform user interface, a single cognitive system model, and a smooth
means for a set of tools and techniques to integrate into a development model
or theory. Future environments have an opportunity to exploit advanced ar-
chitectures such as parallel processors and networks, and exploit the power
that exists in modern database technology, object oriented paradigms, Al,
and other advancing technologies of computer science. A major question here
is how these technologies can be specialized (or in many cases enhanced) to
fulfill the requirements of a software engineering environment.

The challenge is clear, and the research work to discover solutions to
these software engineering problems will require creativity and sensitivity to
the social as well as technical aspects of large systems development.

Unfortunately, software engineering research in universities in the past
has frequently been hampered by the absence of large-scale implementation
projects of the kind needed to provide realistic testbeds for research. On the
other hand, research in industry has frequently been too much influenced
by the problems of getting a product “out the door” to perform significant

research on software engineering theories and technologies. Some of the

Software Engineering 69

research suggested by this initiative will require NSF to fund software devel-
opment projects at universities, and the construction of large experimental
software systems that go well beyond the typical university research struc-
ture of a single principal investigator plus graduate students. These grants
may remove some of the pressure from the CER program, permitting that
program to restrict itself to building infrastructure.

Other structures that may form and should be encouraged include the
coupling of university researchers with industry where large-scale software
engineering is being performed, and university consortia (see, for example,
Arcadia —the Ada Environment Research Consortium). These structures
may help to build a repository of experience with implementation of large
systems within research institutions and allow experimentation with large
systems.

The primary thrust of this initiative is software engineering, a multi-
disciplinary area. A successful initiative in software engineering will, to an
extent, involve research in a variety of areas. We list a small sample here.

o Design Languages. Innovations in programming language design will
be required to permit the programmer to operate at a high level of
abstraction. Progress will be needed in design languages, specification
languages, and languages for rapid prototyping,.

o Design and Programming Environments. Automatic support for every
phase of the software design process, from conceptualization to main-
tenance, will need to be integrated into the programming environment.
Tools in the environment will need to cooperate to assist the designer
in producing and maintaining a correct, reliable system.

o Programming Methodology and Reusability. At present, most software
is written from scratch because programs are difficult to read and
strongly dependent on the system environment in which they execute.
Productivity may be increased substantially if techniques are devel-
oped that evolve programming methodology to adapt existing program
fragments instead of starting over each time with a clean slate.

¢ Data Bases. Since design environments must store substantial amounts
of information about the systems under development, new approaches
to data-base management will be required. Promising new ideas in
configuration and consistency management will need exploration, while
new applications of general queries by tools in the system are being

70

Initiatives Report

developed. Improved user and systems interfaces to data bases will
be required, in part to integrate algebraic and analytical tools pro-
vided by general-purpose programming languages into the data-base
environment.

Graphics and Human Interface. The presentation of information about
designs and programs represents an important research direction. Sys-
tems typically contain an enormous amount of detail; mechanisms for
presenting abstract views of designs and programs need to be explored
if human programmers are to deal with these complex systems. Re-
search should consider both dynamic (e.g., system animation) and
static (e.g., cross-reference table) views.

Implementation and Optimization. Powerful programming languages
cannot be successful unless they are implemented efficiently. New tech-
niques for the efficient implementation of very high level languages will
be needed to make such languages palatable and bring their expressive
power to bear on realistic problems. The impact of the programming
environment on implementation strategy will give rise to new research
directions.

Specification, Verification, and Testing. Automatic and semi-automatic
techniques are needed to help in the production of correct programs
and designs. Hence, research in specification of programs should be
encouraged and be complemented by research in verification and auto-
matic test generation. Specification language research must consider
specifications at the fuzzy incomplete stages to support the design
phase and specifications in their most mathematical forms, to support
testing and verification. Although verification technology has fallen
short of the goal of automatic correctness proofs of realistic programs,
it can still be a powerful tool to assist the programmer in reasoning
about the program and planning for its development and testing. Test
generation strategies need to be improved to assist the programmer in
discovering faults in programs written in advanced languages.

Debugging and Systems Maintenance. Once the existence of a fault has
been established, techniques are needed to help the program locate its
cause. Debugging technology has improved enormously by the advent
of “source-level debuggers” in which the compiler symbol table is made
available for the debugging process. Further progress is likely if other

Parallelism 71

information developed by the compiler made available to the debug-
ger. For example, the debugger could make use of static data flow
analysis results or of the verification conditions that the verifier could
not prove. Graphics and human interface will be an important com-
ponent of debugging research. Besides correcting bugs, there is a need
for system support to make upgrades, alterations, and enhancements
to large systems.

o Systems. The principal tools of the software engineer, the computer
systems he uses for development, will need continual improvement.
Workstations will need to become more powerful, possibly by providing
specialized support for fundamental tasks in the programming process.
Furthermore, new research will be needed into mechanisms for turning
the network into an integrated programming system, so that teams of
programmers can work together to produce large systems. This will
require breakthroughs in distributed systems and communications.

o Theory. The entire research undertaking will need a solid underpin-
ning in theoretical concerns. Programming language semantics and
semantics of specification languages will play an important role. More
and more, programming systems will be generated from abstract speci-
fications. In addition, substantial research into incremental algorithms
for managing a system underchange will be needed to support the pro-
gramming environment. Furthermore, these algorithms will need to be
parallel to exploit the emerging class of parallel architectures.

Parallelism

The need for computational capacity continues to outstrip the ability of hard-
ware technology to deliver it. Hence, computer architecture has turned to
parallelism as a mechanism for achieving additional performance. Although
computer manufacturers have long employed transparent parallelism in their
high-performance architectures, we are now seeing architectures in which the
parallelism is explicitly exposed to the programmer. Moreover, it is not just
the supercomputers and near-supercomputers that are using explicit par-
allelism; the attractive price-performance ratio of single-chip processors is
driving the entire market toward multiprocessor-based designs. An increas-
ing number of vendors will turn to parallelism over the next few years in an
attempt to provide either better performance or better performance for the

72 Initiatives Report

Unfortunately, parallelism does not come without its penalties. Cur-
rently, high-performance execution on explicitly parallel architecture is re-
alized by having the programmer organize the computation so that many
tasks can be performed concurrently. This amounts to trading programmer
time for system performance. Given the already heavy burdens of software
development, performance gains will not come easily. Furthermore, paral-
lel computations often increase the communications costs in a computation,
consuming a part of the performance gain. Although these costs can be
minimized by carefully scheduling where and when each concurrent task is
performed, this too consumes precious programmer effort.

The goal of increased computational capacity is so critical that we pro-
pose a broad initiative to achieve the promise of parallelism. The goal of
this initiative is to make it possible to routinely obtain computational perfor-
mance of 10 to 100 times what the base technology can deliver. Furthermore,
these gains must be achieved without adversely impacting programmer pro-
ductivity.

To achieve the goals of this initiative, research will be needed in a variety
of component technology areas.

o Architecture. Research in parallel architecture will need to evaluate a
variety of promising structures, ranging in granularity from coarse to
fine. Furthermore, as we become more experienced with parallelism,
new architectural ideas worthy of exploration will emerge. The critical
notion is that a good architecture should be capable of delivering high
performance with good programmability. High performance alone is
not enough if there exist formidable obstacles to achieving it. Further-
more, architectures must be designed to minimize the impact of higher
communication costs that are inherent in parallel computation. As ex-
perience is gained with automatic systems for detection of parallelism,

new architectures that support the central paradigms of such systems
will be needed.

o Component Design. Research is needed to improve designer produc-
tivity for system components including processors, memory systems,
and interconnection networks. Innovation is hampered by the extraor-
dinary effort required to design large, complex VLSI systems. More
suitable single-chip processors are required, with special features for
managing communication, synchronization, and access to the memory
hierarchy. Research on components with multiple processing elements
and powerful on-chip communication, such as systolic arrays, will also

Parallelism 73

be needed.

e Languages and Language Implementation. Programmability is the cen-
tral concern if the promise of parallelism is to be achieved. The pro-
grammer must be able to benefit from the advantages of parallel archi-
tectures, while maintaining a high degree of productivity through the
use of high-level languages and programming systems. Automatic and
semi-automatic methods for extracting parallelism from existing lan-
guages must be further developed, along with new languages that com-
bine high programmability with naturally parallel structures for which
high performance is easy to achieve. In addition, the allocation of
parallel computational resources, the analysis of separately translated
modules, and improvement in alias resolution represent formidable re-
search problems inhibiting parallelism using any language.

o Algorithms and Applications. Research is needed to develop new algo-
rithms and programs that solve problems of fundamental importance
and embed the use of parallelism at the deepest levels. Such work
ranges from the most theoretical aspects of parallel algorithm design to
practical considerations in implementing parallel applications of high
importance. Fundamental limits of parallel computation will also need
to be explored. A central goal of this research will be to have an im-
pact on parallel computation comparable to the impact that analysis
of algorithms has had on computer science generally.

o Distributed Computing. Research in distributed computing is con-
cerned with computation using loosely coupled systems of processors,
as in local-area or long-distance networks. Often, this loose coupling
is a result of the need to coordinate the activities of geographically
separated agents. Work in this area has had a different emphasis from
research in more tightly coupled parallel computing; it deals with ways
of coping with uncertainty. In a distributed system, components par-
ticipating in a computation generally have only limited knowledge of
the state of the rest of the system. Uncertainty arises because inputs
to the system might arrive from different sources and at unpredictable
times, because the timing for different activities may be unpredictable,
and because components involved in the computation may fail with-
out warning. Issues of uncertainty have not yet been addressed very
much for tightly coupled parallel processing, but they will surely need
to be considered. As tightly coupled parallelism research expands to

74 Initiatives Report

treat a wider variety of problems, and as techniques from distributed
computing become more efficient and better understood, we expect the
research in these two areas to converge. Meanwhile, more research is
required on architecture, algorithms, languages, and specification and
verification techniques for distributed systems.

An important consideration in encouraging research on parallelism in
universities is the availability of parallel computation facilities. The NSF
and other granting agencies, as a part of this initiative, should take steps to
build the research computing infrastructure to include experimental parallel
systems. Equipment grant and resource access programs must take steps to
ensure that every computer science department has direct or indirect access
to a variety of parallel computing systems.

Robotics and Automation

Robotics and automation, a broad area that encompasses research on all
aspects of the interface between the electronic and physical worlds, is ripe
for significant progress over the next decade. Its importance to society is
self-evident: it represents a powerful lever by which human productivity can
be amplified many times.

Progress in automation will require progress in many key areas. Some
of these are the constituent technologies that support automation. These
would include such items as geometrical and physical modeling, computer-
vision, and mechanics and control. The rest are the integrating technologies
that allow the various elements of automation to be assembled into a total
system. These include the problems of consistent representations of physical
phenomena, reasoning and analysis tools, and specification mechanisms for

"physical objects and processes.

The following are some of the challenges facing researchers in the indi-
vidual constituent technologies that makeup the field of automation. These
and related areas will all require a substantial investment of research effort
to achieve significant advances.

o Algorithmic Design. A vast range of problems are raised by the need to
analyze many forms of data and generate adequate response at accept-
able speeds. Every subfield, for example, visual sensing, task planning,
and modeling, poses major research problems, most of which we have
only begun to appreciate. Often, general solutions to these problems
will not be computationally feasible, and families of special solutions

Robotics and Automation 75

covering the most commonly occurring practical cases will have to be
found. Combinations of heuristic search techniques with more general
algorithms may frequently result in greatly improved performance.

o Computer Vision. The most significant need for computer vision is
the development of robust basic algorithms that can deal with real en-
vironments rather than artificially simple laboratory situations. The
development of these algorithms will depend on advances in fundamen-
tal issues such as physical light scattering phenomena, signal models,
and the representation of objects including topology, geometry, and
image projection properties. Of particular importance is the careful de-
composition of visual perception into a set of formal, generic problems
that can be studied independently of specific applications. It is already
clear that competent vision systems will require massive computation
at all stages. The identification of general parallel computational mod-
els for vision is essential for the development of new architectures to
support vision processing. Advances in sensor engineering will also be
extremely important. Desirable developments would include signifi-
cant increases in resolution, dynamic range, as well as specialized eyes
for various spatial scales and spectral ranges. The need for new sen-
sor mechanisms to support active object tracking is indicated in many
applications.

o Geometic and Physical Modeling. The problems of modeling figure
heavily into the question of integration, but can also be considered
separately. In addition to currently available models for single rigid
solids, completely new classes of models are needed. These would cover
the interrelationships in assemblies of solids, the modeling of internal
forces (e.g., spring compression), and flexible materials (e.g., cloth,
wire). Eventually such difficult physical cases as fluids, gels, and in-
homogeneous conglomerates (e.g., piles of dustor gravel) will need to
be modeled. The state of computer modeling of physical processes is
extremely primitive. Accurate, extensible models of physical phenom-
ena, incorporating a knowledge of error, must be developed. These
will eventually need to handle the whole of basic physics, including
such issues as friction, sliding, rolling, support, impact, oscillation,
momentum, and so forth. Required are not only models of the physi-
cal process being automated, but also the sensors, tools, and complete
environment.

76

Initiatives Report

o Materials Science. Many new materials will be needed for lightweight,

dextrous robots having many degrees of freedom and capable of reliable
operation in a variety of environments, some hostile (space, planetary
environments, radiation, heat). The need for robots with well under-
stood and modeled flexure as opposed to absolute rigidity should also
be studied.

Mechanics and Control. In the mechanics area, the basic need for a
strong, lightweight, power-efficient, mobile robot with a number of de-
grees of freedom, as in animal skeletal systems, has not been met. A
variety of designs, including tendon-driven, pneumatic, hydraulic, and
electrical have been considered, but none have yet yielded any widely
used device other than the standard six degree-of-freedom arm with its
crude pincer gripper. Adequate end-of-arm general purpose hands are
not yet available, nor are good libraries of interchangeable special pur-
pose hands. A systematic study of common tasks and manipulations
needs to be undertaken to provide, for example, a systematic “theory
of grasps.” In the area of control, preliminary ideas for bottom-level
control of force-guided motions have begun to emerge, but only the
simplest cases have yet been conceptualized. Techniques for integrat-
ing complex sensory information into force-driven control loops need
to be developed.

Sensor Technologies. Currently, adequate tactile sensors are neither
available commercially or in usable form from other laboratories. Both
whole-skin tactile sensing, for safety and advanced control, and tactile
sensing of slip and tangential forces would be extremely valuable, but
neither is available. Proximity sensing could be a very useful mech-
anism in control, but interfaces to control systems still need to be
developed and standardized. Similarly, interfaces to other specialized
sensors, for example, magnetic and capacitative, need to be researched.

Integration. The ability to integrate in one system all the various ele-
ments of automation will be critical to the success of any automation
project. This integration should begin with the tools used to design
the automation systems and should continue through its manufacture,
operation, and maintenance. There are three conceptual elements to
integrated automation: representation, specification, and reasoning.
First, a uniform system of computer representations of physical ob-
jects, phenomena, and processes is needed. This includes models of

Summary and Recommendations 77

solids, assemblies, tools, sensors, fluid flow, robot tasks, machining op-
erations, and so forth. Second, there must be specification mechanisms
for users to communicate the objects and actions, as well as the un-
derlying physics, to the system. These will include elements from the
areas of language design, computer graphics, CAD, and programming
environments. The third conceptual element of integration is reason-
ing. This includes the software tools that, using the representations
for physical objects, processes, and phenomena, perform analysis and
simulation to predict the behavior of the automated system. It also
includes more advanced reasoning techniques to plan system actions
to achieve desired goals.

The integrating technologies described will have enormous computational
requirements. The massive amounts of sensory data, the need for real-time
control, and the computationally challenging nature of the problems will
demand the most advanced processing capabilities available. Current work
in parallel processing, networking, and supercomputer development will be
critical to the operation of automation systems under real-time conditions,
as well as to the analysis and planning that precedes it.

Summary and Recommendations
To carry out the goals set forth in this report, we recommend:

1. That a major initiative in software engineering research be initiated,
with the goal of a five-fold increase in programmer productivity within
a decade.

2. To support the software engineering and the other initiatives, a new
program of research support for medium-size, multiple-investigator
projects be initiated. Such projects would typically be funded at
$200,000 to $800,000 per year.

3. That a major initiative in parallel computation be launched with fund-
ing for projects in architecture, software, and algorithms. The goal is
to routinely achieve a ten-fold to hundred-fold increase in performance
over what the base computing technology can deliver.

4. That the parallelism initiative be supported by a general improvement
of computing infrastructure that will make parallel computing systems

78

Initiatives Report

available to every computer science and engineering department over
the next two years.

. That a major initiative in robotics and automation research be launched,

with the goal of substantial productivity in mechanical tasks within the
decade.

. To support the automation initiative, that steps be taken to ensure

that adequate computational facilities are made available to permit
realistic experiments with nontrivial tasks.

