Uniqueness of Ellipsoidal Solutions to a Geometric Problem

Problem 05-004, by Lucio R. Berrone (CONICET, Departamento de Matemática, Facultad de Ciencias Exactas, Ing. y Agrim., Universidad Nacional de Rosario, Argentina).

A sphere $B \subset \mathbb{R}^{n}$ centered at the origin satisfies the following property:

$$
\begin{equation*}
|B \cap(x+\varepsilon B)|=M(\varepsilon), x \in \partial B, \varepsilon>0 \tag{1}
\end{equation*}
$$

where $|\cdot|$ denotes the Lebesgue measure and M is a real function of ε. In other words, property (1) says that the measure of the intersection of B with its homothetic image εB translated to a boundary point $x \in \partial B$ does not depend on the particular choice of the boundary point x (but only on the homothety scale ε). When their centers coincide with the homothety center (both coinciding with the origin of coordinates), ellipsoidal domains in \mathbb{R}^{n} enjoy the same property, as can be quickly deduced from (1) by suitably rescaling the coordinate axis. The problem consists of deciding whether domains $B \subset \mathbb{R}^{n}$ different from ellipsoidal domains exist or not satisfying property (1) when "centered" at a certain interior point $O \in B^{\circ}$ (the center of homothety).

Status. This problem is open.

