
Rhythms in the Nervous System: Synchronization and Beyond

Rhythms in the nervous system are classified by frequency.

Alpha 8-12 Hz
Beta 12-30
Gamma 30-80
Theta 6-8

These rhythms are associated with

- Sensory processing
- Cognitive States

Theme: Use dynamical systems to understand

- Origin of rhythms
- Potential functional uses
- New way to think about classifying rhythms

My problem has always been an overabundance of alpha waves

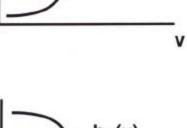
S. Harris

The Mathware

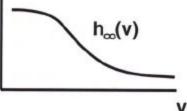
General Framework:

K' Nu' Ci

Hodgkin-Huxley Equations


$$c\frac{dv}{dt} = -\dot{a}I_{ion} + D\tilde{N}^2v - \dot{a}I_{synapse}$$

$$I_{ion} = g \, m^{j} h \, (v - V_{R})$$


Conductance x Electromotive force

m and h satisfy

$$\frac{dx}{dt} = (x_{\mathcal{Y}}(v) - x)/t_x$$

Equations have many time scales

Different Context,

Different Frequency

Different Properties

- Moving bars of light evoke gamma in primary visual cortex
- Sensory-motor tasks lead to beta
- Cortical rhythms in reward period : alpha

Synchronization properties:

- gamma/ beta display very precise synchronization across long distances
- <u>alpha</u> synchronization : <u>slopp</u>y/ nonexistent

Singer, Konig, Gray, Nature 1989; Roelfsema et al Nature 1997

Why is Math Relevant?

- What determines **frequencies**?
- What causes activity to be **coherent**?
- Are there <u>different "dynamical</u> <u>structures</u>" associated with different frequencies?

- What determines inclusion in a cell assembly?
- How is long distance synchronization possible?

Objective of math: Understand how biophysical properties of cells and synapses help create and regulate assemblies of synchronous cells.

A Biological Model of Gamma/Beta

Gamma and beta are implicated in

- Attention, perception, memory
- Thought disorders (schizophrenia)

Coaxing rhythms from a slice

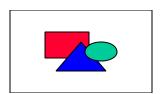
Whittington, Traub, Jefferys; Nature 1995

Gamma and transition to beta

- Stimulation of slice evokes gamma
- More stimulation evokes gamma, then transition to beta

• Later weak stimulation produces beta

Gamma, Beta and Dynamics


Whittington, Traub, Jefferys; White, Chow, Ritt, Ermentrout, NK

Dynamical structure of beta in slice: network has **underlying I-cell gamma**

E, <u>1</u> 1

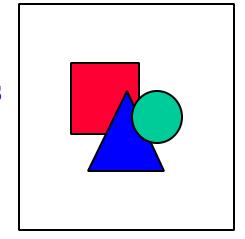
(Consistent with EEG data)

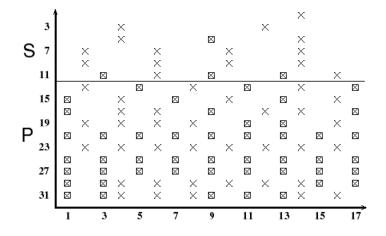
Gamma is inhibition-based rhythm: frequency and coherence is related to decay time of inhibition

Beta uses different intrinsic and synaptic currents

- Has extra slowly decaying outward current
- Has new E-E connections
 ("Cells that fire together wire together")

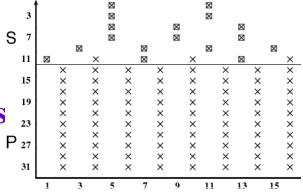
Analyzing Networks of Spiking Cells:

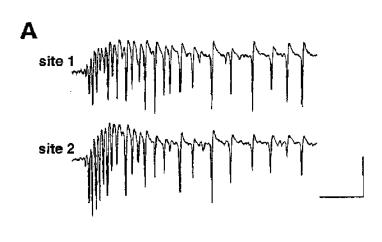

Treating high dimensional (Hodgkin-Huxley) systems as a collection of <u>maps</u>

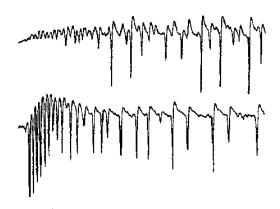

- Networks are <u>high-dimensional</u> systems
- But: near some "<u>dynamic configurations</u>", they are <u>low</u> dimensional.
- For given connections/time scales, identify consistent configurations (depends on parameters)
- Use time scales to identify <u>important degrees</u> <u>of freedom</u>, construct/analyze map
- Reduction procedure allows answers to questions about physiology

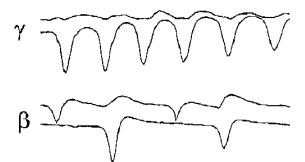
Population Tuning: Gamma as a Preprocessor for Beta.

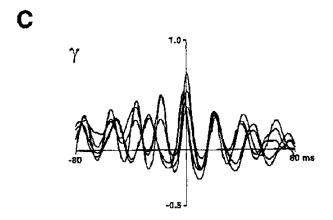
Aim: create a well-defined cell assembly Olufsen, Camperi, Whittington, NK

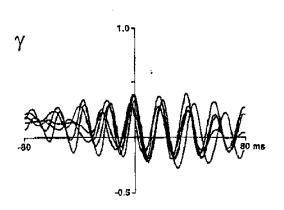

• With <u>range of drives</u> to E-cells, gamma rhythm creates <u>threshold</u> for cell assembly (P and S cells)

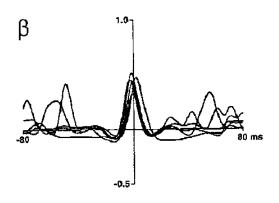

Slow outward current <u>ruins</u>
 threshold

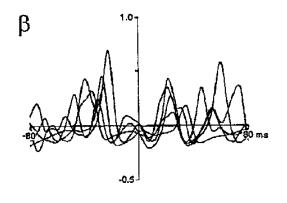

- To <u>create assembly</u> of cells that fire together at beta frequency and exclude other cells
 - <u>Strengthen</u> E-E only between P-cells
 - <u>Weaken</u> E-I connections from S-cells

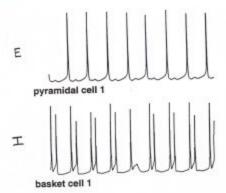

Control

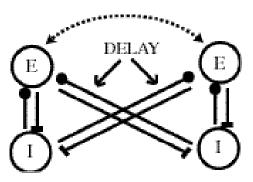

Site 2 bias





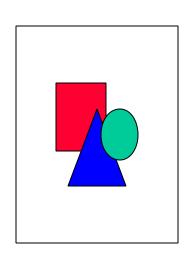





"Doublets" and Long-Distance Synchronization

Observation from data and large-scale numerics: Whittington, Traub, Jefferys

Synchrony iff doublets in I-cells



Map analysis of gamma in a minimal network Ermentrout , NK

Second spike encodes timing from distant circuit

- E cells fire when inhibition wears off
- Key property of I-cells: Wait between excitation and firing (history dependent)

Alpha, Beta, Gamma and Long-Distance Synchronization

Alpha 8-12 Hz; Beta 12-30; Gamma 30-80

Different rhythms are associated with different biophysics

Math reveals different synchronization properties

- <u>Beta can synchronize</u> over a much <u>larger</u> range of conduction delays than gamma (NK, Ermentrout, Whittington, Traub)
- Alpha actively <u>desynchronizes</u> over distances (S.R. Jones, Pinto, Kaper, NK)
 - Can synchronize locally or not
- Results <u>match data</u>, confirmed by simulations

Frequency Differences Have (?) Functional Implications

Bio Background

- Figure/ground <u>segregation is done early</u> in visual processing
- <u>Higher-order</u> processing requires coordination across <u>distances</u>
- Gamma and beta are used in different ways:
 - Local vs. distant coordination, (von Stein et al.)
 - Beta is associated with <u>novelty</u> in auditory paradigms. (Whittington, Gruzelier)

Insights from Math (gamma/beta)

- Gamma is excellent for figure/ground separation
- Beta is needed for higher-order coordination
- Gamma is needed as a preprocessor for beta

More Rhythms, More Math ...

Suggestion (von Stein):

<u>Gamma, beta</u> are used for <u>feedforward</u>
processing, <u>alpha</u> for <u>feedback</u>.

Suggestion (Hasselmo, Lisman, Recce ...):

Theta is important for learning/recalling sequences.

Mathematical tasks: understand more deeply

- Spatio-temporal properties of rhythms with different biophysical bases
- How networks with different rhythms process structured input
- Transformations among rhythms/ simultaneous rhythms (gamma/theta)
- How <u>different rhythms work together</u> in information processing