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e Origin and motivation
Ex: Storm surge forecasting

e Typical techniques (Gramians)
Linear time-invariant
Linear time-varying
Non-linear
e Numerical/Algorithmic issues (Krylov)



Storm surge forecasting in the North Sea
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Problem
Using measurements predict the state of the North Sea
variables in order to operate the sluices in due time (6h.)

Solution
z(t) = [h(t), v.(t), v,(t)] satisfies the shallow water equations

Ox(t) /0t = F(z(t),w(t))
y(t) = Glz(t),v(t))

with measurements y(¢) and noise processes v(.), w(.)
— estimate and predict z(¢) using Kalman filtering
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Some data : very few measurements (x’s and +’s)
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but discretized state is very large-scale (60.000 variables)
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Nevertheless it works ...

True water levels
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Estimated water levels
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Reconstruction works well around estuarium



Visualisation of computed variance of the error
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Suppose a "good” discretization z(.) € RY is given

Dynamical systems modeled via explicit equations

ylgg — — ulgg
ya() | a(t) e RN, N >>m,p [ wal.

Yp(-) %um()

discretize
—

continuous-time discrete-time

{ (t) = G(x(t), ult)) { o(k +1) = G(z(k), u(k))
y(t) = H(z(t), u(t)) y(k) = H(z(k), u(k))

[} linearize [}

t(t)=A(t)x(t)+B(t)u(t) r(k+1) = A(k)x(k)+B(k)u(k)
{ = { y(k) = C(k)z(k)+D(k)u(k)

[} freeze time [}

{ z(t) = Ax(t) + Bul(t) { z(k +1) = Az(k) + Bu(k)
y(t) = Cx(t) + Du(t) y(k) = Cz(k) + Du(k)

Many control problems require ~ N3 /(At) operations.
Because of cubic complexity in N = model reduction
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Linear Time Invariant Systems

Given ”large model” { Ay, Bym, Con'}

{ t(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Dul(t),

u(t) € R™, y(t) e R, z(t) € RN, N << m,p

find "small model” { A, By, Cn | with n << N
{ ©(t) = A&(t) + Bul(t)
y(t) = Ci(t) + Du(t),
driven by the same input «(¢) with small error
ly(2) — g (t)l]
Model reduction = find a smaller model, i.e. n << N :

e approximation problem
e stability is important

e Mmeasure is important



How to capture the essence of the system ?

Transfer functions and norms

A~

H(s)=C(sIy—A)'B+D, H(s)=C(sl,—A)™'B+D,
are p x m rational matrices

try to match frequency responses

uuuuuuuuuuuuuu

by minimizing their difference using

| H(.) — I:[()Hoo = SUp Opaz{ H (Jw) — I:[(]W)}
Theory :
e balanced truncation (Moore "81)

e optimal Hankel norm approximation (Adamian-Arov-Krein
71, Glover 90)

e interpolation (Gragg-Lindquist "83)

Other references : Gallivan-Grimme-VanDooren, Jaimoukha-Kasanelly,
Villemagne-Skelton, Boley, Craig, Freund-Feldman, Sorensen-Antoulas,



Why || . ||c NOrm ?

Fourier transforms of signals :

up(w) = Fu(t), yrlw)=Fy(t), yrlw)=Fy(t)

yields

A

yi(w) = H(jw)us(w), grlw) = H(jw)us(w).

and hence a bound for e(t) = [y(t) — y(t)] :

A

Fe(t) = ef(w) = [H(jw) — H(jw)lus(w).

Minimize worst case error ||es(w)||2 for ||us(w)||2 =1
by minimizing

1H() = H() o = sup || H (jw) = H(jw)|l2,

but this is a difficult norm to handle !



Use Hankel norm instead of ||.|| ., approximations

Consider the mapping “past inputs” = “future outputs”
Continuous-time

0 00
y(t) = / Cel =) Bu(r)dr = Cet - / e Bu(—7)dr,
0
y(t) = Ce'z(0), z(0) —/ e Bu(—7)dr.
0

1 1
08 08
06 06
04 04
. A A .
02 -02
04 04

0 5 10 15 20 25 30 35 40
Continuous output y(t)

Discrete-time

0 00
= CA* ) Bu(j) = CA*. Z AV Bu(—7),

y(k) = CAFz( Z A/ Bu(—
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N x N Gramians derived from the Hankel map

From y([0, 00)) = Ox(0), x(0) = Cu((—o0,0)), define the
dual maps O* : y([0, 0)) — x(0), C*: z(0) — u((—00,0))
and the (observability and controllability) Gramians

G,=0"'0, G.=CC*
Continuous-time

+00 00
G, - / (CeT(CeM)dt, G, — / (e B)(e B dt.
0 0

Discrete-time

G, = f(CAk)T(CAk>7 G.= f(AkBXAkB)Ta

Gramians can be viewed as “energy functions”
G for past inputs — z(0)
G, for z(0) — future outputs

Perform ordered eigendecomposition A = T1(G.G,)T (with
An >> A\,41) and project on the first n coordinates :
_ .| An A12] i [B1] :
T AT = T'B = CT=[C, Cy].
[ Ayt A G G

{1217 E) é} = {A117 Bl) Cl}
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Interpolating the frequency response H(w) seems a good idea
since Parseval’s theorem implies

+00
G, = ZL (—jwl — ANYTICTC(jwI — A) tdw,
™ —0o0
+00
G.= 2i (jwI — A)'BBY(—jwl — AT) dw.
™ — 0
and
G, — f(e_jwl _ATYICT O (T — A)
21 —
G, = L f(ejwl — A 'BBY(e7vT — AT
2m —~

What techniqueto use ? The discrete-time case :

... suggests to use Krylov spaces !

K;(M,R) =Im{R, MR, M°R,... ,M''R}
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Rational interpolation and moment matching

Let X and Y define a projector (Y7X = I,,) and
{A,B,O,D} ~ {YTAX,Y"B,CX,D}

Taylor series of H(s) = C(sI — A)™*B + D around oo
H(s)=Hy+ Hys '+ Hys %4,
where the moments H; are equal to :
Hy=D, H,=CA"'B,i=1,2, ..

A

The reduced order model H(s) = C(sI — A)"*B+ D
has a similar expansion

IA{(S) = IA{0—|—}A[18_1—|—IA{28_2—|—“' .
with moments H;, :

A

Hy=D, H=CA"'B, i=1,2,..

Moment matching of both models (Padé approximation) is
obtained by using Krylov spaces
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Theorem: Letm = p, YT X = I, and assume

ImX =Im [B, AB, A’B,... A*"'B],

ImY = Im [CT, ATCT AT A““‘”TCT]
then the first 2k moments match :

Hi=H;, j=1,...,2.

Rational Krylov methods extend this to several points o; :

multipoint (Padé) approximations are obtained by just using
modified Krylov spaces :

ImX = UIC{ — o) (A= o,I)7'B}

Imy = U/c {(AT — o, )Y (AT — 0, 0)7 10T

in the above theorem
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Comparison “Optimal” and rational approximations

15th order approximation of 120 th order CD player

10 10
15th order Hankel norm approximation 15th order balanced truncation

Legend: - -- Hankel norm ---- Balanced truncation - - - Rational Krylov

Errors | |T(.) =T(Q)| | In(|T(.) = T(.)])
Hankel 0.02 6.1
Balanc. 0.04 4.1
Rat. Kr. 4.02 15

Rational approximation looks better on a logarithmic scale
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Time-varying systems
Approximate the (discrete) time-varying systems

{ z(k+1) = A(k)x(k) + B(k)u(k)
y(k) = C(k)z(k) + D(k)u(k)

by a lower order models of same type. We notice that

y(k) C(k)
y(k+1) | _ C(k+1)A(k) -
y(k+2) C(k+2)A(k+1)A(k) ,
z(k) =
i u(k—1) |
| Bty AwyBoes)y AwpyApe2Bus) - | ZEZ:?%

which again suggests Krylov. Use low rank approximations
Go(k) = So(k)S; (k),  Go(k) = S.(k)S¢ (K),

where S,(k) and S.(k) are N x n matrices

Such approximations are obtained e.g. by keeping only the n
dominant singular vectors at step k of the Krylov recurrence :

Sc(k) =SV D, [B(k)a A(k)sc(k_ 1)]
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Let’s go back to the Storm Surge example

The important matrix in this Kalman filtering problem is

P(k) = E{(x(k) — &(k))(x (k) — 2(k))"}
which represents the “error covariance” of the estimation.
If we approximate

P(k) ~ S(k)S(k)", S(k) € RV*",
then we obtain the recurrence

R(k) C(K)S(k) 0

SkH+1) = SVDul =07 A6)S(k) BR)Q(K)

where the new factor S(k + 1) stays of rank »n by a projection
(using the SVD).

The only big matrix involved here is the sparse matrix A(k)
which is multiplied with only n columns

17



Time-varying linearized problems

Consider the discrete-time system

{ 2(k +1) = G(a(k), u(k))
y(k) = H(z(k), u(k)).

One could linearize along a “nominal” trajectory (x(k), u(k))

and get A(.), B(.),C(.), D(.) from Taylor expansionof G(., .), H(., .)
Simpler idea (POD) :

Use the “energy function” G = sz:ki z(k)z(k)L.

From
z(k+1) = A(k)x(k)
with initial conditions x(k;), we have

z(k) = O(k, k)x(k;).

Therefore GG looks like a Gramian :
ky

> (DK, ki)z(k:)) (DK, ki) (k:)"

k=k;

Now project on its dominant subspace (POD)
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Example : Use POD in CVD reactor (Ly-Tran "99)

stesl confinement enclosure

rotading shaft waste gas
stream

to load-lock chamber

Schematic representation of a horizontal
quartz reactor in a steel confinement shell

Compute state trajectories for one “typical” input :

Species Introduced into Reactor
T T T T T

_A_A._a._l__u__n_l__l_l__l_l._l_l.||_|_|_|..a_a..

075s 07s 065s 06s 055s 05s 045s 04s 035s 03s 0255 02s 0.15s 01s 005s

Snap shots of “typical” states Ten dominant “states”
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Concluding remarks

e large-scale is typically sparse

e time-stepping (simulation) is cheaper than control (opti-
mization)

e find an “energy function” that is “cheap” and project on
its dominant features

Futurework

e find error bounds “on the fly”

e incorporate projections in closed loop

Further reading

P. Van Dooren, Gramian based model reduction of large-scale
dynamical systems, in Numerical Analysis 1999, Chapman
and Hall, pp. 231-247, CRC Press, London, 2000.

M. Verlaan and A. Heemink, Tidal flow forecasting using re-
duced rank square root filters, Stochastic Hydrology and Hy-
draulics, 11, pp. 349-368, 1997.

See also SIAM short course notes on
http://www.auto.ucl.ac.be/ vdooren/
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