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The recent emphasis on homeland security in the U. S. has led to a number of new applications involving
sensor placement in physical networks. We will describe some of these sensor placement problems including
sensor placement in municipal water networks to minimize health effects from accidental or malicious
contamination and sensor placement for intruder detection in transportation networks or buildings. We
have addressed these problems using parallel integer programming. In this talk we present a parallelizable
heuristic method for finding approximate solutions to general sensor placement problems.

An Integer program (IP) is the optimization (maximization or minimization) of a linear function subject
to linear constraints and integrality constraints on some or all of the variables. IPs naturally model NP-
hard combinatorial optimization problems. Thus integer programming is itself NP-complete, but one can
frequently solve instances in practice using branch and bound via commercial or research solvers. The
sensor placement problems we consider have n binary decision variables corresponding to the possible
sensor locations. The IP must chose at most k sensors (set at most k decision variables to 1). The
remainder of the IP sets (integral and/or rational) dependent variables that calculate the objective.

Removing the integrality constraints gives the linear-programming relaxation of an integer program.
This is tractible both theoretically and in practice. IP solvers solve this LP relaxation to bound (sub)problems
during the search for an optimal solution. One can use this LP solution to find a feasible integer solution.
This can provide a fast approximation algorithm (frequently of provable quality) or it can speed an IP
search by allowing early pruning of regions that cannot contain an optimal solution.

In this talk, we consider finding heuristic solutions to sensor placement IP problems using randomized
rounding. This technique was introduced by Raghavan and Thompson [2]. It’s a natural idea in its simplest
form. Suppose all integer variables are binary. In the LP relaxation x∗ of the IP, for each decision variable
xi, we have 0 ≤ x∗

i ≤ 1. Treat each value x∗
i as a probability and round the variable xi to 1 based with

probability xi. One must then compute the values of the other derived variables, either directly or by
resolving the LP with the decision variables fixed.

Randomized rounding has been used to compute provably good approximations for some combinatorial
optimization problems[4]. Usually these are for cases where all settings of the variables in the associated
IP are feasible and rounding merely harms the objective value. This simple independent rounding is not a
good strategy for general integer programs because the computed solution is almost never feasible for the
linear constraints. However, the only constraint that might be violated in our sensor placement problems
is the limit k on the number of sensors.

We will present a new randomized rounding strategy based on computing a “lucky” rounding. Suppose
we were to independently randomly round each of the n decision variables and were lucky enough to select
exactly k of them. This would be a feasible solution for the sensor placement problem. This lucky event is
unlikely. We present a method to efficiently sample from this lucky distribution. In O(k(n-k)) deterministic
serial preprocessing time we compute a data structure. [This can also be parallelized]. Then with a single
random number and O(n) additional time, we can select a set of k sensors according to this distribution.
When solving an IP in parallel, each processor can independently compute one or more solutions and we
can take the best solution found by any processor.
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We will describe the algorithm and compare it to algorithms by Srinivasan [3] and Doerr [1] for random-
ized rounding with such hard constraints. Their algorithms are also fast, meet cardinality constraints, and
have sufficient independence to allow Chernoff bound analysis. Our algorithm has stronger independence
and a fundamentally different probability distribution for individual variables.
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