
Sparse LU factorization
Constrained Markowitz ordering with Local Symmetrization (CMLS)

Implementation mechanism – bipartite quotient graph
Metrics

Experimental results

Unsymmetric Greedy Orderings for Stable Sparse
Factorization

X. Sherry Li (LBNL, Berkeley).

with
Patrick R. Amestoy (ENSEEIHT-IRIT, Toulouse)

Stéphane Pralet (CNRS/ENSEEIHT-IRIT, Toulouse)

X.S. Li unsymmetric ordering

Sparse LU factorization
Constrained Markowitz ordering with Local Symmetrization (CMLS)

Implementation mechanism – bipartite quotient graph
Metrics

Experimental results

Outline

1 Sparse LU factorization

2 Constrained Markowitz ordering with Local Symmetrization
(CMLS)

3 Implementation mechanism – bipartite quotient graph

4 Metrics

5 Experimental results

X.S. Li unsymmetric ordering

Three-phase approach

Solve Ax = b with A sparse

Analysis. Preprocessing.

Factorization. compute L and U. At step k,

a
(k+1)
ij = a

(k)
ij −

a
(k)
ik a

(k)
kj

a
(k)
kk

.

rounding errors depend on growth factor
→ large pivots ≈ small errors
fill-in in the factors

X
XX

X
X

X
X

X
X

X
X

X

X XX

X
X

X
X

X
X

X
X

X

X

F

F

X

F

X

X X

X

Triangular solution.

Motivations of this work

Analysis often involves :

numerical step (scaling and maximum transversal)
structural reordering step (symmetric permutation to keep
healthy diagonal)

A
′
= P(DrADcQ)PT

Main objective of proposed ordering : combine numerical
preprocessing and reordering steps

add flexibility to choose off-diagonal pivots → reduce fill-in
control numerical quality of predicted pivots → improve
accuracy, reduce off-diagonal pivoting

Sparse LU factorization
Constrained Markowitz ordering with Local Symmetrization (CMLS)

Implementation mechanism – bipartite quotient graph
Metrics

Experimental results

Components of our unsymmetric ordering

Constraint matrix C, such that

choose some aij 6= 0, set cij = aij ; otherwise cij = 0

C structurally nonsingular

Phase 1: Numerical preprocessing of A and construction of C.
Phase 2: Reorder A, with candidate pivots in C.

(Special case: C = I , choose pivots on main diagonal.)

X.S. Li unsymmetric ordering

Phase 1: generic pre-processing (NumThresh,
StructThresh)

Compute row and column scalings of A, A← DrADc ,
Build matrix C:

- Struct(C) = {(i , j) : |aij | > NumThresh},
(Struct(C) ⊆ Struct(A))

- store numerical values in C if needed,
- add entries from A s.t. maximum matching M⊆ C
- if needed, remove entries (not inM) from C

until |C| < StructThresh

Phase 2: one step of ordering

Let A be a scaled matrix.

C contains a subset of A entries

C =

X X
X X

X
X

X X
X X

X
X X

X X

X
X

X

XX

A =

X X
X

X

X X
X

X X

X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X
X

X

X
X

Phase 2: one step of ordering

Let A be a scaled matrix.

Pivot is selected and eliminated in A

X X
X

X

X X
X X

X X

X

X

X
X

X

X
X

X
X

X
X

X
X

X X
X

XX
X

X X
X X

X
X

X X
X X

X
X X

X X

X
X

X

X

A =

C =

X X
X

X

X X
X X

X X

X

X

X
X

X

X
X

X
X

X
X

X
X

X X
X

XX
X

X X
X X

X
X

X X
X X

X
X X

X X

X
X

X

X

FF

FF

F

XX

Phase 2: one step of ordering

Let A be a scaled matrix.

Fill-in may occur in C

X X
X

X

X X
X X

X X

X

X

X
X

X

X
X

X
X

X
X

X
X

X X
X

XX
X

X X
X X

X
X

X X
X X

X
X X

X X

X
X

X

X

A =

C =

X X
X

X

X X
X X

X X

X

X

X
X

X

X
X

X
X

X
X

X
X

X X
X

XX
X

X X
X X

X
X

X X
X X

X
X X

X X

X
X

X

X

FF

FF

F

F

XX

F

May need to restrict fill-in in C.

Phase 2: one step of ordering

Let A be a scaled matrix.

Need update matching in C to maintain nonsingularity

X X
X

X

X X
X X

X X

X

X

X
X

X

X
X

X
X

X
X

X
X

X X
X

XX
X

A =

C =

X X
X

X

X X
X X

X X

X

X

X
X

X

X
X

X
X

X
X

X
X

X X
X

XX
X

X X
X X

X
X

X X
X X

X
X X

X X

X
X

X

X

FF

FF

F

F

X

X X
X X

X
X

X X
X X

X
X X

X X

X
X

X

XX

F

This happens if pivot (i , j) /∈M.

Phase 2: one step of ordering

Let A be a scaled matrix.

Which entries are affected by the metric update?

X X
X

X

X X
X X

X X

X

X

X
X

X

X
X

X
X

X
X

X
X

X X
X

XX
X

A =

C =

X X
X

X

X X
X X

X X

X

X

X
X

X

X
X

X
X

X
X

X
X

X X
X

XX
X

X X
X

X

X X

X
X X

X

X

X

FF

FF

F

X

X X
X X

X
X

X X
X X

X
X X

X X

X
X

X

XX

F

X

X

X

X

X

F

X

X

Phase 2: Constrained unsymmetric ordering

Let A1 = A (phase 1 : A← DrADc) and C1 = C
while k ≤ n do

Select best pivot in Ck w.r.t metric(Ak ,Ck)
Ck+1 ← Update (Ck)
Ak+1 ← Update (Ak)
Update metric values

end while

Phase 2: Constrained unsymmetric ordering

Let A1 = A (phase 1 : A← DrADc) and C1 = C
while k ≤ n do

Select best pivot in Ck w.r.t metric(Ak ,Ck) → Which metric?
Ck+1 ← Update (Ck)
Ak+1 ← Update (Ak)
Update metric values

end while

Phase 2: Constrained unsymmetric ordering

Let A1 = A (phase 1 : A← DrADc) and C1 = C
while k ≤ n do

Select best pivot in Ck w.r.t metric(Ak ,Ck) → Which metric?
Ck+1 ← Update (Ck) → In-place ?
Ak+1 ← Update (Ak)
Update metric values

end while

Phase 2: Constrained unsymmetric ordering

Let A1 = A (phase 1 : A← DrADc) and C1 = C
while k ≤ n do

Select best pivot in Ck w.r.t metric(Ak ,Ck) → Which metric?
Ck+1 ← Update (Ck) → In-place ?
Ak+1 ← Update (Ak) → In-place
Update metric values

end while

Phase 2: Constrained unsymmetric ordering

Let A1 = A (phase 1 : A← DrADc) and C1 = C
while k ≤ n do

Select best pivot in Ck w.r.t metric(Ak ,Ck) → Which metric?
Ck+1 ← Update (Ck) → In-place ?
Ak+1 ← Update (Ak) → In-place
Update metric values → Cheap metric updates

end while

Constraints and algorithmic solutions

To update Ak : in-place algorithm → bipartite quotient graph

To update Ck :
knowledge of the metric of each entry in Ck → weighted
bipartite graph and incomplete updates such that

Ck structurally nonsingular
Struct(Ck) ⊆ Struct(Ak)

MATCHUPDATE : minimum cost to only preserve Ck

structurally nonsingular which can be done in-place
(remove 3 entries (i , j), (mi , j), (i ,mj), add 1 entry (mi ,mj))

i

j

P

M

M

Fmi

mj

TOTALUPDATE : perform all updates in Ck

Bipartite quotient graph [Pagallo & Maulino, 1983]

Bipartite graphs G k = {V k
r ,V k

c ,E k} to model the elimination
process of A (with G 0 = G (A)).

After eliminating pivot (rk , ck), a bi-clique is formed.
rk ck

Eliminate (rk,ck)
rs

rt

cs

ct

ru

rs

rt

cs

ct

ru

Memory complexity : how to store the bi-cliques ?

Quotient Graph : implicit storage of the bi-clique → in-place

algorithm.

keep eliminated pivots (elements) and their adjacency lists.
keep edges incident with the elements that result in the
bi-clique.

rk ck
Eliminate (rk,ck)

ek

rs

rt

cs

ct

ru

rs

rt

cs

ct

ru

Bipartite quotient graph [Pagallo & Maulino, 1983]

Bipartite graphs G k = {V k
r ,V k

c ,E k} to model the elimination
process of A (with G 0 = G (A)).

After eliminating pivot (rk , ck), a bi-clique is formed.
rk ck

Eliminate (rk,ck)
rs

rt

cs

ct

ru

rs

rt

cs

ct

ru

Memory complexity : how to store the bi-cliques ?

Quotient Graph : implicit storage of the bi-clique → in-place

algorithm.

keep eliminated pivots (elements) and their adjacency lists.
keep edges incident with the elements that result in the
bi-clique.

rk ck
Eliminate (rk,ck)

ek

rs

rt

cs

ct

ru

rs

rt

cs

ct

ru

Bipartite quotient graph

re1

re2

ce1 ce2

re1 ce1

ce2re2

e1

p

i

x

x

e2

rowp

colp

colprowp

F

eliminates e1: it becomes an element

eliminates e2: e2 can absorb the column structure of e1 but
not the row structure

In-place quotient graph: must search path p → e1 → e2 to
determine that row p contains row structure of e2

Strongly connected components

e1

p

i

x

x

x

r

e2r

cc

rowp

colpe1 e2

e1

e2

F

after eliminating p, for the cycle (p, e1, e2), only 1
representative element p need be kept
. . . because if variable i is adjacent to e1 or e2, it must be
adjacent to p

Improve runtime

Runtime cost : how to retrieve the adjacency list of a variable?

A symmetric → path length ≤ 2

A unsymmetric → long search path

Local symmetrization [Amestoy, Li, Ng, 2003] → path
length ≤ 2, but approximate structure

Quotient graph and local symmetrization

After eliminating e2, a virtual entry S is added at (re2, ce1), so that
e2 can absorb e1.

e1

p

i

x

x

x

r

e2r

cc

rowp

colpe1 e2

e1

e2
S

F

extra entries in the representation of the factors.

to select pivot p and in degree update, we must anticipate
that symmetrization will be applied.

Quotient graph and local symmetrization

Only path p → e2 is needed to retrieve structure of p
After eliminating p, e2 is absorbed by p

e1

p

i

x

x

x

r

e2r

cc

rowp

colpe1 e2

e1

e2
S

F

extra entries in the representation of the factors.

to select pivot p and in degree update, we must anticipate
that symmetrization will be applied.

Variable elimination in one or both directions

p

Xi X

j

Xj 0 X

i

0 X p

Xi X

j

Xj 0 X

i

0 X

If the variable elimination is always done in one direction then the
current pivot, say p, can be removed from the quotient graph
when Up = ∅ or Lp = ∅.

Irreducible components with eliminations in two directions

���
�

p

X

e

0

i

SS

X

X

0 0S

0...0 0

1

22

1

If two-way variable elimination has
been done at least once, then the current pivot p can be safely
removed from the quotient graph only if Up = ∅ and Lp = ∅.

Toy example 1,

after eliminations in both directions

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

nz = 48

Toy example 1, after eliminations in both directions

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

nz = 48
0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

nz = 84

Toy example 2,

after eliminations in one (center) / both
(right) directions

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 198

Toy example 2, after eliminations in one (center) / both
(right) directions

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 198
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 291
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 544

Real test case

mult dcop 2, circuit simulation
n = 25187 nnz = 193276
ncomp = 7418
C = diag

Ordering with one-way elimination:
nnz = 446162
Nblocks = 1303

Ordering with two-way elimination:
nnz = 985084
Nblocks = 936

Sparse LU factorization
Constrained Markowitz ordering with Local Symmetrization (CMLS)

Implementation mechanism – bipartite quotient graph
Metrics

Experimental results

Which metric ?

Structural information from Ak : for each considered entry,
CMLS can compute

approximate Markowitz cost
approximate deficiency

Numerical information from Ck : an entry is large enough

if cij 6= 0
if |cij | ≥ threshold
if |cij | ≥ u ×max c:j

. . .

X.S. Li unsymmetric ordering

Sparse LU factorization
Constrained Markowitz ordering with Local Symmetrization (CMLS)

Implementation mechanism – bipartite quotient graph
Metrics

Experimental results

Testing environment

19 large unsymmetric matrices from Tim Davis’ collection

symmetry < 0.5; large dimension 11000 < n < 130000

MA41 UNS: A tree-based unsymmetric multifrontal solver [Amestoy
and Puglisi, 2002]

Phase 1 : preprocessing

MC64 maximum weighted bipartite matching and scaling

Metric : approximate deficiency

Comparison with DMLS [Amestoy, Li, Ng, 2003]: special case of
CMLS in which only the diagonal entries corresponding to the MC64
matching can be selected

X.S. Li unsymmetric ordering

CMLS improves upon DMLS

If C = diag(AQ) CMLS predicts factors 7.5% sparser and with
15.7% fewer operations

Local symmetrization anticipation
scaling of some AMF areas to reduce amount of tie-breaking
distinguishing row or column supervariables → improves
accuracy of approximate deficiency

CMLS algorithmic choices:
- not natural in a DMLS context
- could be applied to DMLS to improve it

CMLS improves upon DMLS

If C = diag(AQ) CMLS predicts factors 7.5% sparser and with
15.7% fewer operations

Local symmetrization anticipation
scaling of some AMF areas to reduce amount of tie-breaking
distinguishing row or column supervariables → improves
accuracy of approximate deficiency

CMLS algorithmic choices:
- not natural in a DMLS context
- could be applied to DMLS to improve it

CMLS improves upon DMLS

If C = diag(AQ) CMLS predicts factors 7.5% sparser and with
15.7% fewer operations

Local symmetrization anticipation
scaling of some AMF areas to reduce amount of tie-breaking
distinguishing row or column supervariables → improves
accuracy of approximate deficiency

CMLS algorithmic choices:
- not natural in a DMLS context
- could be applied to DMLS to improve it

Results: compare to DMLS, 19 matrices, mean value

Size of factors: 13% less (0% - 43%)

CMLS prediction: 9% less than actual (due to numerical
pivoting)

Total memory of MA41 UNS: 12% less (0% - 33%)

Runtime:

Ordering: 77% slower
Factorization: 16% faster
Solve: 10% faster

Results: compare to DMLS, 19 matrices, mean value

Size of factors: 13% less (0% - 43%)

CMLS prediction: 9% less than actual (due to numerical
pivoting)

Total memory of MA41 UNS: 12% less (0% - 33%)

Runtime:

Ordering: 77% slower
Factorization: 16% faster
Solve: 10% faster

Results: compare to DMLS, 19 matrices, mean value

Size of factors: 13% less (0% - 43%)

CMLS prediction: 9% less than actual (due to numerical
pivoting)

Total memory of MA41 UNS: 12% less (0% - 33%)

Runtime:

Ordering: 77% slower
Factorization: 16% faster
Solve: 10% faster

Results: compare to DMLS, 19 matrices, mean value

Size of factors: 13% less (0% - 43%)

CMLS prediction: 9% less than actual (due to numerical
pivoting)

Total memory of MA41 UNS: 12% less (0% - 33%)

Runtime:

Ordering: 77% slower
Factorization: 16% faster
Solve: 10% faster

Concluding remarks

+ sparser factors, faster factorizations

+ more improvements with increasing size and asymmetry

+ in MA41 UNS framework: reliable pivots and memory
estimations

+ in SuperLU DIST framework: improve accuracy of the
solution with fewer steps of iterative refinement

− ordering phase slower (future improvements)

CMLS algorithmic choices can also be used to improve DMLS
quality

Report: http://crd.lbl.gov/˜xiaoye/LBNL-56861.pdf
also available as CERFACS report TR/PA/04/13, and
ENSEEIHT-IRIT report RT/APO/04/05
http://www.enseeiht.fr/apo/MUMPS/RT APO 04 05.ps

	Sparse LU factorization
	Constrained Markowitz ordering with Local Symmetrization (CMLS)
	Implementation mechanism -- bipartite quotient graph
	Bipartite quotient graph and Gaussian elimination
	Local symmetrization
	Adjacency pruning
	Examples

	Metrics
	Experimental results

