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We consider the LU factorization of a sparse unsymmetric matrix A based on three-phase
approaches (analysis, factorization, solve). The analysis phase transforms A into a new matrix Ā
with better properties for sparse factorization. It exploits the structural information to reduce the
fill-ins in the LU factors and exploits the numerical information to reduce the amount of numerical
pivoting needed during factorization. Two consecutive treatments are commonly used to reach
these two objectives. Firstly, scaling and maximum transversal algorithms are used to transform
A into A1 with large entries on the diagonal. Secondly, a symmetric fill-reducing ordering, which
preserves the large diagonal, is used to permute A1 into A2 so that the factors of A2 are sparser
than those of A1. Note that during factorization, numerical instabilities can still occur and will
be handled either by partial pivoting resulting in extra fill-ins in the factor matrices or by static
pivoting resulting in a potentially less accurate factorization.

This approach has two drawbacks: (i) during analysis, the numerical treatment requires the
fill-reducing ordering to limit its pivots choice to the diagonal of A1, (ii) the ordering phase does
not have numerical information to select the pivots.

We presented in [1] the basic ideas of a constrained unsymmetric greedy ordering method and
showed some very preliminary results. The main features of our approach are:

• Based on a numerical pre-treatment of the matrix A, we extract a set of numerically accept-
able pivots, referred to as a constraint matrix C (described by Algorithm 1).

• At each step k of the ordering, our pivot choice is not restricted to the diagonal of the matrix.
Furthermore our choice is guided by both structural information given by the structure of the
reduced matrix Ak and numerical information given by the reduced constrained matrix Ck

(see Algorithm 2).

Algorithm 1: generic pre-processing phase (NumThresh,StructThresh)
Compute row and column scalings of A, A← DrADc.
Build matrix C:

- Pattern(C) = {(i, j) st |aij | > NumThresh} and store numerical values in C if needed,
- add entries from A, s.t. maximum matching M⊂ C,
- if needed suppress entries from C (not in M), until |C| < StructThresh.

Algorithm 2: constrained unsymmetric ordering
while k ≤ n

(a) Select best pivot in Ck w.r.t metric(Ak,Ck)
(b) Ck+1 ← Update (Ck)
(c) Ak+1 ← Update (Ak)
(d) Update metric values

end while
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To have an efficient implementation of Algorithm 2 we need modify some existing algorithms
and develop some new ones. In particular, we need answer the following questions:

(1) Which metric do we want to use at step (a) ?
(2) Which data structure is suitable for reduced matrices Ak ?
(3) Which data structure is suitable for reduced matrices Ck ?
(4) How can we limit the cost of metric updates at step (d) ?

We will explain the algorithms that have been modified/adapted and the new algorithms that
have been developed, and will show the consequences of these algorithmic choices. We will compare
our new implementation which is referred to as Constrained Markowitz with Local Symmetrization
(CMLS) with an earlier approach where the pivot choice is limited to the diagonal. The latter
approach will be referred to as Diagonal Markowitz with Local Symmetrization (DMLS) [2]. We will
focus on large matrices whose structural symmetry is lower than 0.5.

• To answer (1), we have developed several hybrid metrics. For example we can look for
a large enough entry (i, j) in Ck that minimizes the fill-in that will occur in Ak if it were
eliminated.

• To answer (4), we have developed approximation of the minimum fill and will explain our
contribution to that. Our metrics have better tie-breaking properties and the other popular
ordering algorithms such as AMD could benefit from them.

• We then briefly discuss our choices of the data structures for the reduced submatrices. To
answer (3), a weighted bipartite graph is used to access the metric of each entry in C. We
sometimes perform incomplete Gaussian elimination to preserve the in-place property of
our algorithms.

• To answer (2), a bipartite quotient graph is used to handle the matrix A and local
symmetrization [2] is applied to limit the complexity (search path of length at most three
in the bipartite quotient graph). We study different ways of pruning the quotient graph
structures and show that our pruning improves the reducibility detection. Moreover, as CMLS
uses fully unsymmetric structures, our row and column supervariables are not correlated.

We will report results with the unsymmetrized multifrontal solver MA41 UNS [3]. Our ordering is
competitive with respect to DMLS since it requires approximately only 75% more time. In summary,
for our test set, we have observed average gains of 14% for the factorization time, of 9% for
the triangular solution time, of 12% for the memory usage, and of 12% for the sparsity of the
factors. We also illustrate that our approach improves the accuracy of the static pivoting strategy
of SuperLU dist [4].
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