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When using 1 + p processors

• Rows distributed over p processors for data parallel

◦ FTRAN for UPDATE etas

◦ CHUZR

◦ UPDATE tableau in minor iterations

◦ UPDATE RHS

• Columns distributed over p processors for data parallel

◦ PRICE

◦ CHUZC
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Data location challenge

• B0 factored serially on one processor

• Factors used serially on all processors to solve linear systems

• Each solution used for data parallel operations over all processors
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Practical implementation

• Use a task manager processor

◦ Task parallel operations allocated according to processor activity

◦ Enables different computational components to overlap

• Prevent different processors from writing to consecutive components

◦ Insert “padding” between row partitions: implemented

◦ Insert “padding” between column partitions: not yet implemented
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Results

1 Processor Speed-up

Model Rows Columns CPU (s) 4 processors 8 processors

cre-a 3517 4067 5.76 1.16 1.83

25fv47 822 1571 8.78 1.54 1.99

greenbea 2393 5405 29.22 - 2.30

ken-11 14695 21349 41.26 1.40 2.52

stocfor3 16676 15695 98.44 1.50 2.76

pds-06 9882 28655 138.84 1.58 3.05
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SYNPLEX refinements:

• Parallel INVERT

◦ Should allow larger problems to be solved than serial revised simplex solvers

◦ Impressive results from parallel direct methods for linear systems give hope

Future prospects:

• Pure data parallel revised simplex without multiple pricing
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