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We study ordering and pivoting strategies when computing the LDLT factorization of a symmetric
indefinite matrix where L is a lower triangular matrix and D is a block diagonal matrix with 1x1 and 2x2
blocks. We consider direct methods based on a multifrontal technique although most of our comments and
analysis apply to other approaches for direct factorization. In the multifrontal scheme, the factorization can
be represented by a tree where, at each node, elimination operations are performed within a dense matrix,
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where pivots can be chosen only within Fj; and the Schur complement matrix Fby — F21F1_11F12 is passed for
summation into the frontal matrix of the parent node of the tree. In the symmetric case, Fy; = Fif,. Usually
the factorization is computed in two phases. The analysis phase preprocesses the system of equations and
is often based purely on matrix structure. The second phase performs the Gaussian elimination. If the
threshold tests of the pivoting strategy prevent the selection of some pivots from the Fj; block, then the
factorization can still proceed but their elimination is delayed which will normally increase both storage and
work for the factorization.

Firstly we will present new classes of orderings called constrained orderings that select pivots during the
symbolic Gaussian elimination using two graphs. These orderings are described in [2] but have never been
presented. Secondly we will propose new pivoting strategies that combine both numerical and static pivoting
and that are well designed for scalable parallel distributed factorizations.

We will use our orderings and our pivoting strategies with a symmetric multifrontal code MA57 [5] on real
test problems that are available from ftp.numerical.rl.ac.uk/pub/matrices/symmetric/indef/.

1. Constrained orderings

The main principle of our orderings is to guide the ordering with the preselection of 2x2 and 1x1 pivots. This
preselection is based on the work of [1, 2] that computes a symmetric weighted matching from a maximum
weighted matching.

Our ordering manipulates two graphs. The first graph is the usual quotient graph used in greedy orderings.
It is used to perform the symbolic factorization and to compute metrics. The second graph, the constraint
graph, is an undirected graph G. = (V¢, V., E) where V}, the free variables, and Vi, the constrained variables,
are sets of vertices and F is the edge set.

At the beginning of the ordering, a supervariable i is a free supervariable if and only if it corresponds to
a large enough diagonal entry, or it corresponds to a 2x2 pivot. Otherwise it belongs to V.. At each step of
the symbolic elimination, we select the best pivot in the set V; according to a metric related to the quotient
graph and each variable in V. that are adjacent to i are removed from V. and added to V.

We will show that our constrained orderings are faster, need less memory and give reliable estimations.

2. Scalable pivoting strategies

To keep the symmetry while maintaining stability 1x1 and 2x 2 pivoting is performed. The criterion of the
Duff-Reid algorithm ([3], as modified in [4]) can be used to ensure a growth factor lower than 1/u at each
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step of Gaussian elimination. A 1x1 diagonal pivot can be selected if and only if

|ai| > umjax|az'j| (2)

and a 2x 2 pivot P = ( @pp - Ipg ) can be selected if and only if
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where |P~!| denotes the matrix whose values are the absolute values of P~1.
A static approach was proposed by [6] in the context of LU factorization. During Gaussian elimination
“small perturbations” are added to limit the growth of the factors in order to enhance the backward stability
of the algorithm. In our combinations of static and numerical pivoting the factorization does not necessarily

follow the analysis and some slight variations are allowed. We want a pivoting strategy with the following
features:

(F1) Itis easy to decide whether to add a perturbation or not. In particular, in a parallel symmetric indefinite
solver, this decision must not involve any limiting extra communication cost or synchronization.

(F2) The perturbations are restricted to the block of fully summed rows/columns in each front.

Let us consider a frontal matrix from the elimination tree. Our mixed approach is based on two phases.
In the first phase, we perform numerical pivoting in the block of fully summed variables until no remaining
variables satisfy the numerical criterion. In the second phase, we eliminate the remaining fully summed
variables adding 1 x 1 perturbations if necessary.

In a parallel distributed environment the fully summed part of large nodes are stored on a single processor,
the master. Furthermore the master does not have local access to partially summed rows/columns that are
sent directly from the slaves of its child nodes to its own slaves. To avoid extra communications and, even
worse, synchronizations we cannot completely check the stability criteria (2) and (3). We will propose an
approximation of the off-diagonal information that does not limit the scalability and that will significantly
improve the numerical robustness of the factorization. For each fully summed variable of a node p, each slave
of its children sends to the master of p the maximum entry that it has computed in its contribution block.
Then the master of the parent node will approximate the maximum entry in each row with the maximum
quantity that it received from the slaves of its child nodes. Note that it is only an approximation because
the child contributions are summed with those from the siblings.

Iteration 0 Iteration 1 Iteration 2 Factorization Time
Matrix numSEQ | mixPAR | numSEQ | mixPAR mixPAR numSEQ | mixPAR simulation
BRAINPC2 | 1.6e-15 | 2.1e-08 | 1.0e-15 | 5.7e-15 9.8e-16 0.18 0.11
BRATU3D 2.0e-09 | 1.7e-05 | 1.7e-16 | 1.3e-10 2.3e-16 34.2 9.24
CONT-201 8.8e-11 | 1.8e-05 | 1.6e-16 | 9.4e-09 4.5e-09 5.51 1.94
CONT-300 7.6e-11 | 1.9e-05 | 1.9e-16 | 2.6e-09 3.4e-09 21.1 6.08
cvxqp3 5.2e-11 | 8.0e-06 | 2.7e-16 | 9.3e-13 2.7e-16 9.73 3.08
DTOC 2.1e-16 | 8.3e-07 | 2.7e-20 | 2.1e-13 1.9e-15 29.1 0.41
mario001 6.3e-15 | 3.1e-08 | 1.3e-16 | 2.5e-13 1.3e-16 0.28 0.23
NCVXQP1 4.6e-14 | 3.3e-13 | 1.7e-17 | 4.4e-15 6.1e-17 2.69 1.29
NCVXQP5 2.0e-11 | 7.5e-08 | 2.0e-16 | 1.6e-11 1.5e-14 25.7 23.0
NCVXQPT7 9.6e-10 | 4.3e-06 | 2.2e-16 | 2.0e-12 2.7e-16 195. 71.6
SIT100 4.4e-15 | 2.0e-08 | 1.4e-16 | 5.8e-15 1.5e-16 0.13 0.11
stokes128 1.1e-14 | 4.2e-14 | 5.5e-16 | 2.0e-15 1.7e-15 1.14 1.06
stokes64 4.3e-15 | 1.6e-13 | 1.5e-15 | 2.3e-14 2.2e-14 0.33 0.29

Table 1: Component-wise backward error of strategies with static pivoting and factorization time (in
seconds). numSEQ: sequential approach with numerical pivoting. mixPAR: parallel approach combining
numerical and static pivoting.

We simulated the parallel factorization in MA57. Table 1 shows that our parallel combination of numerical
and static pivoting mixPAR is numerically robust on our test set. On average, it needs one iteration more to
get a similar precision as the sequential numSEQ strategy. It is also significantly faster.
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