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The multifrontal method (Duff, Reid’83)
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Sequential case: Memory behaviour (1/2)
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Figure: Example illustrating the memory behaviour.
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Sequential case: Memory behaviour (2/2)

Consider a parent node in the tree:

I n is the number of children.
I j denotes the j th child of the node.
I cbj is the size of the contribution block

of child j .
I m is the memory size of the frontal

matrix of the parent.
I A (resp. Aj ) is the amount of active

memory needed to process the parent
(resp. child j).

n21

cbn

cb2

cb1

...

The assembly step requires a storage:

m +
n∑

j=1

cbj
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I cbj is the size of the contribution block

of child j .
I m is the memory size of the frontal

matrix of the parent.
I A (resp. Aj ) is the amount of active

memory needed to process the parent
(resp. child j).

n21

cbn

cb2

cb1

...

A is thus defined by:

A = max(max
j=1,n

(Aj +

j−1∑
k=1

cbk ), m +
n∑

j=1

cbj)
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Impact of the tree traversal

Memory peak

Worst case.

Memory peak

Best case.

Figure: Impact of the tree traversal on the memory behaviour.

→ GOAL: Find the best tree traversal in terms of memory
occupation

A. Guermouche, J.-Y. L’Excellent Memory-minimizing Schedules for Multifrontal Methods 7/ 23



Impact of the tree traversal

Memory peak

Worst case.

Memory peak

Best case.

Figure: Impact of the tree traversal on the memory behaviour.

→ GOAL: Find the best tree traversal in terms of memory
occupation

A. Guermouche, J.-Y. L’Excellent Memory-minimizing Schedules for Multifrontal Methods 7/ 23



Remarks and properties

Liu’s Theorem (Tree pebbling theorem)

The minimum of maxj(xj +
∑j−1

i=1 yj) is obtained when the
sequence (xi , yi ) is sorted in decreasing order of xi − yi ,

Consequence:
An optimal child sequence is obtained by rearranging the
children nodes in decreasing order of Ai − cbi .
Algorithm:

I Bottom-up greedy process.
I Apply Liu’s theorem at each level of the tree.
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Limitation of the Classical scheme

Memory peak

Allocation of the father

Classical approach.

Memory peak
Allocation of the father

Flexible scheme.

→ Decoupling the allocation and the computations can improve
the memory behaviour
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Flexible multifrontal scheme

. . . . . .

S1 S2

1 p+1 np2

I p is the position of the allocation
of the parent.

I S1 is the set of children treated
before the allocation of the
parent.

I S2 is the set of children treated
after the allocation of the parent.

I The memory behaviour inside S1 is similar to the case of
the classical multifrontal scheme.

I Inside S2, the order of the children has no impact on the
memory behaviour.

Aflex = max

max
j=1,p

(Aflex
j +

j−1∑
k=1

cbk ), m +

p∑
k=1

cbk , m + max
j=p+1,n

Aflex
j


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A new memory minimization algorithm

Theorem

An optimal sequence can be obtained by :
I Sorting the children in decreasing order of Aflex

j .
I Trying all the possible positions for the allocation of the

parent and sorting the children belonging to S1 according
to Liu’s Theorem.

I Selecting the configuration that gives the smallest peak.

Algorithm:
Bottom-up greedy process where the theorem is applied at
each level of the tree.
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Proof

Aflex = max

max
j=1,p

(Aflex
j +

j−1∑
k=1

cbk ), m +

p∑
k=1

cbk , m + max
j=p+1,n

Aflex
j


I Inside S2, the order of the children has no impact on the

memory behaviour.
I If ∃j ∈ S1 / Aflex

j ≤ maxi∈S2(A
flex
i ) → j can be moved from S1

to S2 without increasing the peak.

p p pS1 S1 S1S2 S2 S2

Optimal configuration
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Active memory minimization Algorithm

Algorithm:

Set S1 = {1, . . . , n}, S2 = ∅ and p = n;
Find the schedule providing an optimal Aflex value for partition (S1,
S2);
repeat

Find j such that Aflex
j = mink∈S1 Aflex

k ;
Set S1 = S1 \ {j}, S2 = S2 ∪ {j}, and p = p − 1;
Find the schedule providing an optimal A

′flex value for partition
(S1, S2);
if A

′flex ≤ Aflex then
Keep the value of p, and the schedule of children in S1 and S2

corresponding to A
′flex;

Set Aflex = A
′flex;

end if
until p == 1 or A

′flex > Aflex
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Experimental environment

MUMPS: Multifrontal Parallel Solver for both LU and LDLT .
Reordering techniques: AMD, AMF, METIS, PORD.
Test platform: IBM platform at IDRIS.
Test problems: Large range of matrices extracted from various
collections (Rutherford-Boeing, University of Florida or
PARASOL,. . . ).
Schedules tested :

I Classical multifrontal scheme (parent allocated after all its
children).

I Anticipated parent allocation scheme (parent allocated
after its first child).

I Flexible parent allocation scheme (parent allocated at an
arbitrary position).

Simulation of memory variations for all the schedules during the
analysis step.
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Experimental results
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Figure: Active memory ratios.

Large gains against the classical allocation scheme for
matrices 8, 9 and 10.
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Total memory minimization (1/3)

Memory space T flex needed for the processing of a node in the
tree is given by:

P1 = max
(

max
j=1,p

(T flex
j +

j−1∑
k=1

(cbk + Fk )),

m +

p∑
k=1

(cbk + Fk )
)

P2 = max
(

m +

p∑
k=1

Fk + max
j=p+1,n

(T flex
j +

j−1∑
k=p+1

Fk )
)

T flex = max(P1,P2).

The order in S2 has an impact on the memory occupation.
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Total memory minimization (2/3)

S1 S2

Children sequence T flex
i − (cbi + Fi) T flex

i − Fi

Total memory minimizing sequences inside S1 and S2.

Property:

pS1 S2

let j0 ∈ S2 be the child for which
the peak is reached inside S2.
→ The total memory peak
cannot decrease if j0 remains in
S2 for all configurations where
S1 ⊂ S ′1.
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Total memory minimization (3/3)

Algorithm:

Set S1 = ∅, S2 = {1, . . . , n} and p = 0;
Sort S2 according in decreasing order of T flex

j − Fj ;
Compute T flex = P2;
repeat

Find j0 such that the peak in P2 is obtained for j0;
Set S1 = S1 ∪ {j0}, S2 = S2 \ {j0}, and p = p + 1;
(Remark: j0 is inserted at the position in S1 so that the order
inside this set is decreasing in terms of T flex

j − (cbj + Fj).)

Compute P1, P2, and T
′flex = max(P1,P2);

if T
′flex ≤ T flex then

Keep the values of p, S1 and S2 and set T flex = T
′flex;

end if
until p = n or P1 ≥ P2
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Experimental results

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0  5  10  15  20  25  30  35  40  45

M
em

or
y 

R
at

io

Matrix

Flexible allocation scheme
Classical allocation scheme

Early allocation scheme
Active memory flexible scheme

AMD.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0  5  10  15  20  25  30  35  40  45

M
em

or
y 

R
at

io

Matrix

Flexible allocation scheme
Classical allocation scheme

Early allocation scheme
Active memory flexible scheme

METIS.

Figure: Total memory ratios.

A. Guermouche, J.-Y. L’Excellent Memory-minimizing Schedules for Multifrontal Methods 22/ 23



Conclusion and Future work

I Flexible multifrontal scheme and corresponding memory
minimization algorithms proposed.

I Active memory and total memory cases considered.
I In-place assembly of the last contribution block also

considered.

Future work:
I Real-life implementation (modification of the factorization).
I Pivoting management (how to deal with pivoting).
I Extension to the parallel case:

I Add fictive nodes to assemble the distributed contribution
blocks?

I Preallocate parent nodes?
I Out-of-core context:

I Design I/O volume minimization algorithms using the
flexible multifrontal scheme (find a trade-off between the
size of memory and the I/O volume).
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