
SYNPLEX
A task-parallel scheme for the revised simplex method

(Part 2)

Julian Hall

School of Mathematics

University of Edinburgh

June 23rd 2005

SYNPLEX, a task-parallel scheme for the revised simplex method



SYNPLEX

• Synchronous variant of PARSMI



SYNPLEX

• Synchronous variant of PARSMI

• INVERT not overlapped with basis changes ⇒ numerical stability



SYNPLEX

• Synchronous variant of PARSMI

• INVERT not overlapped with basis changes ⇒ numerical stability

• CHUZC uses up-to-date reduced costs ⇒ better candidate persistence



SYNPLEX

• Synchronous variant of PARSMI

• INVERT not overlapped with basis changes ⇒ numerical stability

• CHUZC uses up-to-date reduced costs ⇒ better candidate persistence

• Target platform: shared memory Sun Fire E15k (OpenMP)



SYNPLEX

• Synchronous variant of PARSMI

• INVERT not overlapped with basis changes ⇒ numerical stability

• CHUZC uses up-to-date reduced costs ⇒ better candidate persistence

• Target platform: shared memory Sun Fire E15k (OpenMP)

P P P P F InvP P P

F Inv

PB InvB InvF InvF Inv3

F Inv

F Inv F InvPPPPPPPPB InvB InvF InvF Inv4

F Inv

F Inv

PPPPPPPB InvB InvF InvF Inv1

INVERTF Inv0

P

PPPPPPPPB InvB InvF InvF Inv2

F InvF Inv

SYNPLEX, a task-parallel scheme for the revised simplex method 1



Data parallelism

When using 1 + p processors

• Rows distributed over p processors



Data parallelism

When using 1 + p processors

• Rows distributed over p processors for data parallel

◦ FTRAN for UPDATE etas

◦ CHUZR

◦ UPDATE tableau in minor iterations

◦ UPDATE RHS



Data parallelism

When using 1 + p processors

• Rows distributed over p processors for data parallel

◦ FTRAN for UPDATE etas

◦ CHUZR

◦ UPDATE tableau in minor iterations

◦ UPDATE RHS

• Columns distributed over p processors



Data parallelism

When using 1 + p processors

• Rows distributed over p processors for data parallel

◦ FTRAN for UPDATE etas

◦ CHUZR

◦ UPDATE tableau in minor iterations

◦ UPDATE RHS

• Columns distributed over p processors for data parallel

◦ PRICE

◦ CHUZC

SYNPLEX, a task-parallel scheme for the revised simplex method 2



Data location challenge

• B0 factored serially on one processor



Data location challenge

• B0 factored serially on one processor

• Factors used serially on all processors to solve linear systems



Data location challenge

• B0 factored serially on one processor

• Factors used serially on all processors to solve linear systems

• Each solution used for data parallel operations over all processors

SYNPLEX, a task-parallel scheme for the revised simplex method 3



Practical implementation

• Use a task manager processor



Practical implementation

• Use a task manager processor

◦ Task parallel operations allocated according to processor activity

◦ Enables different computational components to overlap



Practical implementation

• Use a task manager processor

◦ Task parallel operations allocated according to processor activity

◦ Enables different computational components to overlap

• Prevent different processors from writing to consecutive components



Practical implementation

• Use a task manager processor

◦ Task parallel operations allocated according to processor activity

◦ Enables different computational components to overlap

• Prevent different processors from writing to consecutive components

◦ Insert “padding” between row partitions: implemented



Practical implementation

• Use a task manager processor

◦ Task parallel operations allocated according to processor activity

◦ Enables different computational components to overlap

• Prevent different processors from writing to consecutive components

◦ Insert “padding” between row partitions: implemented

◦ Insert “padding” between column partitions: not yet implemented

SYNPLEX, a task-parallel scheme for the revised simplex method 4



Results

1 Processor Speed-up

Model Rows Columns CPU (s) 4 processors 8 processors

cre-a 3517 4067 5.76 1.16 1.83

25fv47 822 1571 8.78 1.54 1.99

greenbea 2393 5405 29.22 - 2.30

ken-11 14695 21349 41.26 1.40 2.52

stocfor3 16676 15695 98.44 1.50 2.76

pds-06 9882 28655 138.84 1.58 3.05

SYNPLEX, a task-parallel scheme for the revised simplex method 5



Poor performance: cre-a

Least speed-up (1.83) on 8 processors

0

1

2

3

4

5

6

7

3.84800 3.85000 3.85200 3.85400 3.85600 3.85800



Poor performance: cre-a

Least speed-up (1.83) on 8 processors

0

1

2

3

4

5

6

7

3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 3.29 -



Poor performance: cre-a

Least speed-up (1.83) on 8 processors

0

1

2

3

4

5

6

7

3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 3.29 -

Inv-BTRAN 2.11 -



Poor performance: cre-a

Least speed-up (1.83) on 8 processors

0

1

2

3

4

5

6

7

3.84800 3.85000 3.85200 3.85400 3.85600 3.85800

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 3.29 -

Inv-BTRAN 2.11 -

PRICE 2.94 2.04

SYNPLEX, a task-parallel scheme for the revised simplex method 6



Fair performance: pds-06

Best speed-up (3.05) on 8 processors

0

1

2

3

4

5

6

7

46.64000 46.64800 46.65600 46.66400 46.67200 46.68000



Fair performance: pds-06

Best speed-up (3.05) on 8 processors

0

1

2

3

4

5

6

7

46.64000 46.64800 46.65600 46.66400 46.67200 46.68000

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 2.02 -



Fair performance: pds-06

Best speed-up (3.05) on 8 processors

0

1

2

3

4

5

6

7

46.64000 46.64800 46.65600 46.66400 46.67200 46.68000

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 2.02 -

Inv-BTRAN 1.79 -



Fair performance: pds-06

Best speed-up (3.05) on 8 processors

0

1

2

3

4

5

6

7

46.64000 46.64800 46.65600 46.66400 46.67200 46.68000

Operation Slow-down in total time Overall speed-up

Inv-FTRAN 2.02 -

Inv-BTRAN 1.79 -

PRICE 1.69 3.55

SYNPLEX, a task-parallel scheme for the revised simplex method 7



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial

• Serial INVERT limits scalability



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial

• Serial INVERT limits scalability

SYNPLEX refinements:

• Parallel INVERT

◦ Should allow larger problems to be solved than serial revised simplex solvers

◦ Impressive results from parallel direct methods for linear systems give hope



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial

• Serial INVERT limits scalability

SYNPLEX refinements:

• Parallel INVERT

◦ Should allow larger problems to be solved than serial revised simplex solvers

◦ Impressive results from parallel direct methods for linear systems give hope

Future prospects:

• Pure data parallel revised simplex without multiple pricing

SYNPLEX, a task-parallel scheme for the revised simplex method 8



Bibliography

Paper: http://www.maths.ed.ac.uk/hall/ParSimplex
This talk: http://www.maths.ed.ac.uk/hall/CSC05

SYNPLEX, a task-parallel scheme for the revised simplex method 9



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial

• Serial INVERT limits scalability



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial

• Serial INVERT limits scalability

SYNPLEX refinements:

• Parallel INVERT

◦ Should allow larger problems to be solved than serial revised simplex solvers

◦ Impressive results from parallel direct methods for linear systems give hope



Conclusions

SYNPLEX limitations:

• Algorithmic limitations of revised simplex with multiple pricing

◦ Wasted FTRANs

◦ Increased number of iterations

• Inevitable(?) data management limitations

◦ Some operations are significantly slower in parallel than in serial

• Serial INVERT limits scalability

SYNPLEX refinements:

• Parallel INVERT

◦ Should allow larger problems to be solved than serial revised simplex solvers

◦ Impressive results from parallel direct methods for linear systems give hope

Future prospects:

• Pure data parallel revised simplex without multiple pricing

SYNPLEX, a task-parallel scheme for the revised simplex method 10



Bibliography

Paper: http://www.maths.ed.ac.uk/hall/ParSimplex
This talk: http://www.maths.ed.ac.uk/hall/CSC05

SYNPLEX, a task-parallel scheme for the revised simplex method 11


