Efficient Monte Carlo computation of Fisher information matrix using prior information

Sonjoy Das, ub James C. Spall, Apl/JHu Roger Ghanem, usc

SIAM Conference on Data Mining
Anaheim, California, USA
April 26-28, 2012

Outline

(1) Introduction and Motivation

- General discussion of Fisher information matrix
- Current resampling algorithm - No use of prior information

Contribution/Results of the Proposed Work
 - Improved resampling algorithm - using prior information - Theoretical basis
 - Numerical Illustrations

Outline

(1) Introduction and Motivation

- General discussion of Fisher information matrix
- Current resampling algorithm - No use of prior information
(2) Contribution/Results of the Proposed Work
- Improved resampling algorithm - using prior information
- Theoretical basis
- Numerical Illustrations

Outline

(1) Introduction and Motivation

- General discussion of Fisher information matrix
- Current resampling algorithm - No use of prior information

Contribution/Results of the Proposed Work

- Improved resampling algorithm - using prior information
- Theoretical basis
- Numerical Illustrations

Significance of Fisher Information Matrix

- Fundamental role of data analysis is to extract information from data
- Parameter estimation for models is central to process of extracting information
- The Fisher information matrix plays a central role in parameter estimation for measuring information:

Information matrix summarizes amount of information in data relative to parameters being estimated

Problem Setting

- Consider classical problem of estimating parameter vector, $\boldsymbol{\theta}$, from n data vectors, $\mathbf{Z}_{n} \equiv\left\{\mathcal{Z}_{1}, \cdots, \mathcal{Z}_{n}\right\}$
- Suppose have a probability density or mass function (PDF or PMF) associated with the data
- The parameter, $\boldsymbol{\theta}$, appears in the PDF or PMF and affect the nature of the distribution
- Example: $\mathcal{Z}_{i} \sim N(\boldsymbol{\mu}(\boldsymbol{\theta}), \boldsymbol{\Sigma}(\theta))$, for all i
- Let $\ell\left(\boldsymbol{\theta} \mid \mathbf{Z}_{n}\right)$ represents the likelihood function, i.e., $\ell(\cdot)$ is the PDF or PMF viewed as a function of $\boldsymbol{\theta}$ conditioned on the data

Selected Applications

Information matrix is measure of performance for several applications. Five uses are:
(1) Confidence regions for parameter estimation

- Uses asymptotic normality and/or Cramér-Rao inequality
(2) Prediction bounds for mathematical models
(3) Basis for " D-optimal" criterion for experimental design
- Information matrix serves as measure of how well $\boldsymbol{\theta}$ can be estimated for a given set of inputs
(9) Basis for "noninformative prior" in Bayesian analysis
- Sometimes used for "objective" Bayesian inference
(3) Model selection
- Is model A "better" than model B?

Information Matrix

- Recall likelihood function, $\ell\left(\boldsymbol{\theta} \mid \mathbf{Z}_{n}\right)$ and the log-likelihood function by $L\left(\boldsymbol{\theta} \mid \mathbf{Z}_{n}\right) \equiv \ln \ell\left(\boldsymbol{\theta} \mid \mathbf{Z}_{n}\right)$
- Information matrix defined as

$$
\mathbf{F}_{n}(\boldsymbol{\theta}) \equiv E\left[\left.\frac{\partial L}{\partial \boldsymbol{\theta}} \cdot \frac{\partial L}{\partial \boldsymbol{\theta}^{T}} \right\rvert\, \boldsymbol{\theta}\right]
$$

where expectation is w.r.t. the measure of \mathbf{Z}_{n}

- If Hessian matrix exists, equivalent form based on Hessian matrix:

$$
\mathbf{F}_{n}(\boldsymbol{\theta})=-E\left[\left.\frac{\partial^{2} L}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} \right\rvert\, \boldsymbol{\theta}\right]
$$

- $F_{n}(\boldsymbol{\theta})$ is positive semidefinite of dimension $p \times p$, $p=\operatorname{dim}(\theta)$

Two Famous Results
Connection of $\mathbf{F}_{n}(\boldsymbol{\theta})$ and uncertainty in estimate, $\hat{\boldsymbol{\theta}}_{n}$, is rigorously specified via following results ($\boldsymbol{\theta}^{*}=$ true value of $\theta)$:
(1) Asymptotic normality:

$$
\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}^{*}\right) \xrightarrow{\text { dist }} N_{p}\left(\mathbf{0}, \overline{\mathbf{F}}^{-1}\right)
$$

where $\overline{\mathbf{F}} \equiv \lim _{n \rightarrow \infty} \mathbf{F}_{n}\left(\boldsymbol{\theta}^{*}\right) / n$
(2) Cramér-Rao inequality:

$$
\left.\operatorname{cov}\left(\hat{\boldsymbol{\theta}}_{n}\right) \geq \mathbf{F}_{n}\left(\boldsymbol{\theta}^{*}\right)^{-1}, \quad \text { for all } n \text { (unbiased } \hat{\boldsymbol{\theta}}_{n}\right)
$$

Above two results indicate: greater variability in $\hat{\boldsymbol{\theta}}_{n} \Longrightarrow$ "smaller" $\mathrm{F}_{n}(\boldsymbol{\theta})$ (and vice versa)

Outline

(1) Introduction and Motivation

- General discussion of Fisher information matrix
- Current resampling algorithm - No use of prior information

Contribution/Results of the Proposed Work

- Improved resampling algorithm - using prior information
- Theoretical basis
- Numerical Illustrations

Monte Carlo Computation of Information Matrix

- Analytical formula for $F_{n}(\boldsymbol{\theta})$ requires first or second derivative and expectation calculation
- Often impossible or very difficult to compute in practical applications
- Involves expected value of highly nonlinear (possibly unknown) functions of data
- Schematic next summarizes "easy" Monte Carlo-based method for determining $\mathrm{F}_{n}(\boldsymbol{\theta})$
- Uses averages of very efficient (simultaneous perturbation) Hessian estimates
- Hessian estimates evaluated at artificial (pseudo) data
- Computational horsepower instead of analytical analysis

Monte Carlo Computation of Information Matrix

- Analytical formula for $F_{n}(\boldsymbol{\theta})$ requires first or second derivative and expectation calculation
- Often impossible or very difficult to compute in practical applications
- Involves expected value of highly nonlinear (possibly unknown) functions of data
- Schematic next summarizes "easy" Monte Carlo-based method for determining $\mathbf{F}_{n}(\boldsymbol{\theta})$
- Uses averages of very efficient (simultaneous perturbation) Hessian estimates
- Hessian estimates evaluated at artificial (pseudo) data
- Computational horsepower instead of analytical analysis

Schematic of Monte Carlo Method for Estimating Information Matrix

FIM estimate,

Supplement: Simultaneous Perturbation (SP) Hessian and Gradient Estimate

$$
\begin{aligned}
& \begin{aligned}
\hat{\mathbf{H}}_{k}^{(i)}= & \frac{1}{2}\left\{\frac{\delta \mathbf{G}_{k}^{(i)}}{2 c}\left[\Delta_{k 1}^{-1}, \cdots, \Delta_{k p}^{-1}\right]\right. \\
& \left.+\left(\frac{\delta \mathbf{G}_{k}^{(i)}}{2 c}\left[\Delta_{k 1}^{-1}, \cdots, \Delta_{k p}^{-1}\right]\right)^{T}\right\}
\end{aligned} \\
& \text { where } \\
& \delta \mathbf{G}_{k}^{(i)} \equiv \mathbf{G}\left(\boldsymbol{\theta}+c \boldsymbol{\Delta}_{k} \mid \mathbf{Z}_{\text {pseudo }}(i)\right) \\
& -\mathbf{G}\left(\boldsymbol{\theta}-c \boldsymbol{\Delta}_{k} \mid \mathbf{Z}_{\text {pseudo }}(i)\right) \\
& \mathbf{G}\left(\boldsymbol{\theta} \pm c \boldsymbol{\Delta}_{k} \mid \mathbf{Z}_{\text {pseudo }}(i)\right) \\
& =\frac{\partial L\left(\boldsymbol{\theta} \pm c \boldsymbol{\Delta}_{k} \mid \mathbf{Z}_{\text {pseudo }}(i)\right)}{\partial \boldsymbol{\theta}} \\
& \text { OR } \\
& =(1 / \tilde{c})\left[L\left(\boldsymbol{\theta}+\tilde{c} \tilde{\boldsymbol{\Delta}}_{k} \pm c \boldsymbol{\Delta}_{k} \mid \mathbf{Z}_{\text {pseudo }}(i)\right)\right. \\
& \left.-L\left(\boldsymbol{\theta} \pm c \boldsymbol{\Delta}_{k} \mid \mathbf{Z}_{\text {pseudo }}(i)\right)\right]\left[\begin{array}{c}
\tilde{\Delta}_{k 1}^{-1} \\
\vdots \\
\tilde{\Delta}_{k p}^{-1}
\end{array}\right]
\end{aligned}
$$

Supplement: Simultaneous Perturbation (SP) Hessian and Gradient Estimate

$$
\begin{aligned}
& \begin{aligned}
\hat{\mathbf{H}}_{k}^{(i)}= & \frac{1}{2}\left\{\frac{\delta \mathbf{G}_{k}^{(i)}}{2 c}\left[\Delta_{k 1}^{-1}, \cdots, \Delta_{k p}^{-1}\right]\right. \\
& \left.+\left(\frac{\delta \mathbf{G}_{k}^{(i)}}{2 c}\left[\Delta_{k 1}^{-1}, \cdots, \Delta_{k p}^{-1}\right]\right)^{\top}\right\}
\end{aligned} \\
& \text { where } \\
& \delta \mathbf{G}_{k}^{(i)} \equiv \mathbf{G}\left(\boldsymbol{\theta}+c \boldsymbol{\Delta}_{k} \mid \mathbf{Z}_{\text {pseudo }}(i)\right) \\
& -\mathbf{G}\left(\boldsymbol{\theta}-c \boldsymbol{\Delta}_{k} \mid \mathbf{Z}_{\text {pseudo }}(i)\right) \\
& \mathbf{G}\left(\boldsymbol{\theta} \pm c \boldsymbol{\Delta}_{k} \mid \mathbf{Z}_{\text {pseudo }}(i)\right) \\
& =\frac{\partial L\left(\boldsymbol{\theta} \pm c \boldsymbol{\Delta}_{k} \mid \mathbf{Z}_{\text {pseudo }}(i)\right)}{\partial \boldsymbol{\theta}} \\
& \text { OR } \\
& =(1 / \tilde{c})\left[L\left(\boldsymbol{\theta}+\tilde{c} \tilde{\boldsymbol{\Delta}}_{k} \pm c \boldsymbol{\Delta}_{k} \mid \mathbf{Z}_{\text {pseudo }}(i)\right)\right. \\
& \left.-L\left(\boldsymbol{\theta} \pm c \boldsymbol{\Delta}_{k} \mid \mathbf{Z}_{\text {pseudo }}(i)\right)\right]\left[\begin{array}{c}
\tilde{\Delta}_{k 1}^{-1} \\
\vdots \\
\tilde{\Delta}_{k p}^{-1}
\end{array}\right]
\end{aligned}
$$

- $\Delta_{k}=\left[\Delta_{k 1}, \cdots, \Delta_{k p}\right]^{T}$ and $\Delta_{k 1}, \cdots, \Delta_{k p}$, mean-zero and statistically independent r.v.s with finite inverse moments
- $\tilde{\Delta}_{k}$ has same statistical properties as $\boldsymbol{\Delta}_{k}$
- $\tilde{c}>c>0$ are "small' numbers

Supplement: Optimal Implementation

Several implementation questions/answers:
Q. How to compute (cheap) Hessian estimates?
A. Use simultaneous perturbation (SP) based method (Spall, 2000, IEEE Trans. Auto. Control)
Q. How to allocate per-realization (M) and across-realization (N) averaging?
A. $M=1$ is the optimal solution for a fixed total number of Hessian estimates. However, $M>1$ is useful when accounting for cost of generating pseudo data
Q. Can correlation be introduced to improve overall accuracy of $\overline{\mathbf{F}}_{M, N}(\boldsymbol{\theta})$?
A. Yes, antithetic random numbers can reduce variance of elements in $\overline{\mathbf{F}}_{M, N}(\boldsymbol{\theta})$ (Spall, 2005, JCGS)

Fisher information matrix with analytically known elements

(Das, Ghanem, Spall, 2008, SISC)

(Navigation application at APL)

The previous resampling approach (Spall, 2005, JCGS) yields the "full" Fisher information matrix without considering the available prior information

Outline

(1)

Introduction and Motivation

- General discussion of Fisher information matrix
- Current resampling algorithm - No use of prior information
(2) Contribution/Results of the Proposed Work
- Improved resampling algorithm - using prior information
- Theoretical basis
- Numerical Illustrations

Schematic of the Proposed Resampling Algorithm

For $M=1$; however, can be readily extended to the case when $M>1$

Schematic of the Proposed Resampling Algorithm

For $M=1$; however, can be readily extended to the case when $M>1$

Outline

(1)

Introduction and Motivation

- General discussion of Fisher information matrix
- Current resampling algorithm - No use of prior information
(2) Contribution/Results of the Proposed Work
- Improved resampling algorithm - using prior information
- Theoretical basis
- Numerical Illustrations

Supplement: Improvement in terms of Variance Reduction

Case 1: Log-likelihood based

$$
\begin{aligned}
& \operatorname{var}\left[\hat{H}_{l i}^{(L)} \mid \boldsymbol{\theta}\right]-\operatorname{var}\left[\tilde{H}_{i j}^{(L)} \boldsymbol{\theta}\right] \\
& \approx \sum_{l} \sum_{m \in \mathbb{I}_{I}} a_{l m}(i, i)\left(F_{l m}(\boldsymbol{\theta})\right)^{2} \\
& >0, \quad i \in \mathbb{I}_{i}^{c}
\end{aligned}
$$

where

$$
a_{l m}(i, j)=E\left[\Delta_{m}^{2} / \Delta_{j}^{2}\right] E\left[\tilde{\Delta}_{l}^{2} / \tilde{\Delta}_{i}^{2}\right]>0
$$

Case 2: Gradient based

$$
\begin{aligned}
& \operatorname{var}\left[\hat{H}_{i i}^{(\mathbf{g})} \mid \boldsymbol{\theta}\right]-\operatorname{var}\left[\tilde{H}_{i i}^{(\mathbf{g})} \mid \boldsymbol{\theta}\right] \\
& \approx \sum_{l \in \mathbb{I}_{i}} b_{l}(i)\left(F_{i l}(\boldsymbol{\theta})\right)^{2} \\
& >0, \quad i \in \mathbb{I}_{i}^{c}
\end{aligned}
$$

where $b_{l}(j)=E\left[\Delta_{l}^{2} / \Delta_{j}^{2}\right]>0$

- For (i, j)-th element an additional covariance terms needed to be considered and it can still be shown that $\operatorname{var}\left[\tilde{H}_{i j} \mid \boldsymbol{\theta}\right]<\operatorname{var}\left[\hat{H}_{i j} \mid \boldsymbol{\theta}\right]$ (see the paper)
- $\Longrightarrow \operatorname{var}\left[\tilde{F}_{i j} \mid \theta\right]<\operatorname{var}\left[\hat{F}_{i j} \mid \boldsymbol{\theta}\right]$
- Also, $E\left[\tilde{H}_{i j} \mid \theta\right]=E\left[\hat{H}_{i j} \mid \theta\right]$, for all $j \in \mathbb{I}_{i}^{c}$, for both cases

Basic Ideas for Proofs/Implementation

- Per current resampling algorithm, the (i, j)-th element is given by,

$$
\begin{aligned}
\hat{H}_{i j} & \left.\approx \sum_{\text {unknown }+ \text { known }} \omega_{l m} H_{l m}, \quad \text { (weighted sum of unknown elements of } \mathbf{H}_{k}\right) \\
\Rightarrow \operatorname{var}\left(\hat{H}_{i j}\right) & \approx \underset{\text { unknown }+ \text { known }}{E\left[\left(\sum_{l m} H_{l m}\right)^{2}\right]-\left(F_{i j}(\boldsymbol{\theta})\right)^{2}, \quad \text { since } E\left[\hat{H}_{i j} \mid \boldsymbol{\theta}\right] \approx-F_{i j}(\boldsymbol{\theta})}
\end{aligned}
$$

- Per modified resampling algorithm,

- The new estimate, therefore, is given by,

Basic Ideas for Proofs/Implementation

- Per current resampling algorithm, the (i, j)-th element is given by,

$$
\begin{aligned}
\hat{H}_{i j} & \left.\approx \sum_{\text {unknown }+ \text { known }} \omega_{l m} H_{l m}, \quad \text { (weighted sum of unknown elements of } \mathbf{H}_{k}\right) \\
\Rightarrow \operatorname{var}\left(\hat{H}_{i j}\right) & \approx \sum_{\text {unknown }+ \text { known }}\left[\left(\sum_{l m} H_{l m}\right)^{2}\right]-\left(F_{i j}(\boldsymbol{\theta})\right)^{2}, \quad \text { since } E\left[\hat{H}_{i j} \mid \boldsymbol{\theta}\right] \approx-F_{i j}(\boldsymbol{\theta})
\end{aligned}
$$

- Per modified resampling algorithm,

$$
\begin{aligned}
& \hat{H}_{i j} \approx \sum \omega_{l m} \psi_{l m}+\text { parts corresponding to unknown elements of } \mathbf{F}_{n}(\boldsymbol{\theta}) \\
& H_{l m}=-F_{l m}+e_{l m}, \quad e_{l m} \equiv \text { mean-zero error terms }
\end{aligned}
$$

- The new estimate, therefore, is given by,

$$
\begin{aligned}
\tilde{H}_{i j} \equiv\left[\hat{H}_{i j}-\sum_{\text {known }} \omega_{l m}\left(-F_{l m}\right)\right] & \approx \sum_{\text {unknown }} \omega_{l m} H_{l m}+\sum_{\text {known }} \omega_{l m} e_{l m} \\
\Rightarrow \operatorname{var}\left(\tilde{H}_{i j}\right) & \approx E\left[\left(\sum_{\text {unknown }} \omega_{l m} H_{l m}+\sum_{\text {known }} \omega_{l m} e_{l m}\right)^{2}\right]-\left(F_{i j}(\boldsymbol{\theta})\right)^{2}
\end{aligned}
$$

- Since $E\left[e_{l m}^{2}\right] \equiv \operatorname{var}\left(H_{l m}\right)<E\left[H_{l m}^{2}\right] \Rightarrow \operatorname{var}\left(\tilde{H}_{i j}\right)<\operatorname{var}\left(\hat{H}_{i j}\right)$

Basic Ideas for Proofs/Implementation

- Per current resampling algorithm, the (i, j)-th element is given by,

$$
\begin{aligned}
\hat{H}_{i j} & \left.\approx \sum_{\text {unknown }+ \text { known }} \omega_{l m} H_{l m}, \quad \text { (weighted sum of unknown elements of } \mathbf{H}_{k}\right) \\
\Rightarrow \operatorname{var}\left(\hat{H}_{i j}\right) & \approx \sum_{\text {unknown }+ \text { known }}^{E}\left[\left(\sum_{l m} \omega_{l} H^{2}\right]-\left(F_{i j}(\boldsymbol{\theta})\right)^{2}, \quad \text { since } E\left[\hat{H}_{i j} \mid \boldsymbol{\theta}\right] \approx-F_{i j}(\boldsymbol{\theta})\right.
\end{aligned}
$$

- Per modified resampling algorithm,

$$
\begin{aligned}
& \hat{H}_{i j} \approx \sum \omega_{l m} \psi_{l m}+\text { parts corresponding to unknown elements of } \mathbf{F}_{n}(\boldsymbol{\theta}) \\
& H_{l m}=-F_{l m}+e_{l m}, \quad e_{l m} \equiv \text { mean-zero error terms }
\end{aligned}
$$

- The new estimate, therefore, is given by,

$$
\begin{aligned}
\tilde{H}_{i j} \equiv\left[\hat{H}_{i j}-\sum_{\text {known }} \omega_{l m}\left(-F_{l m}\right)\right] & \approx \sum_{\text {unknown }} \omega_{l m} H_{l m}+\sum_{\text {known }} \omega_{l m} e_{l m} \\
\Rightarrow \operatorname{var}\left(\tilde{H}_{i j}\right) & \approx E\left[\left(\sum_{\text {unknown }} \omega_{l m} H_{l m}+\sum_{\text {known }} \omega_{l m} e_{l m}\right)^{2}\right]-\left(F_{i j}(\theta)\right)^{2}
\end{aligned}
$$

- Since $E\left[e_{l m}^{2}\right] \equiv \operatorname{var}\left(H_{l m}\right)<E\left[H_{l m}^{2}\right] \Rightarrow \operatorname{var}\left(\tilde{H}_{i j}\right)<\operatorname{var}\left(\hat{H}_{i j}\right)$
$\bullet \Longrightarrow \operatorname{var}\left[\tilde{F}_{i j} \mid \boldsymbol{\theta}\right]<\operatorname{var}\left[\hat{F}_{i j} \mid \boldsymbol{\theta}\right]$

Outline

。

Introduction and Motivation

- General discussion of Fisher information matrix
- Current resampling algorithm - No use of prior information
(2) Contribution/Results of the Proposed Work
- Improved resampling algorithm - using prior information
- Theoretical basis
- Numerical Illustrations

Problem Description

- Consider independently distributed scalar-valued random data $\mathbf{z}_{i} \sim N\left(\mu, \sigma^{2}+c_{i} \alpha\right)$, $\forall i, n=30$
- A problem with known information matrix
- Useful for comparing simulation results with known analytical results
- $\boldsymbol{\theta}=\left[\mu, \sigma^{2}, \alpha\right]^{T}$ and assume $\mu=0, \sigma^{2}=1$ and $\alpha=1$ for the purpose of illustration
- $0<c_{i}<1$ assumed known (non-identical across i)
- $p=\operatorname{dim}(\theta)=3$
$\Longrightarrow 3(3+1) / 2=6$ unique elements in $F_{n}(\boldsymbol{\theta})$
- Assume that only the upper-left 2×2 block of $F_{n}(\boldsymbol{\theta})$ known a priori
- The analytical Fisher information matrix in practical applications is not known (unlike this example) or partially known

Results

Analytical FIM

$$
\mathbf{F}_{n}(\boldsymbol{\theta})=\left[\begin{array}{ccc}
F_{11} & 0 & 0 \\
0 & F_{22} & F_{23} \\
0 & F_{23} & F_{33}
\end{array}\right]
$$

For illustration,

	Error in FIM estimates		MSE
	$\operatorname{relMSE}\left(\hat{\mathbf{F}}_{n}\right)$	$\operatorname{relMSE}\left(\tilde{\mathbf{F}}_{n}\right)$	(variance)
	$\left[\operatorname{MSE}\left(\hat{\mathbf{F}}_{n}\right)\right]$	$\left[\operatorname{MSE}\left(\tilde{\mathbf{F}}_{n}\right)\right]$	reduction
L-based	0.00135%	0.00011%	91.5%
	$[0.0071]$	$[0.0006]$	(93.4%)
g-based	0.0533%	0.0198%	81.0%
	$[0.0020]$	$[0.0004]$	(93.5%)

$\mathbf{F}_{n}^{\text {given }}(\boldsymbol{\theta})=\left[\begin{array}{ccc}F_{11} & 0 & ? \\ 0 & F_{22} & ? \\ ? & ? & ?\end{array}\right]$,
MSE and MSE reduction of estimates for $F_{n}(\theta)$,

$$
N=5 \times 10^{5}, c=0.0001, \tilde{c}=0.00011
$$

$$
\Delta_{k i}, \tilde{\Delta}_{k i} \sim \text { Bernoulli } \pm 1
$$

Concluding Remarks

－Fisher information matrix is a central quantity in data analysis and parameter estimation
－Direct computation of information matrix in general nonlinear problems usually impossible
－Monte Carlo approach usually preferred
 previous estimator 吾 $\equiv \mid \equiv \frown$ 〇く

Concluding Remarks

- Fisher information matrix is a central quantity in data analysis and parameter estimation
- Direct computation of information matrix in general nonlinear problems usually impossible
- Monte Carlo approach usually preferred
- A modification of the previous Monte Carlo based resampling algorithm is proposed to enhance the statistical characteristics of the estimator of $\mathbf{F}_{n}(\boldsymbol{\theta})$
- Particularly useful in those cases where some elements of $F_{n}(\theta)$ are analytically known from prior information
- Numerical illustrations show considerable improvement of the new estimator (in the sense of mean-squared error reduction as well as variance reduction) over the previous estimator

Appendix

For Further Reading

S. Das, "Efficient calculation of Fisher information matrix: Monte Carlo approach using prior information," Master's thesis, Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, Maryland, USA, May 2007, http://dspace.library.jhu.edu/handle/1774.2/32459.

R
J. C. Spall, "Monte carlo computation of the Fisher information matrix in nonstandard settings," J. Comput. Graph. Statist., vol. 14, no. 4, pp. 889-909, 2005.
R. Das, J. C. Spall, and R. Ghanem, "Efficient Monte Carlo computation of Fisher information matrix using prior information," Computational Statistics and Data Analysis, Volume 54, No. 2, pp. 272-289, 2010.

