

Probabilistic Models of Past Climate Change

Julien Emile-Geay

USC College, Department of Earth Sciences

SIAM International Conference on Data Mining Anaheim, California April 27, 2012

Probabilistic Models of Past Climate Change

Julien Emile-Geay (USC)

with: Dominique Guillot (USC) Bala Rajaratnam (Stanford) Tapio Schneider (CalTech)

acknowledgements: Jianghao Wang (USC)

Outline:

- 1. Mathematical Problem
- 2. Gaussian Graphical Models
- 3. Some results
- 4. Error estimates

MATE

ICS

0

Sn

Reconstructing Past Climates

Why paleoclimatology?

- Is it warmer now than in AD 1000? ("Hockey Stick" problem)
- \sim Is the rate of warming anomalous?
- What are the spatiotemporal characteristics of natural climate variability?
- ← How (un)certain is all this?

Statistical challenges

- Short training set (calibration)
- \sim Very high-dimensional (p > n)
- \sim Noisy, autocorrelated predictors
- No straightforward spatial model

Mann et al., PNAS, 2008

Julien Emile-Geay

High-resolution paleoclimate proxies

Tree Rings

Ice cores

Julien Emile-Geay

Sediment cores

High-precision dating

A Annual ice layers

B Annual sediment varves

CLIMATE DYNAMICS 0 C 5 0

°0,0

Climate Field Reconstruction

nstrumental

% A missing data problem

- backcast T from proxy observations
- \sim multivariate inference

% A high-dimensional problem

- ← e.g. *Mann et al* [2008] database
- $\sim p = p_i + p_p = 1732 + 1138 \gg n = 150$

% Covariance matrix

- captures relationship between temperature and proxies
- sample covariance matrix is rank-deficient
- estimation is impossible from the sample covariance matrix: it must be <u>regularized</u>

Regularized Covariance Estimation

(1) Maximum Likelihood Estimation using L_2 -penalized likelihood and Expectation-Maximization [Dempster, Laird and Rubin, 1977]

$$L_2(\Sigma, h) = \frac{n}{2} \operatorname{tr}(\Sigma^{-1}S) - \frac{n}{2} |\Sigma^{-1}| + h \sum_{i < j} ||\sigma^{ij}||_2^2$$

(2) Regularized Solution:

$$\hat{\Sigma}_{aa} = \mathbf{V} \mathbf{\Lambda}^2 \mathbf{V}^{\mathrm{T}} \quad \mathbf{F} \equiv \mathbf{\Lambda}^{\dagger} \mathbf{V}^{\mathrm{T}} \hat{\Sigma}_{am}$$
 (Fourier coefficients)

Tikhonov Regularization ("Ridge regression")

$$\mathbf{B} = \mathbf{V}\operatorname{Diag}(f_j) \mathbf{\Lambda}^{\dagger} \mathbf{F}$$

with *f_j* the filter factors

$$f_j = \lambda_j^2 / (\lambda_j^2 + h^2)$$

Explicit Spatial Modeling e.g. "kriging"

$$C_{ij} = f(d_{i-j})$$

Column C Direction: 30.0 Tolerance: 30.0

Limitations:

- isotropic
- rigid
- subjective

Graphical models: spatial modeling

Land/Ocean boundaries

Mountain ranges

Teleconnections / climate patterns

Marginal vs Conditional Independence

Marginal independence: $X_i \perp \!\!\!\perp X_j \Leftrightarrow \Sigma_{ij} = 0$ Conditional independence: $X_i \perp \!\!\!\perp X_j | \{\text{rest of variables}\} \Leftrightarrow \Omega_{ij} = 0$. Example:

	(40.5423	0	0.0048	5.6675	-39.2268	-5.6599	١
	0	2.0969	1.5166	0	0	0	
0 —	0.0048	1.5166	2.0969	0	0	0	
77 —	5.6675	0	0	39.7654	0	-39.2357	
	-39.2268	0	0	0	39.7300	0	
	(-5.6599)	0	0	-39.2357	0	39.7177	/
	/ 1.0000	0.0035	-0.004	48 - 0.0759	0.9873	0.0676	
	0.0035	1.0000	-0.723	-0.0003	0.0034	0.0002	
$\Sigma =$	-0.0048	-0.7233	1.000	0 0.0004	-0.0047	-0.0003	
	-0.0759	-0.0003	0.0004	4 1.0000	-0.0749	0.9771	
	0.9873	0.0034	-0.004	47 - 0.0749	1.0000	0.0667	
	\ 0.0676	0.0002	-0.000	0.9771	0.0667	1.0000	

00

Discovering conditional independence relations

Exploiting conditional independence relations:

- Conditional independence relations are inherent to climate fields:
- Knowledge of such relations \Rightarrow zeros in $\Omega \Rightarrow$ dimension reduction;
- Can be discovered using ℓ_1 type optimization methods.

Graphical lasso: Friedman, Hastie & Tibshirani [2008]

$$\max_{\Omega > 0} \quad \text{log-likelihood}(\Omega) + \rho \sum_{i,j} |\Omega_{ij}|.$$

Graphical maximum likelihood estimate:

$$\hat{\Sigma}_G = \max_{\Sigma^{-1} \in \mathbb{P}_G^+} \text{ likelihood}(\Sigma)$$

"Best" covariance matrix compatible with the CI structure.

Benefits:

- Adding a ℓ_1 penalty favors sparse estimates of Ω ;
- Sparse estimates achieve the necessary dimension reduction for proper estimation of Σ .

Flexible covariance representation

HadCRUT3v data, 1850-2000

Example of graph (HadCRUT3v data)

°0

00

A virtual climate laboratory

Standard deviation of CSM1.4 millennial run

CSM1.4 specs:

- Coupled General Circulation Model
- Plausible "surrogate climate"
- Generate pseudoproxies as
 statistically-degraded, subsampled
 version of the temperature field

PSEUDOPROXY TESTS

The GraphEM methodology is tested on <u>synthetic proxies</u> derived from a forced simulation of the NCAR CSM1.4 model (including volcanic and solar forcing)

$$P_p(s,t) = T(s,t) + \xi(s,t) / \text{SNR}$$

where $\boldsymbol{\xi}$ is a standard, uncorrelated Gaussian process

Signal to noise ratio:

Test Statistic:

$$SNR = \frac{\rho}{\sqrt{1 - \rho^2}} \qquad MSE = \sum_{i} (\hat{y}_i - y_i)^2$$

CaseSNR = ∞ SNR = ISNR = 0.5SNR = 0.25		Case	SNR = ∞	SNR = I	SNR = 0.5	SNR = 0.25
---	--	------	---------	---------	-----------	------------

Error reduction

% MSE reduction, GraphEM - RegEM TTLS

North American reconstructions

(100 noise realizations)

Substantial reduction in MSE

Much improved risk properties

Coral-based sea-surface temperature reconstructions

Bootstrap error estimates

Julien Emile-Geay

USC 2012

Coral-based SST uncertainties: GraphEM TTLS

0.5

1

1.5

Spatial estimate of the uncertainties

0.5

1

0.5

1

1.5

Conclusions

Paleoclimate Reconstructions

- ~ High-dimensional, multivariate inference problem
- Should benefit from latest advances in statistics

% Gaussian Graphical Models

- ~ Enable flexible covariance estimation, reduce errors
- \sim Model selection, not regularization (ℓ_2 still needed)
- ← Choice of graph: spatial truncation?

% Current and future developments

← GraphEM:

- Analysis of uncertainties (bootstrap interval coverage rate)
- Application to up-to-date proxy databases (coral, multiproxy)

← Bayesian Modeling

- Closed-form Bayes estimators with graphical covariance structure
- Incorporation into Bayesian hierarchical models

00

questions, comments, data, preprints: julieneg@usc.edu

Bayesian Hierarchical Models

Bayes'Pr(par|obs) = Pr(obs|par) Pr(par)TheoremPosteriorLikelihoodPrior

3 levels of conditioning:

- Y : Climate Process (s,t)
- W : Latent Process (s,t) (unobserved)
- Z : Observed Process (s,t)

Scientific understanding can be encoded at the appropriate level

$$\pi(\mathbf{Y}, \{\mathbf{W}_{Ij}\}, \{\mathbf{W}_{Pj}\}, \boldsymbol{\theta}|\{\mathbf{Z}_{Ij}\}, \{\mathbf{Z}_{P,k}\}) \approx f(\mathbf{Y}|\boldsymbol{\theta})g(\{\mathbf{W}_{Ij}\}, \{\mathbf{W}_{P,k}\}|\mathbf{Y}, \boldsymbol{\theta}) \left[\prod_{j=1}^{N_{I}} h_{Ij}(\mathbf{Z}_{Ij}|\mathbf{W}_{Ij}, \boldsymbol{\theta})\right] \left[\prod_{k=1}^{N_{P}} h_{P,k}(\mathbf{Z}_{P,k}|\mathbf{W}_{P,k}, \boldsymbol{\theta})\right] \pi(\boldsymbol{\theta}).$$
Posterior
Likelihood
Prior
Likelihood
Prior
Julien Emile-Geay IMSC11

Full Proxy Network for Climate Field Reconstruction (1138 records)

Time