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Tutorial Goals 

• Understand the basic concepts in multi-task learning 

• Understand different approaches to model task 
relatedness 

• Get familiar with different types of multi-task 
learning techniques  

• Introduce the multi-task learning package: MALSAR  
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Tutorial Road Map 

• Part I: Multi-task Learning (MTL) background and 
motivations 

• Part II: MTL formulations 

• Part III: Case study of real-world applications 

– Disease Progression 

– Dealing with Missing Value in Multiple Sources 

– Drosophila Image Analysis 

• Part IV: MALSAR: Multi-task Learning via Structural 
Regularization Package 

• Future directions 
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Multiple Tasks 
o
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Learning Multiple Tasks 
o

5 

Student 

id 

Birth 

year 

Previous 

score 

School 

ranking 

… 

72981 1985 95 83% … 

31256 1986 87 72% … 

12381 1987 83 77% … 

… … … … … 

Exam 

Score 

? 

? 

? 

… 

21901 1986 87 72% … ? 

Students with same 

Features but different 

Exam Scores 



Center for Evolutionary Medicine and Informatics 

 

Learning Multiple Tasks 
o
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Learning Multiple Tasks 
o
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Multi-Task Learning 

• Multi-task Learning is 
different from single task 
learning in the training 
(induction) process. 

• Inductions of multiple 
tasks are performed 
simultaneously to capture 
intrinsic relatedness. 
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Learning Methods 
o

–

–

–

o

–

–

–

o

–

–

–

o

–

–
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Web Pages Categorization 
• Classify documents into 

categories 

• The classification of each 
category is a task 

• The tasks of predicting 
different categories may 
be latently related [Chen 
et.al. ICML 09] 
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Health

Travel

World

Politics

US
...

Category 
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Models of different 
categories are 
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Classifiers’ Parameters
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Collaborative Ordinal Regression  

• The preference prediction of 
each user can be modeled 
using ordinal regression  

• Some users have similar 
tastes and their predictions 
may also have similarities 

• Simultaneously perform 
multiple prediction to use 
such similarity information 
[Yu et. al. NIPS 06] 
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MTL for HIV Therapy Screening 
• Hundreds of possible combinations of drugs, some of which 

use similar biochemical mechanisms 
• The sample available for each combination is limited. 
• For a patient, the prediction of using one combination is a 

task 
• Use the similarity information by simultaneously inference 

multiple tasks 
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How to capture shared structures? 

13 

All tasks are related
Assumption:

The relationship is not symmetric

   

 Assumption:
Tasks have group structures

Assumption:

There are outlier tasks
Assumption:
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How to capture shared structures? 

14 

All tasks are related
Assumption:

Methods 
• Mean-regularized MTL 
• Joint feature learning 
• Low rank regularized 

MTL 
• alternating structural 

optimization (ASO) 
• Shared Parameter 

Gaussian Process 



Center for Evolutionary Medicine and Informatics 

 

How to capture shared structures? 

15 

Methods 
• Clustered MTL 
• Tree MTL 
• Network MTL 

Tasks have group structures
Assumption:

Tasks have tree structures
Assumption:

a cb

Models

Tasks have graph/network structures
Assumption:



Center for Evolutionary Medicine and Informatics 

 

How to capture shared structures? 
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Methods 
• Robust MTL 

There are outlier tasks
Assumption:
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How to capture shared structures? 

17 

Methods 
• Asymmetric MTL 

The relationship is not symmetric

   

 Assumption:
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All tasks are related 

18 

All tasks are related
Assumption:

• Shared Hidden Node in 
Neural Network 

• Shared Parameter 
Gaussian Process 

• Regularization-based MTL 
• Mean-regularized MTL 
• Joint feature learning 
• Low rank regularized 

MTL 
• alternating structural 

optimization 
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Sharing Hidden Nodes in Neural Network 

19 

...

Task 1 Task 2 Task 3 Task 4

Sharing Nodes

Inputs

• Neural network has been well studied for learning multiple 
related tasks for improved generalization performance. 

• A set of hidden units are shared among multiple tasks for 
improved generalization (Caruana  ML 97). 
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Mortality Rank 

• Future lab results are used as extra outputs to bias 
learning for the main risk prediction task 
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Shared Parameter Gaussian Process 
• In (Lawrence and Platt, ICML 04) an efficient method is proposed to 

learn the parameters (of a shared covariance function) for the 
Gaussian process. 

• adopts the multi-task informative vector machine (IVM) to greedily 
select the most informative examples from the separate tasks and 
hence alleviate the computation cost. 
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Common Latent Representation in 
Nonparametric Bayesian Models 

• Multi-Task Infinite Latent Support Vector Machines 
(Zhu, J. et al NIPS 11) 
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Regularization-based Multi-task Learning 

• All tasks are shared 

– regularized MTL, joint feature learning, low rank MTL, ASO 

• Tasks form groups 

–  clustered MTL, Network/Tree MTL 

• Learning with outlier tasks: robust MTL 

• Asymmetric MTL 
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Regularized Multi-Task Learning 

• Assume all tasks are related in that the models of all 
tasks come from a particular distribution (Evgeniou 
& Pontil, KDD 04) 

24 

mean

Task
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Regularized Multi-Task Learning 

• Assumption: task parameter vectors of all tasks are 
close to each other. 

– Advantage: smooth objective, easy to optimize 

– Disadvantage: may not hold in real applications. 
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Multi-Task Learning with Joint Feature 
Learning 

• One way to capture the task 
relatedness from multiple 
related tasks is to constrain 
all models to share a common 
set of features. 

• For example, in school data, 
the scores from different 
schools may be determined 
by a similar set of features. 
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Multi-Task Learning with Joint Feature 
Learning 

• Using group sparsity: ℓ1/ℓ2-norm regularization 
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Joint Feature Selection in Disease 
Progression 

28 
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• The progression of disease is assumed to involve the same 
set of features at different time points [Zhou et.al. KDD 11].  
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Joint Feature Selection in Disease 
Progression 

• In predicting 
different cognitive 
scores, there may be 
shared features from 
different data 
sources. 

• Multi-modal multi-
task learning [Zhang, 
D. et.al. NeuroImage 
12] 

29 
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Multi-Task Learning with Joint Feature 
Learning – L1Lq 

• More general ℓ1/ℓ𝑞-norm regularization: 

30 
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Multi-Task Learning with Joint Feature 
Learning – L1Lq 

• The selection of q may depend on the distribution of 
the model: 

31 

𝑊~𝑁(Mean, Variance) 
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Trace-Norm Regularized MTL 

32 

o Capture Task Relatedness via a Shared Low-Rank Structure 

trained  
model 

training  
data 

task 1 

training 

trained  
model 

training  
data 

task 2 …
 

…
 

A shared low-rank structure 

generalization 

generalization 

trained  
model 

training  
data 

task n generalization 

…
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Low-Rank Structure for MTL 

…
 𝛼1 𝛼2 + ≈ × 

training data weight vector target 

Task 1 

…
 ≈ × 

Task 2 

…
 

≈ × Task 3 

= 

= 

= 

𝛽1 𝛽1 + 

𝛾1 𝛾2 + 

basis vector basis vector 
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Low-Rank Structure for MTL 

34 

= 

= 

𝛼1 𝛼2

𝛽1 𝛽2 
𝛾1 𝛾2 
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⋮ ⋱ ⋮
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Low-Rank Structure for MTL 

• Rank minimization formulation 

– min
𝑊

Loss(𝑊) + 𝜆 × Rank(𝑊) 

– Rank minimization is NP-Hard 

• Convex relaxation: trace norm minimization 

–  min
𝑊

Loss(𝑊) + 𝜆 × 𝑊 ∗ 

– Trace-norm minimization is the convex envelope of the 
rank minimization (Fazel et al., 2001).  
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Low-Rank Structure for MTL 
o Evaluation on the School data1: 

• Predict exam scores for 15362 students from 139 schools 

• Describe each student by 27 attributes 

• Compare Ridge Regression, Lasso, and Trace Norm (for inducing a low-rank structure) 

 

36 

1http://ttic.uchicago.edu/~argyriou/code/ 

N−MSE = 
mean squared error

variance (target)
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Ridge Regression

Lasso

Trace Norm

Performance measure: 

The Low-Rank Structure 
(induced via Trace Norm)  
leads to the smallest N-MSE. 
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Low-Rank Structure for MTL 

Rough shape 
of the faces 

o Evaluation on the Face data1: 

• Trace Norm (low-rank structure) 

Plot of the 1st 
weight vector 
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A shared Low-Rank Structure for MTL 

…
 ≈ × 

training data weight vector target 

the i-th task  

38 

+ specific for each task  shared among tasks 

vi wi Ө 

weight vector  ui =Өvi  + wi  

o Learning from the i-th task (Ando et. al.’05, Chen et. al.’09) 

ӨTӨ = Ip 
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A shared Low-Rank Structure for MTL 

39 
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o Learning from multiple tasks 
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transformation matrix 
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Empirical Loss 

…
 ≈ × 

Xi 

40 

+ 

o Learning from the i-th task 

o Empirical loss on the i-th task, for example,  

 

 
 

ℒi Xi Өvi + wi , yi = Xi Өvi + wi − yi 
2 

 ui =Өvi + wi  yi 
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 iASO Formulation 

41 

o iASO formulation 

minimize
Ө,{vi,wi}

         ℒi Xi Өvi + wi , yi + 𝛼 Өvi + wi
2 + 𝛽 wi

2  

𝑚

𝑖=1

 
 

subject to        ӨTӨ = I 

• control both model complexity and task relatedness 

• subsume ASO (Ando et al.’05) and SVM as special cases 

• naturally lead to a convex relaxation (Chen et al., 10) 

• iASO and cASO are equivalent under certain conditions 
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Multi-Task Learning with Clustered 
Structure 

44 

• Most MTL techniques assume 
all tasks are related 

• Not true in many applications 
• Clustered multi-task learning 

assumes  
 the tasks have group 

structures 
 the models of tasks from the 

same group are closer to each 
other than those from a 
different group 

Tasks have group structures
Assumption:

e.g. tasks in the yellow group are 
predictions of heart related 
diseases and in the blue group are 
brain related diseases. 
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Task Clustering in Neural Network 

• Bakker and Heskes JMLR 2003 

45 
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Clustered Multi-Task Learning 

• Use regularization to capture clustered structures. 

46 

Training Data X ≈ 

Training Data X ≈ 

...

Clustered Models

...

Cluster 1 Cluster 2 Cluster k-1 Cluster k

Cluster 1

Cluster 2

Cluster k-1

Cluster k
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Clustered Multi-Task Learning 
• Capture structures by minimizing sum-

of-square error (SSE) in K-means 
clustering: 

47 

Ij index set of jth cluster 

min
𝐼

  𝑤𝑣 − 𝑤 𝑗 2

2

𝑣∈𝐼𝑗

𝑘

𝑗=1

  

min
𝐹

tr 𝑊𝑇𝑊 − tr(𝐹𝑇𝑊𝑇𝑊𝐹) 

𝐹 : m×k orthogonal cluster indicator matrix 
𝐹𝑖,𝑗 = 1/ 𝑛𝑗 if 𝑖 ∈ 𝐼𝑗 and 0 otherwise 

Clustered Models

...

Cluster 1 Cluster 2 Cluster k-1 Cluster k

Cluster 1

Cluster 2

Cluster k-1

Cluster k

m tasks

task number m < cluster number k
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Clustered Multi-Task Learning 

• Directly minimizing SSE is hard 
because of the non-linear 
constraint on F: 
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Clustered Models

...

Cluster 1 Cluster 2 Cluster k-1 Cluster k

Cluster 1

Cluster 2

Cluster k-1

Cluster k

m tasks

task number m < cluster number k

min
𝐹

tr 𝑊𝑇𝑊 − tr(𝐹𝑇𝑊𝑇𝑊𝐹) 

𝐹 : m×k orthogonal cluster indicator matrix 
𝐹𝑖,𝑗 = 1/ 𝑛𝑗  if 𝑖 ∈ 𝐼𝑗  and 0 otherwise 

min
𝐹:𝐹𝑇𝐹=𝐼𝑘

tr 𝑊𝑇𝑊 − tr(𝐹𝑇𝑊𝑇𝑊𝐹) 

Zha et. al. 2001 NIPS 
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Improves 
generalization 
performance 

capture cluster structures 

Cluster 1

Cluster 2

Cluster k-1

Cluster k

Clustered Multi-Task Learning 

• Clustered multi-task learning (CMLT) formulation 
[Zhou et. al. NIPS 2011] 

49 

min
𝑊,𝐹:𝐹𝑇𝐹=𝐼𝑘

Loss W + 𝛼 tr 𝑊𝑇𝑊 − tr 𝐹𝑇𝑊𝑇𝑊𝐹 + 𝛽 tr 𝑊𝑇𝑊  



Center for Evolutionary Medicine and Informatics 

 

Convex Clustered Multi-Task Learning 
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min
𝑊,𝐹:𝐹𝑇𝐹=𝐼𝑘

Loss W + 𝛼 tr 𝑊𝑇𝑊 − tr 𝐹𝑇𝑊𝑇𝑊𝐹 + 𝛽 tr 𝑊𝑇𝑊  

min
𝑊,𝐹:𝐹𝑇𝐹=𝐼𝑘

Loss W + 𝛼𝜂(1 + 𝜂)tr 𝑊 𝜂𝐼 + 𝐹𝐹𝑇 −1𝑊𝑇   

Chen et al KDD 2009 

Jacob et al NIPS 2009 

Zhou et al NIPS 2010 

min
𝑊,𝑀

Loss W + 𝛼𝜂(1 + 𝜂)tr 𝑊 𝜂𝐼 + 𝑀 −1𝑊𝑇   

subject to:   tr 𝑀 = 𝑘, 𝑀 ≼ 𝐼, 𝑀 ∈ 𝑆+
𝑚 
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Convex Clustered Multi-Task Learning 

51 

Ground Truth 

• Synthetic Study [Zhou NIPS 2011] 

Mean Regularized MTL 

Single Task Learning 

Trace Norm Regularized 
MTL 

Convex Relaxed CMTL 

noise introduced 
by relaxations 

Low rank can also 
well capture  

cluster structure 
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Multi-Task Learning with Tree Structures 

• In some scenarios, the 
tasks may be equipped 
with tree structures: 

– The tasks belong to the 
same node are similar 
to each other 

– The similarity between 
two nodes is structured 
and relates to the 
depth of the ‘common’ 
tree node 
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Tasks have tree structures
Assumption:

a cb

Models
Task a is more similar with b,  

comparing to c 
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Multi-Task Learning with Tree Structures 

• Tree-Guided Group Lasso (Kim and Xing 2010 ICML) 

53 
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Multi-Task Learning with Graph Structures 

• In real applications, tasks 
involved in MTL may have 
graph structures 

– The two tasks are related if they 
are connected in a graph, i.e. the 
connected tasks are similar 

– The similarity of two related 
tasks can be represented by the 
weight of the connecting edge. 

54 

Tasks have graph/network structures
Assumption:
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Multi-Task Learning with Graph Structures 

• Graph-guided Fused Lasso (Chen et. al. UAI11) 

55 

ACGTTTTACTGTACAATTTACGene 
SNP

phenotype

Input

Output

ACGTTTTACTGTACAATTTACGene 
SNP

phenotype

Input

Output

Lasso

Graph-Guided 
Fused Lasso

min
𝑊

Loss 𝑊 + 𝜆 𝑊 1 + Ω(𝑊) Graph-guided Fusion Penalty 

Ω 𝑊 = 𝛾  𝜏(𝑟𝑚𝑙)

𝑒= 𝑚,𝑙 ∈𝐸

 𝑤𝑗𝑚 − 𝑠𝑖𝑔𝑛 𝑟𝑚𝑙 𝑤𝑗𝑙

𝐽

𝑗=1
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Quantitative Trait Network 

• Linked Edge: the 
corresponding two 
traits are highly 
correlated.  

• Thicknesses: strength 
of correlation.  

• Identifying SNPs that 
are associated with a 
subnetwork of clinical 
traits (Kim and Xing 
2009). 

56 
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Graph-Weighted Fused Lasso 
• Lasso: each phenotype represented as a circle is 

independently mapped to SNPs for association 

• Graph-constrained fused Lasso: consider a QTN to search for 
an association between a SNP and a subnetwork of traits. 

• Graph-weighted fused Lasso: consider a QTN with edge 
weights. 

57 
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Robust Multi-Task Learning 
o Most Existing MTL Approaches o Robust MTL Approaches 

58 

relevant tasks 

irrelevant tasks 

equally weighted 
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Incoherent Low-Rank and Sparse Structures 

…
 ≈ × 

training data weight vector target 

59 

o Learning from the i-th task 

+ 

… … … … 

Low rank structure Entry-wise sparse structure 

Select discriminative 
features for each task 

Capture task  relatedness 



Center for Evolutionary Medicine and Informatics 

 

Incoherent Low-Rank and Sparse Structures 

60 

… … 

Low-rank structure  

… … 

Entry-wise sparse structure 

q1 q𝑖  q𝑚 

Q 1 P ∗ 

p1 p𝑖  p𝑚 

(Sum of singular values) (Sum of the absolute values of all entries) 

P ∗ ⩽ 𝜂 
𝜆 Q 1 
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ISLR Formulation 

o Empirical loss on the i-th task, e.g., 

 

 

 
 

61 

ℒi Xi pi + qi , yi =  Xi pi + qi − yi 
2 

o Incoherent Sparse Low-Rank (ISLR) formulation 

minimize
P,Q

    
 ℒi Xi pi + qi , yi + 𝜆 Q 1

𝑚

𝑖=1

 
 

                         subject to     P ∗ ⩽ 𝜂 

• Convex formulation 

• Decomposed sparse and low-rank structures 
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Low-Rank and Group Sparsity in MTL 

…
 ≈ × 

training data weight vector target 

62 

o Learning from the i-th task 

+ 

… … … … 

Low rank structure Group sparse structure 

Identify irrelevant tasks via 
non-zero vectors 

Capture task  relatedness 
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Low-Rank and Group Sparsity in MTL 
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… … 

Low-rank structure  

… … 

Group sparse structure 

𝑠1 𝑠𝑖  𝑠𝑚 

𝑠𝑖 2 𝑠1 2 𝑠𝑚 2 … … 

+ 

𝑆 1,2 𝐿 ∗ 

𝑙1 𝑙𝑖 𝑙𝑚 

(Sum of singular values in L) 
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Robust MTL Formulation 

64 

minimize
L,S

 ℒi Xi li + si , yi + 𝛼 L ∗ + 𝛽 S 1,2

𝑚

𝑖=1

 

o Robust MTL Formulation 

• Capture task relatedness via a low-rank structure 

• Identify irrelevant tasks via a group-sparse structure 

o Empirical loss on the i-th task, e.g., 

 

 

 
 

ℒi Xi li + 𝑠 , yi = Xi li + si − yi 
2 
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Performance Bound 

65 

1

T
  Xi

T 𝑙 i + 𝑠 i − 𝑓 i 2

2𝑚
𝑖=1  ⩽ (1+ ε) inf

𝑙i,𝑠i

1

T
  Xi

T 𝑙i + 𝑠i − 𝑓 i 2

2𝑚
𝑖=1 + Ф ε

α2 
κ1

2 2𝑟  
+

β2

κ2
2 𝑐  

 

o Assumption on the existence of  κ1 𝑠  and κ2 𝑞     
• Training data  

• Geometric structure of the coefficient matrices 

o Performance Bound 

with the probability of at least 1 − 𝑚𝑒
−

1

2
𝑡−𝑑 log 1+

𝑡

d .  
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Robust Multi-Task Feature Learning 

• Simultaneously captures a common set of features 
among relevant tasks and identifies outlier tasks: 

66 
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Robust Multi-Task Feature Learning 

• Formulation: 

 

 

• Algorithm: 

– Accelerated Gradient Method 

– Proximal Operator problems: 
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Robust Multi-Task Feature Learning 

• Theoretical Guarantees 

– With probability of at least  

 

 

 

 

– With probability of  
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Optimization Algorithms 

• Loss Function  𝑙𝑜𝑠𝑠 𝑥  
– Least Squares Loss 
– Logistic Loss 

• Convex and Smooth Penalty Ω(𝑥)  
– Regularized MTL 

• Convex but Non-Smooth Penalty Ω(𝑥)  
– ℓ2,1 −Norm 
– Dirty MTL 
– Trace Norm 

• Non-Convex Penalty Ω 𝑥  
– Convex Relaxation 
– CMTL 
– ASO 

69 

Objective 
min 𝑓(𝑥) = 𝑙𝑜𝑠𝑠 𝑥 + 𝜆 × Ω(𝑥)  



Center for Evolutionary Medicine and Informatics 

 

Optimization Algorithms 

• Gradient Descent (GD) 

• Accelerated Gradient Method (AGM) 

– Solving Proximal Operator 

70 

Objective 
min 𝑓(𝑥) = 𝑙𝑜𝑠𝑠 𝑥 + 𝜆 × Ω(𝑥)  
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Gradient Descent  

• Gradient descent is an algorithm to solve smooth 
optimization problems min

𝑥
𝑓(𝑥): 

– Repeat 𝑥𝑖+1 = 𝑥𝑖 − 𝛾𝑖𝑓
′ 𝑥𝑖  until convergence criterion is 

met. 

– 𝑓 𝑥  is continuously differentiable with Lipchitz 
continuous gradient L then if 𝛾𝑖 ≤ 1/𝐿 we can obtain the 
convergence rate of 𝑂(1/𝑁) 

• Most optimization problems in MTL are non-convex. 

• Can we apply gradient descent to non-smooth 
problems? 
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Gradient Descent  

72 

Repeat  

𝑥𝑖+1 = 𝑥𝑖 − 𝛾𝑖𝑓
′ 𝑥𝑖   

until convergence 

 

Repeat  

      𝑥𝑖+1 = arg min
𝑥

𝑀(𝑥𝑖 , 𝛾𝑖) 

until convergence 

 

𝑀 𝑥𝑖 , 𝛾𝑖 = 𝑓 𝑥𝑖 + 𝑓′ 𝑥𝑖 , 𝑥 − 𝑥𝑖 +
1

2𝛾𝑖
𝑥 − 𝑥𝑖 2

2 

1st order  

Taylor expansion 

Model 

Regularization 

Smooth Objective 
min 𝑓(𝑥) 
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Non Smooth 

Penalty 
1st order  

Taylor expansion 

Regularization 

Gradient Descent  

• Using the gradient descent with composite model to 
solve non-smooth optimization problems. 

• Convergence Rate O(1/N) 
73 

Objective 
min 𝑓(𝑥) = loss 𝑥 + 𝜆 × Ω(𝑥)  

𝑀 𝑥𝑖 , 𝛾𝑖 = 𝑓 𝑥𝑖 + 𝑓′ 𝑥𝑖 , 𝑥 − 𝑥𝑖 +
1

2𝛾𝑖
𝑥 − 𝑥𝑖 2

2 + 𝜆 × Ω(𝑥) 

Composite Model 

Repeat  

      𝑥𝑖+1 = arg min
𝑥

𝑀(𝑥𝑖 , 𝛾𝑖) 

until convergence 
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Gradient Descent 
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𝑀 𝑥𝑖 , 𝛾𝑖 = 𝑓 𝑥𝑖 + 𝑓′ 𝑥𝑖 , 𝑥 − 𝑥𝑖 +
1

2𝛾𝑖
𝑥 − 𝑥𝑖 2

2 + 𝜆 × Ω(𝑥) 

Composite Model 

Repeat  

      𝑥𝑖+1 = arg min
𝑥

𝑀(𝑥𝑖 , 𝛾𝑖) 

until convergence 

 

𝑥𝑖+1 = arg min
𝑥

1

2
𝑥 − 𝑣 2

2 + 𝜌 × Ω(𝑥) 

𝑣 = 𝑥𝑖 − 𝛾𝑖𝑙𝑜𝑠𝑠′ 𝑥𝑖  

𝜌 = 𝛾𝑖𝜆 

Proximal Operator (Moreau, 1965) 
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Accelerated Gradient Method (AGM) 

• A faster extension of gradient descent (Nesterov, 
1983; Nemirovski, 1994; Nesterov, 2004) 

75 

Repeat  

𝑥𝑖+1 = 𝑥𝑖 − 𝛾𝑖𝑓
′ 𝑥𝑖   

until convergence 

 

Repeat  

𝑠𝑖 = 𝑥𝑖 + 𝛼𝑖(𝑥𝑖 − 𝑥𝑖−1) 
𝑥𝑖+1 = 𝑥𝑖 − 𝛾𝑖𝑓

′ 𝑥𝑖   

until convergence 

 

Xi Xi+1 

Xi Xi+1 

Si 
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Accelerated Gradient Method (AGM) 

76 

Repeat  

𝑠𝑖 = 𝑥𝑖 + 𝛼𝑖(𝑥𝑖 − 𝑥𝑖−1) 
𝑥𝑖+1 = arg min

𝑥
𝑀(𝑠𝑖 , 𝛾𝑖) 

until convergence 

 

Xi Xi+1 

Xi Xi+1 

Si 

𝑀 𝑥𝑖 , 𝛾𝑖 = 𝑓 𝑥𝑖 + 𝑓′ 𝑥𝑖 , 𝑥 − 𝑥𝑖 +
1

2𝛾𝑖
𝑥 − 𝑥𝑖 2

2 + 𝜆 × Ω(𝑥) 

Composite Model 

Repeat  

      𝑥𝑖+1 = arg min
𝑥

𝑀(𝑥𝑖 , 𝛾𝑖) 

until convergence 
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Optimization with Non-Convex Objectives 

• In multi-task learning, optimization objectives 
involved may be non-convex (e.g. clustered multi-
task learning). 

• Directly applying convex optimization techniques 
may obtain suboptimal solutions. 

• Convex Relaxation  

– General non-convex problem: find convex envelope 
• Rank minimization → Trace-norm minimization 

– Difference of convex (DC) problem: Convex-Concave 
Procedure (CCCP)[Yuille and Rangarajan NIPS 2001] 

• ℓ1/ℓ0.5-regularization → Reweighted group Lasso 
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Difference of Convex (DC) Programming 

•  The objective can be written in the form: 

– min
𝑥

𝑓 𝑥 − 𝑔(𝑥) 

– 𝑓 𝑥  and 𝑔 𝑥  are convex functions.  

• We linearize 𝑔 𝑥  using the 1st order Taylor 
expansion at 𝑥′: 

– 𝑓 𝑥 − 𝑔 𝑥 = 𝑓 𝑥 − 𝑔 𝑥′ − 𝛻𝑔 𝑥′ , 𝑥 − 𝑥′  

• In every iteration of CCCP, we minimize the upper 
bound: 

– 𝑥𝑘+1 = argmin𝑥𝑓 𝑥 − 𝛻𝑔 𝑥𝑘 , 𝑥  

• The objective function is guaranteed to decrease 
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Case Study: Disease Progression 

• Alzheimer’s Disease (AD) is 

–  the most common type of dementia; 

–  severe neurodegenerative disorder; 

–  definitive diagnosed only through brain biopsy or autopsy; 

–  clinically diagnosed by clinical/cognitive measures including 
MMSE and ADAS-Cog. 
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Modeling Disease Progression 

• The prediction of cognitive scores at each time point can 
be modeled as a regression task. 

 

 

 

 

 

 

 

 

• Motivation of using multi-task learning: the ability to 
explore inherent relationships among related tasks and 
enforce such knowledge using proper regularizations. 
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Temporal Smoothness 

• Prior knowledge: the change of cognitive scores 
should be small for a patient. The scores should not 
fluctuate: 

 

 

 

 

 

• To enforce this prior knowledge, we use 
regularization term to penalize the difference.  
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Temporal Group Lasso 
• Assumption: there is only a small subset of features related to 

disease progression, shared among tasks.  

• Achieve this using group sparsity: 
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Fused Sparse Group Lasso 

• Goal: find temporal patterns of the 
biomarkers in the disease 
progression. 

• Simultaneous feature selection via 
Fused Lasso: 

– a common set of biomarkers for multiple 
time points 

– specific sets of biomarkers for different 
time points  

• Incorporate the temporal smoothness 
via Group Lasso. 
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Fused Sparse Group Lasso 
• The convex formulation: 

 

 

• Non-convex formulations: 

– Reduce shrinkage bias 

– Closer to the optimal l0-norm 

– Fewer tuning parameters 
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Performance 
• MTL outperforms STL 

• Fused sparse group Lasso formulations achieve better 
performance than Temporal group Lasso 
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Performance 
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Longitudinal Stability Selection on ADAS-Cog 
• Using FSGL 

• From the distribution of stability scores, we can 
observe temporal patters of MRI biomarkers. 
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Longitudinal Stability Selection on MMSE 

• From the distribution of stability scores, we can 
observe temporal patters of MRI biomarkers. 
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Case Study: Missing Data in Multi-Source 
Learning 

• In many applications, 
multiple data sources 
may suffer from a 
considerable amount of 
missing data. 

• In ADNI, over half of the 
subjects lack CSF 
measurements; an 
independent half of the 
subjects do not have 
FDG-PET. 
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P1   P2   P3  …  P114  P115  P116

PET

Subject1

Subject60

Subject61

Subject62

Subject139

Subject140

Subject141

Subject148

Subject149

Subject245

......
...
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...
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...
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...
...

...
...

M1   M2   M3   M4  …  M303  M304  M305 C1    C2    C3    C4    C5

MRI CSF



Center for Evolutionary Medicine and Informatics 

 

Challenges 

• Simply removing samples with missing values will 
dramatically reduces the number of samples in the 
analysis. 

• Plus, the resource and time devoted to those 
subjects with incomplete data are totally wasted. 

• Estimating the entire chunk of missing values is very 
challenging. 
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Incomplete Multi Source Feature Learning 
(iMSF) 

• A “row-wise” strategy 

– We first partition the samples into multiple blocks, one for 
each combination of data sources available 

– We then build one different model for each block of data 

– Using multi-task techniques, all models involving a specific 
source are constrained to select a common set of features 
for that particular source 
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Overview of iMSF 

 

92 

MRIPET

Task ITask I

Task IITask II

Task IIITask III

Task IVTask IV

Model I

Model II

Model III

Model IV

MRI CSF

CSF

PET
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iMSF: the Formulation 

• Suppose the data set is divided into 𝑚 tasks: 𝑇𝑖 = 𝑥𝑗
𝑖 , 𝑦𝑗

𝑖 , 

𝑖 = 1 … 𝑚, 𝑗 = 1 … 𝑁𝑖, where 𝑁𝑖  is the number of subjects in 
the 𝑖-th task 

• Denote 𝛽𝑖 as the weight vector for the 𝑖-th task 

• 𝛽𝐼(𝑠,𝑘) denotes all the model parameters corresponding to the 

𝑘-th feature in the 𝑠-th data source 

• We Solve:  

min
𝛽

1

𝑚
 

1

𝑁𝑖
 𝐿 𝑥𝑗

𝑖 , 𝑦𝑗
𝑖 , 𝛽𝑖

𝑁𝑖

𝑗=1

𝑚

𝑖=1

+ 𝜆   𝛽𝐼 𝑠,𝑘 2

𝑝𝑠

𝑘=1

𝑆

𝑠=1
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iMSF: Performance 
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Case Study: Drosophila Gene Expression 
Image Analysis 

95 

[Megason and Fraser (2007) Cell] 
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Life cycle of fruit fly Drosophila melanogaster 

[Wolpert et al. (2006) Principles of Development] 

Computer Science & Engineering 

“We are much more like 
flies in our development 
than you might think.” 
           L. Wolpert  

embryogenesis 
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Berkeley Drosophila Genome Project (BDGP) 
http://www.fruitfly.org/ 

Fly-FISH 
http://fly-fish.ccbr.utoronto.ca/ 

Stage 1-3 Stage 4-6 Stage 7-8 Stage 9-10 Stage 11-12 Stage 13- 

Drosophila gene expression pattern images 

[Tomancak et al. (2002) Genome Biology; Lécuyer et al. (2007) Cell] 

Stage 1-3 Stage 4-5 Stage 6-7 Stage 8-9 Stage 10- 

bgm 

en 

hb 

runt 

Computer Science & Engineering 

Expressions 
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Comparative image analysis 
Twist heartless stumps 

anterior endoderm AISN 
trunk mesoderm AISN 
subset 
cellular blastoderm 
mesoderm AISN 

dorsal ectoderm AISN 
procephalic ectoderm AISN 
subset 
cellular blastoderm 
mesoderm AISN 

anterior endoderm AISN 
trunk mesoderm AISN 
head mesoderm AISN 

stage 4-6 

[Tomancak et al. (2002) Genome Biology; Sandmann et al. (2007) Genes & Dev.] 

trunk mesoderm PR 
head mesoderm PR 

trunk mesoderm PR 
head mesoderm PR 
anterior endoderm anlage 

yolk nuclei 
trunk mesoderm PR 
head mesoderm PR 
anterior endoderm anlage 

stage 7-8 

Computer Science & Engineering 

We need the spatial and temporal annotations of expressions 
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Challenges of manual annotation 

Computer Science & Engineering 
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Spatial keywords annotation 

• Prior approaches assume all keywords are associated with all images 
– Zhou and Peng (2007) Bioinformatics 

brain primordium visceral muscle primordium 

nerve cord primordium 

Actn, stage 11-12 

Computer Science & Engineering 

Multiple keywords are associated with multiple images 

Exact correspondences among keywords and images are NOT given 
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What are the challenges? 

“We used human annotation, rather than automated approaches 
based on pattern recognition algorithms, because of the 
overwhelming complexity of annotation. Variation in morphology 
and incomplete knowledge of the shape and position of various 
embryonic structures make computational approaches 
impracticable at present.”  
                                P. Tomancak et al. (2002) Genome Biology 

Computer Science & Engineering 

Local invariant 

features 

High-level 

representations 

Multi-task 

learning 
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SVM 

Low-rank 
multi-task 

Model construction 

Graph-based 
multi-task 

Method outline 

Images 

Kernel-based 
approach 

Bag-of-words 

Sparse coding 

Feature extraction 

[Ji et al. (2008) Bioinformatics; Ji et al. (2009) BMC Bioinformatics; Ji et al. (2009) NIPS] 

Computer Science & Engineering 
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From bag-of-words to sparse coding 

u 
codebook 

A 0 0.2 0.6 0.3 

0..
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x



0 0 1 0 
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2





exxts

uAx

T

i

x

[Ji et al. (2009) SIGKDD] 

Bag-of-words 

Sparse coding 

Computer Science & Engineering 

Both can be improved by incorporating the 
proximity information of local patches 
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Low rank multi-task learning model 

[Argyriou et al. (2008) Machine Learning] 

Sparse coding features 

*
1 1

),( WYxwL
k

i

n

j

jij

T

i 
 

X Y 
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Computer Science & Engineering 

Low rank 

trace norm = sum of singular values 

Loss term 
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2-norm loss 

Graph-based multi-task learning model 

2

),(

2

2

1

1 1

)sgn()(),( qpqp
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jij
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[Ji et al. (2009) SIGKDD] 

sensory system 
head 

ventral sensory 
complex 

dorsal/lateral 
sensory complexes 

embryonic maxillary 
sensory complex 

embryonic antennal 
sense organ 

sensory nervous 
system 

0.56 

0.31 
0.57 

0.60 

0.79 

0.50 

0.36 

0.35 

Computer Science & Engineering 

Closed-form solution 
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Spatial annotation performance 

• 50% data for training and 50% for testing and 30 random trials are generated 

• Sparse coding with low rank multi-task learning achieves the best performance 

Computer Science & Engineering 
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MALSAR Package  

• Jiayu Zhou, Jianhui Chen, Jieping Ye 

• http://www.public.asu.edu/~jzhou29/Software/MAL
SAR/index.html 
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Multi-TAsk Learning via 
StructurAl Regularization 

MALSAR package 

http://www.public.asu.edu/~jzhou29/Software/MALSAR/index.html
http://www.public.asu.edu/~jzhou29/Software/MALSAR/index.html
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Functions in MALSAR Package  

• Regularized Multi-Task Learning 

• Joint Feature Learning 

• Trace Norm Minimization  

• ASO 

• Clustered Multi-Task Learning 

• Network Multi-Task Learning 

• Robust Multi-Task Learning 
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Trends in Multi-Task Learning 

• Develop efficient algorithms for large-scale multi-
task learning. In many areas where multi-task 
learning is applied, such as bioinformatics, the 
dimensionality of data can be huge. 

• Learn task structures automatically in MTL  

• Most multi-task learning techniques deal with 
supervised learning problems. There is a high 
demand of developing new methods for semi-
supervised and unsupervised learning. 
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