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2005 CS&E Prize Honors Multilevel Methods Pioneer
CS&E 2005

For “pioneering modern multilevel
methods, from multigrid solvers for partial
differential equations to multiscale tech-
niques for statistical physics,” Achi Brandt
of the Weizmann Institute of Science is the
2005 recipient of the SIAM/ACM Prize in
Computational Science and Engineering.
The prize was awarded at the third SIAM
Conference on Computational Science and
Engineering, held in Orlando, February
12–15. Brandt, who was also cited “for
influencing almost every aspect of contem-
porary computational science and engi-
neering,” provided SIAM News with the
following perspective of the area in which
his work has been so influential.

The Scale Gap

Despite their dizzying speeds, modern
supercomputers are incapable of handling
many of the most vital problems in science
and engineering. This is due primarily to
the gap between the microscopic scale, at
which physical laws are given, and the
much larger scale of phenomena we wish to
understand and control.

The existence of this gap implies, first of
all, huge numbers of variables (e.g.,  particle locations, gridpoint values of a discretized partial differential equation, picture
elements), and possibly even much larger numbers of interactions (e.g., among particles, each interacting with all the others).
Moreover, computers simulate physical systems by moving just a few variables at a time; each such move must be extremely small,
because a larger move would have to take into account all the motions to be performed simultaneously by all other variables.

Consequences of these difficulties include dynamical simulations in which only tiny time steps are allowed, iterative solvers that
are very slow to converge, and critically inefficient Monte-Carlo sampling. Even more seriously, such computer schemes are
incapable of moving a system across large-scale energy barriers, each of which can be crossed only by a large coherent motion of
a very large number of variables. All these computational obstacles make it impossible today to calculate, say, properties of
elementary particles and atomic nuclei, or to computerize chemistry, so as to enable detailed understanding and design of proteins,
drugs, nano-systems, materials, chemical reactions, industrial processes. . . .

Multiscale Computation

In methodical work on several different model problems, it has been shown that all types of scale-related bottlenecks can be
removed by a variety of multiscale algorithms. Such algorithms were first developed in the form of fast multigrid solvers for
discretized PDEs. These solvers iteratively employ local processing (relaxation) on the given grid and then on increasingly coarse
grids, with each grid level providing corrections to the equations governing the next-coarser level and to the solution forming at
the next-finer level.

It has been shown that these (and more elaborate) interscale interactions can indeed eliminate many scale-associated difficulties,
such as slow convergence (e.g., in optimization processes or in PDE solvers); critical slowing down (in statistical mechanics); ill-
posedness (e.g., of inverse problems); conflicts between small- and large-scale representations (e.g., in wave phenomena, bridging
the gap between wave equations and geometric optics); extremely large numbers of long-range interactions (in many-body systems
or integral equations); and the need to rapidly update very large determinants (in quantum chromodynamics) or to produce many
fine-level solutions (e.g., in time-dependent problems or optimal control) or very many fine-level independent samples (in
statistical physics). Multigrid-like methods called algebraic multigrid (AMG) can rapidly solve highly disordered systems, such
as Dirac equations on critical gauge fields and linear and nonlinear systems of PDEs discretized on unstructured grids. The AMG
methods are also being modified to make them useful in the efficient solution of many types of graph, data mining, and vision
problems.

SIAM past president James (Mac) Hyman presented the 2005 SIAM/ACM Prize in Compu-
tational Science and Engineering to Achi Brandt at the third SIAM Conference on
Computational Science and Engineering, in Orlando, Florida.
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Systematic Upscaling

Physical systems with huge numbers of
variables are always highly repetitive: A
small set of underlying laws (in the form of
equations or statistical rules) governs
throughout the problem domain. This has
opened the way to a new computational
paradigm, called systematic upscaling (SU),
in which, at each coarser level, a set of
governing equations that are valid every-
where is constructed once and for all, de-
rived from the next-finer level by calcula-
tions that are conducted only in some small
representative “windows.” This removes
the need for fine-scale resolution of the
entire system.

Based on coarsening procedures encoun-
tered in renormalization group methods and on multigrid-like interscale feedback, SU
includes, first of all, a rigorous approach for selection, at each level, of the set of
variables that can adequately represent the next-coarser level. Figures 1 and 2 illustrate
examples of coarse-level variables (developed in collaborations with Dov Bai and
Valery Ilyin). For a polymer (chain of small dots, Figure 1), the variables at the (first)
coarse level are the locations of pseudo-particles (large dots); each such particle is
placed at the geometric center of three fine-level atoms. For an atomistic fluid (Figure
2), the coarse level consists of variables defined at the points of a lattice; each variable
describes an average property of the surrounding atoms (small gray dots): density,
average charge or dipole moment, and so forth. Coarse variables of other types would
enter at lower temperatures, as the fluid approached solidification.

Furthermore, SU includes procedures by which calculations at each level dictate the
operational rules (e.g., equations) that should govern the next-coarser level and the
windows at which the next-finer-level calculations should be conducted. Iterating back
and forth between all the levels leads quickly to multilevel self-consistency. Such interlevel interactions allow very efficient
computation. For example, while atom-by-atom simulation of polymers, including proteins, is extremely slow, because of energy
barriers at all scales, even the first level of coarsening depicted here is free of all the more local barriers. Consequently, it allows
simulations that are two orders of magnitude faster. Likewise, the multiscale computation of fluids, recursively employing
progressively coarser lattices of the type shown here, allows the study of phase transitions inaccessible to one-level simulations.

Achi Brandt is a professor in the Department of Applied Mathematics and Computer Science at the Weizmann Institute of Science.

Figure 2. Coarse-level variables for an
atomistic fluid are defined at the points of
a lattice; each variable describes an aver-
age property of the surrounding atoms
(small dots).

Figure 1. Selection of coarse-level vari-
ables for a polymer. Each pseudoparticle at
the next-coarser level (large dots) is placed
at the geometric center of three fine-level
atoms (small dots).


