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By David L. Finn

“Every one must have observed that when a slip of paper falls through
the air, its motion though undecided and wavering at first, sometimes
becomes regular.”

—James Clerk Maxwell, 1854, Maxwell’s Collected  Works

Take a business card, hold it out in a horizontal position. Then let
go and watch as it falls to the ground.

Now take another business card, hold it out in a vertical position, let
go, and watch as it falls to the ground. (See Figures 1 and 2.)

The horizontally held card should have fluttered to the ground
with a gentle back-and-forth motion, landing roughly below the
point from which it was released. The vertically held card should
have fallen for a moment, wavering slightly, and then tumbled end over end, landing far from the point directly below the release point. (See
Figure 2.)

This simple experiment yields some surprising applications of sophisticated mathematics. Consider the flight times of the two business cards.
Which one will hit the ground first? (It is assumed that the cards are released with their centers of mass at the same height.)

This question was posed to a group of freshman science and engineering students on their first day in a multivariate calculus class. Before
the experiment, the students correctly predicted the fluttering motion of the horizontally held card. But they predicted a descent straight down
for the vertically held card, with the card cutting through the air like a knife. Based on these predictions, the students concluded that the verti-
cally held card would hit the ground first. When the experiment was performed, the students were surprised to see that in most cases the verti-
cally held card tumbled end over end and consequently stayed aloft longer than the horizontally held card, which fluttered down to the ground.

Z. Jane Wang of Cornell University, in a lecture titled “Dragonflies as Airplanes,” explained some of the phenomena associated with falling
paper and flying business cards in a symposium titled “How Insects Fly” at the February 2006 meeting of the AAAS in St. Louis. Describing

the connection between falling paper or business cards and insect flight, Wang says that studying
falling paper (the flight of business cards) allows one to “set the wing free.” In other words, if it
were possible to dissect insect flight into active flight, driven by the motion of the wings, and pas-
sive flight, governed by the interaction of the wings with the air, then looking only at the passive
interaction of the wing with the air is equivalent to studying falling paper.

This might seem to be a step backward in the study of insect flight, but the physics of an insect
wing in flight is not at all well understood. The classical aerodynamics of an airfoil does not
explain the motion of insects: According to classical theory, a bumblebee can’t fly. The improved
aerodynamic models generated in studies of falling paper may eventually help explain the flight of
a bumblebee.

In her lecture, Wang considered other aspects of insect flight, such as how insects hover and the
efficiency of flapping flight, some of which have benefitted from the models of falling paper. In
fact, she says that she studies falling paper to better understand the physics of an insect wing in

flight—“a piece of paper experiences the same kind of physics as the dragonfly wing.”
In examining the motion of falling paper, Wang and her collaborators, Anders Anderson and Umberto Pesavento (cf. [1–3]), used high-speed

digital video to track and accurately measure the trajectories of falling paper and falling aluminum plates in a water tank. Their main experi-
ments with falling aluminum plates were designed to minimize the three-dimensional effects without unduly influencing the motion of the
plates. In particular, the experiments avoid adding forces that would constrain the motion of the plates and minimize any interactions of the
plates and the walls of the tank. Furthermore, the dimensions of the plates (length L ≈ 19 cm, width W ≈ 0.8 cm, and thickness T ≈ 0.12 cm),
along with the release mechanism, ensure that the trajectories are in essence two-dimensional. The controlled experiment differs in this respect
from the flying business card experiment described earlier, in which the dimensions are length L = 8.8 cm, width W = 5.0 cm, and thickness T
= 0.03 cm. These dimensions and the uncertainty of the horizontal and vertical positions make the three-dimensional effects harder to negate.

The measurements obtained from the high-speed digital video are used in solving the Navier–Stokes equations for the flow around the plate,
with a coordinate system adapted to the plate. For computational purposes, the rectangular plate is modeled as an elliptic cylinder; the
Navier–Stokes equation can then be modeled by a stream-vorticity function, together with a conformal mapping to account for plate-adapted
coordinates:

where u and ω are the velocity field and vorticity fields of the fluid and S is the scaling factor associated to the conformal mapping with plate-

Falling Paper and Flying Business Cards

Figure 1. Business cards held horizontally and vertically.

Figure 2. Simulation of falling business
cards, dropped from vertical (left) and hori-
zontal (right) positions.
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adapted coordinates. The observed plate dynamics are incorporated into the Navier–Stokes solver through boundary conditions to reflect the use
of plate-adapted coordinates.

The Navier–Stokes solution is then used to compute the pressure and viscous forces on the plate; the result is a fluid force-based model for
explaining the phenomena observed in the experiments. This is an improvement on the phenomenological model for the motion of falling paper
developed earlier by Tanabe and Kaneko [6] and Mahadevan [3] on the basis of quasi-steady analysis. The phenomenological model consists of
the system of coupled differential equations written in plate-adapted coordinates in dimensional form:

m1v
.
x ' = m2θ

.
vy ' – ρfΓvy ' – m'g sin θ – Fx '

m2v
.
y ' = –m1θ

.
vx ' + ρfΓvx ' – m'g cos θ – Fy '

I θ
..

= (m1 – m2)vx' vy' – τ,

where vx ', vy' are the velocity in the adapted coordinate system and θ is the rotation of the plate from vertical (see Figure 3). In the model, m1
and m2 represent the mass of the plate adjusted for added mass effects from the interaction of the plate with the fluid as per inviscid theory and
I is the moment of inertia, also adjusted for added mass effects, Γ is the circulation around the plate, and ρf is the density of the fluid.

The terms Fx ', Fy ', and τ represent the viscous drag force and the dissipative torque. The drag forces Fx ' and Fy ' are modeled with standard
quadratic models, so that

Fx ' = ρf a (CD(0) cos2(α) +CD(π/2) sin2 (α)) |v| vx '
Fy ' = ρf a(CD(0) cos2(α) +CD(π/2) sin2 (α)) |v| vy ',

where |v| is the speed of the plate and α is the angle of attack, defined as the angle between the major axis of the ellipse and the velocity vec-
tor. The dissipative torque τ is modeled by integrating the normal component of the local drag over the surface of the plate, and is of the gen-
eral form

τ = ρf a4 (μ1 + μ2 |θ
.
)
.
θ,

where μ1 and μ2 are constants determined in the experiment.
The major improvement in the phenomenological model is the treatment of the circulation Γ of the fluid around the card. By fitting the pres-

sure and force from the Navier–Stokes solution, Wang, Anderson, and Pesavento found that the circulation has a rotational term and a transla-
tional term. This means that the circulation can be modeled as

Γ = CR a2 θ
.

+ CT a |v| sin (2α),

where a is the major axis of the elliptic model of the plate. The terms CR and CT are constants determining the relative importance of the rota-
tional and the translational terms in determining the lift of the plate. The earlier models of Tanabe and Kaneko [6] and Mahadevan [3] assumed
the circulation to be either proportional to the translational velocity or constant. 

This improved model for the circulation allows simulations from solving the system of differential equations to better match the observed
phenomenon. In particular, it predicts the center of mass elevation that is observed in falling paper (and falling leaves). This elevation explains

why, on a still autumn day, leaves sometimes seem to rise as they fall, as if blown by a breeze.
Figure 4 shows various trajectories arising from a dimensionless form of the phenomenological
model. Some trajectories show a fluttering motion described by alternating gliding at low angles
of attack and fast rotational motion at the turning cusp-like points. Other trajectories show a peri-
odic tumbling motion, alternating between short and long gliding motions. In both fluttering and
tumbling trajectories, elevation of the center of mass can be observed near the cusp-like points
where the card experiences quick rotation. Finally, some trajectories are more chaotic, combining tum-
bling and fluttering motions.

The explanation for the more rapid descent of the horizontally held business card comes from
an analysis of the phase space for the phenomenological model. The two perfect falling states for
business cards stem from the initial states u = 0, v = 0, θ

.
= 0, θ = π/2 corresponding to perfect ver-

tical release and u = 0, v = 0, θ
.
= 0, θ = 0 corresponding to perfect horizontal release. The perfect

vertical release yields the edge-on steady trajectory u = ±U, v = 0, θ = 0, π, θ
.
= 0; the perfect horizontal release yields the broad side-on trajec-

tory u = 0, v = ±V, θ = 0, π. The velocity U in the edge-on trajectory is greater than the velocity V in the broad side-on trajectory. This corre-
sponds to the intuition that the edge-on trajectory has less air resistance than the broad side-on trajectory and, consequently, that the vertically
held card should hit the ground first. Analysis of the phase space, however, shows that the edge-on steady trajectory is unstable as the vx 'vy ' term
in the expression for θ

..
acts to rotate the card in the same direction, irrespective of the small perturbation.

Further analysis of the phase space shows that when the parameters dictate an eventual tumbling motion, there are two stable limit cycles in
vx ' -vy ' -θ

.
space, one with θ

.
> 0 and one with θ

.
< 0, corresponding to periodic tumbling in different directions. All trajectories except the edge-on

fixed point and the broad side-on fixed point approach one of these two stable limit cycles. The important observation for the falling business
card experiment is that the broad side-on fixed point is also unstable, but that trajectories near the broad side-on fixed point take longer to
approach a stable limit cycle than trajectories near the edge-on fixed point. This corresponds to the observation that the horizontally held card
normally hits the ground first.

Figure 3. Adapted coordinates for the phe-
nomenological model.



The work of Anderson, Pesavento, and Wang
on the dynamics of falling paper can be viewed
essentially as a continuation of the work of
Maxwell [4]. The difference is that Maxwell
was working before the mathematical tech-
niques and physics of fluid mechanics were well
understood, and he lacked the computers needed
to solve the Navier–Stokes equations and the
corresponding nonlinear ordinary differential
equations from quasi-steady analysis. In fact,
the original work of Maxwell is qualitative: Not
a single equation is presented in his four-page
paper. The next step in modeling a falling card
will be to account for three-dimensional effects,
which will make it possible to model the motion
of a falling leaf. Solving the Navier–Stokes equa-
tions in three dimensions, however, is daunting at
present.
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Z. Jane Wang is scheduled to give an invited talk on the work discussed in this article at the 2007 SIAM Conference on Applications of
Dynamical Systems, Snowbird, Utah, May 28–June 1.

David L. Finn is an associate professor in the Department of Mathematics at the Rose-Hulman Institute of Technology.

Figure 4. Various trajectories of falling paper from a dimensionless version of a phenomeno-
logical model, depending on the dimensionless quantity (bρs)/(aρf ), where ρs is the density of
the plate, ρf is the density of the fluid, and a,b are the semi-major and semi-minor axes of the
elliptic model of the plate. (a) fluttering motion, (b) tumbling motion, (c) periodic tumbling with
alternating short and long glides separated by cusp-like points of high rotation, (d) periodic flut-
tering, also with alternating short and long glides separated by cusp-like points of high rotation,
(e) chaotic motion, (f) broadside fluttering.


