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Mathematics and Synthetic-Aperture Radar Imaging
By Margaret Cheney

The key technology underlying Synthetic-Aperture Radar (SAR) imaging is mathematics—a wonderfully rich mathematics that includes par-
tial differential equations, scattering theory, microlocal analysis, integral geometry, harmonic analysis, group representation theory, and statis-
tics. Nevertheless, radar imaging remains almost completely unknown in the mathematical community.

Radar technology was developed within the engineering community, for good reasons: In the beginning, many of the challenges had to do
with generating and measuring microwaves. Most of those difficulties have now been overcome, however, and the remaining problems are main-
ly mathematical.

In SAR, an antenna is mounted on a moving “platform,” generally a satellite or airplane. The antenna transmits a broad beam of microwave
radiation that bounces off the ground and other objects; the same antenna measures the scattered waves. Beautiful images are produced from
these measurements, with resolution as small as tens of centimeters even for microwave beams that cover tens of kilometers.

Standard antenna theory has a useful rule of thumb: An antenna that is small relative to the wavelength tends to produce a very broad, diverg-
ing beam, whereas an antenna with a large radiating area (“aperture”) can produce a much more focused beam. The term “synthetic-aperture”
refers to the mathematical synthesis of a large aperture from measurements made with a small antenna moving over a long path.

The invention of SAR is generally credited to Carl Wiley, of the Goodyear Aircraft Corporation, in 1951. During the 1950s, universities and
industry cooperated to build the first operational systems. In the 1960s, NASA started to sponsor (unclassified!) work in the area, and the first
digital proc-essors were developed. In 1978, the SEASAT–A satellite was launched; its SAR system, although in operation for only 100 days,
sent back images so obviously useful that it stimulated a great deal of further work in the area. Since 1981, when the Shuttle Imaging Radar
series began, many shuttle expeditions have included SAR missions. In the 1990s, many countries sent up SAR satellites, and space probes car-
rying SAR systems were sent to other planets. The development of SAR and related radar imaging systems continues unabated today.

The Mathematical Model for SAR

A mathematical model for SAR can be derived from the scalar wave equation 

(1)

where the product pfs is proportional to the effective current density on the antenna, where E denotes one component of the electric field, and
where c(x) denotes the speed of wave propagation in the material at position x in space. If the location x is in dry air, for example, then to a
good approximation, c(x) = c0, where c0 denotes the speed of light in vacuum. If x is located under ground, c(x) might denote the electromag-
netic wave speed in soil. At microwave frequencies, most of the scattering takes place in a thin layer at the surface, so in practice only surface
values of c are relevant.

The temporal part p of the source is the time-varying waveform sent to the antenna, whereas the spatial part fs of the source provides for a
model with a realistic antenna aperture. Typically, the x-support of fs is fairly small; most satellite antennas are rectangles, roughly 10 meters ×
2 meters.

Because the antenna moves along a path γ, we write the source fs as fs(x) = f (x – γ(s)), where s is a parameter (such as arc length) along the
path γ. The electric field Es thus depends  on the antenna location parameter s.

We measure the field at the same antenna, so the measured data d can be thought of as

d(t,s) = Es (t, γ�(s)).                                                                                (2)

The full radar imaging problem is to determine the wave speed c2(x) from knowledge of d(t,s).
Typically, the problem is attacked with the help of a variety of assumptions. In particular, multiple scattering effects are almost always neg-

lected, which allows us to use the known field emanating from the antenna in place of the unknown true electric field impinging on the unknown
surface. This assumption eliminates a product of unknowns and thus makes the imaging problem linear, but it is also responsible for artifacts in
images (see Figure 1).

Another commonly used approximation, the far-field approximation, is useful for imaging small scenes. This approximation assumes that by
the time the wavefront from the antenna reaches objects of interest, it is approximately planar.

Ultimately, the single-scattering and far-field approximations together allow us to approximate the radar data by

(3)

where V = c0
–2 – c–2 denotes the sought-after perturbation in wave speed and where  denotes the unit vector from the antenna to the scene cen-

ter.
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We see from (3) that transmission of a perfect
δ-like pulse p gives rise to a Radon transform of
the desired wave-speed perturbation V.

Mathematical Challenges

Help is needed from mathematicians in the
following areas.

■ How can we form images in the presence of
complex multiple scattering? Without the single-
scattering approximation, the imaging problem is
nonlinear, because it involves a product of an
unknown scatterer and an unknown wave imping-
ing on that scatterer.
■ Radar data depends on two variables, so we can
hope to make a two-dimensional image. Often, c is
assumed to be non-constant only on a known flat
surface; this assumption can lead to distortions in
the images, as in Figure 2. In fact, in many cases it
is the shape of the surface itself that we wish to dis-
cover. This can be done with two widely spaced
antennas and a technique called interferometric
SAR, which, roughly speaking, is based on the idea
of binocular vision. What information about the
scattering surface can be found in data from a sin-
gle antenna, perhaps moving on a non-straight (but still realistic) flight path?

■ Forming images of moving objects is problem-
atic: Moving objects can be mispositioned in
images or can appear simply as streaks.

■ Our current systems collect huge amounts of
data, completely overwhelming the available
trained image analysts. There is a pressing need for
computerized assistance in interpreting SAR
images.

■ How can we exploit multiple transmitters, per-
haps transmitting different waveforms, and multi-
ple receivers? Only small numbers of transmitters
and receivers are present, and their locations may
not be precisely known or precisely controllable.
What waveforms should be transmitted?

The field of radar imaging is wonderfully rich
in mathematics and challenging open problems
that need mathematical attention!
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Figure 1. SAR images of M-47 tanks on Kirtland Air Force Base show the effect of resolution
on image interpretability. For each resolution, the lower image is an enlargement (x4) of the
upper image. Automatic recognition of objects from SAR images is an open problem. The pres-
ence of three gun barrels on the tank at the right is an artifact, caused by neglect of multiple-
scattering effects. How can such artifacts be eliminated? Images from Sandia National
Laboratories.

Figure 2. SAR image of the U.S. Capitol. The dome is distorted, an effect that arises from the
assumption that scatterers lie on a flat surface. Interferometric SAR is a two-antenna technique
that can be used to find the surface shape. Could the surface be found from single-antenna
data? Image from Sandia National Laboratories.


