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Lattice Boltzmann Methods:
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It is well known that the Navier–Stokes equations in continuum theory can be derived from the Boltzmann equation in the limit of small
Knudsen numbers. Solving the Boltzmann equation means computing a particle velocity distribution function f defining the probability that a
particle with a microscopic particle velocity v→ will be found at (x,→ t). The first few moments of this distribution function with respect to the par-
ticle velocity are macroscopic flow properties, such as density, momentum, energy, and the stress tensor. It is thus possible, in principle, to obtain
solutions to the Navier–Stokes equations by solving the Boltzmann equation. The Boltzmann equation being in general much harder to solve,
there is nothing at first sight to be gained from such an approach, if concern is limited to hydrodynamics in the context of continuum mech-
anics. It turns out, however, that the Boltzmann equation can be drastically simplified and still serve as a hyperbolic superset of the
Navier–Stokes equations.
Construction of effective and efficient schemes based on kinetic equations requires several approximations. First, the velocity space v→ must

be drastically reduced to a finite set of a small number of discrete velocities {e→j} (see, for example, Figure 1), which leads to b coupled discrete
Boltzmann equations for the distribution functions { f i}.
The second approximation is to linearize the collision operator. The simplest linearized colli-

sion operator, the so-called Bhatnagar–Gross–Krook (BGK) model, approximates the tendency of
the system to approach equilibrium by a relaxation process with a constant relaxation time τ.
The third approximation is a coherent discretization of space–time such that the resulting dis-

crete system, the lattice Boltzmann equation (LBE), can be interpreted as a simple two-step evo-
lution procedure for { f i} on a discrete lattice: local collision (i.e., the relaxation process) with
constant relaxation times, and advection of the distribution functions from one lattice point
to the next according to the discrete velocities.
If the discrete equilibrium distributions are properly chosen as low-order polynomials of the

conserved moments of { f i}, the LBE can solve the incompressible Navier–Stokes equation with
the kinematic viscosity υ as a linear function of the relaxation time τ and the pressure as coupled
to the density by an ideal gas equation of state. The lattice Boltzmann equation is in essence an
explicit time-marching finite-difference scheme with second-order accuracy in space. The main
advantages of the LBE method are very low numerical dissipation, even at scales comparable to
the grid spacing, as well as very low dispersion as compared with conventional second-order
schemes for the Navier–Stokes equation.
The lattice BGK scheme sketched here can be improved considerably in terms of stability, and thus computational efficiency, by using a gen-

eralized LBE with multiple-relaxation-time models. The generalized LBE is a projection method: The collision process is executed in the
moment space spanned by an orthogonal basis, while the advection is per-
formed in the velocity space. Exploiting the maximum number of degrees
of freedom in the relaxation process leads to significant improvements in
the stability and accuracy of boundary conditions of the LBE method.
Numerous extensions in the past two decades have made the LBE method
a competitive numerical tool for a wide range of problems, including tur-
bulent flows (see Figure 2), thermal flows, multi-component and multi-
phase flows, free-surface flows, fluid–structure interactions, viscoelastic
fluids, particulate suspensions, colloids, and other complex fluids.
We organized two minisymposia for this year’s SIAM Conference on

Computational Science and Engineering to present the latest developments
in lattice Boltzmann methods. The speakers covered both theoretical devel-
opments and practical applications, including direct numerical simulation
of turbulence (L.-S. Luo, Old Dominion University), LB methods for mag-
netohydrodynamics (P. Dellar, Oxford University), use of GPUs for ter-
aflop/s LB computations on a desktop PC (C. Janßen, TU Braunschweig),
LB simulations of thermal flows induced by radiative heat transfer (M.
Krafczyk, TU Braunschweig), viscous flow and colloid transport in
resolved porous media (L. Wang, University of Delaware), large-scale LB
simulations of fluid–structure interaction (J. Götz, University of Erlangen),
LB simulations of biomedical flows (J. Bernsdorf, NEC Europe), and
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Figure 1. A set of 19 microscopic velocities
spanning a cubic unit cell (D3Q19).

Figure 2. Snapshot from a large-eddy lattice Boltzmann simulation
of turbulent flow around two cooling towers at Re = 108 with more
than 109 degrees of freedom.



multi-species LB models and their application to sustainable energy systems (P. Asinari, Politecnico di Torino). The results presented in
the minisymposia demonstrated that the LBE method is highly efficient in terms of parallelization and effective for problems involving multi-
physics and complex geometries.
Our minisymposia offered a great opportunity to communicate recent developments in kinetic methods to the SIAM community and have

surely paved the way for sessions in this area at future meetings. They also provided a lively forum for the exchange of ideas among scientists
working in this area.
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