
By Barry A. Cipra

The 2009 SIAM Conference on Applications of 
Dynamical Systems, held in Snowbird, Utah, May 
17–21, featured timely sessions on epidemics and 
climate change, and on mathematical methods from 
network models, topology, and other areas. Also on 
the agenda was the awarding of two important SIAG/
DS prizes: the Jürgen Moser Lecture and the J.D. 
Crawford Prize.

Honored for his contributions to nonlinear science, 
former SIAM president Martin Golubitsky, director of 
the Mathematical Biosciences Institute at Ohio State 
University, gave the 2009 Jürgen Moser Lecture. Arnd 
Scheel of the University of Minnesota received the J.D. 
Crawford Prize.

In the Moser Lecture, titled “Catastrophes, 
Symmetry-Breaking, Synchrony-Breaking,” Golubitsky 
surveyed the rise, fall, and legacy of catastrophe 
theory. Misunderstood and exaggerated claims for the 
catchily named theory emerged in the backlash that 
followed a media splash in the 1970s. At heart, catastrophe theory is a study of singularities: the various ways in which nonlinearities force geometric 
objects to kink up, creating discontinuities in their associated dynamics. The French mathematician René Thom (1923–2002) famously showed that 
there are just seven different kinds of catastrophe, ranging from ordinary folds and cusps to swallowtails and butterflies. But the “menu” of catastrophes 
and the precise theorems, Golubitsky said, depend on context.

Thom’s theory, developed in the context of potential functions, was limited to systems of co-dimension up to 4 (co-dimension meaning, roughly, the 
number of free parameters). Other researchers have studied catastrophes in the context of equilibria and dynamics of ODEs. Golubitsky, with David 
Schaeffer and Ian Stewart, has looked into the theory from the vantage point of “distinguished” parameters and symmetry. In particular, one of the 
ways in which catastrophes occur is by symmetry-breaking: the seemingly arbitrary choice of one buridan-ian bale of hay over another.

Symmetry-breaking has been investigated extensively, both analytically and experimentally, in Taylor–Couette flow (also called Couette–Taylor 
flow, depending on which end of the Chunnel one favors), a system made up of a viscous fluid sandwiched between two rotating cylinders. Some of 
the basic experiments on this system were done by Harry Swinney (the 2007 Moser Lecturer) and co-workers. The pertinent parameters are the ratio 
a/b of the cylinders’ radii and a pair of Reynolds numbers measuring the velocities of the inner and outer cylinders. At low rotation rates, the fluid 
does little to call attention to itself. But as things ramp up, a carnival sideshow of spirals, ribbons, vortices, and other asymmetric patterns breaks 
out. Theorists, including Golubitsky, have explored the abundance of bifurcations produced by Taylor–Couette systems, even predicting features for 
experimentalists to look for. 

Another tantalizing example of pure circular symmetry giving way to rotating and pulsing waves is a combustion experiment in which a gas 
rises to the surface of a flat circular burner. Beginning in the 1980s, Michael Gorman of the University of Houston and colleagues have stud-
ied the patterns that occur, including a phenomenon that’s been dubbed “jumping ponies on a merry-go-round.” Unlike the Navier–Stokes- 

obeying Taylor–Couette system, Golubitsky pointed 
out, there is as yet no accurate model for what the 
flames do. Nevertheless, some of the patterns seen 
in the flame experiment can be understood through 
symmetry-breaking bifurcations. In a 2000 paper in 
the Journal of Nonlinear Science, Golubitsky and col-
leagues Victor LeBlanc of the University of Ottawa 
and Ian Melbourne of the University of Surrey (and an 
invited speaker at the Snowbird meeting) considered 
patterns associated with quasi-periodic motions stem-
ming from symmetry-breaking bifurcations that occur 
in flame and fluid systems. (The Gorman flame has 
symmetry group O(2), which includes a mirror sym-
metry in addition to purely circular SO(2) symmetry; 
Taylor–Couette has symmetry group SO(2) × Z

2
—or

SO(2) × O(2), if periodic boundary conditions are 
assumed; the JNS paper also examined the famous 
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Snowbird, May 2009: Mary Lou 
Zeeman, chair of the SIAM Activity 
Group on Dynamical Systems, con- 
gratulated 2009 Jürgen Moser 
Lecturer Martin Golubitsky at the 
group’s most recent conference. 
Golubitsky, who titled his lecture  
“Catastrophes, Symmetry-Breaking, 
Synchrony-Breaking,” was honored 
in part “for his seminal contributions 
to the understanding of dynamics 
and symmetry.” Established in 
2000 in memory of Jürgen Moser 
(1928–1999), the prize has been 
awarded every other year begin-
ning in 2001; Golubitsky’s predeces-
sors are Yakov Sinai, David Ruelle, 
Stephen Smale, and Harry Swinney.

Also established in 2000 by the 
SIAM Activity Group on Dynamical 
Systems, the J.D. Crawford Prize 
has been awarded every other year 
since 2001, most recently to Arnd 
Scheel of the University of Min-
nesota. Scheel, shown here in Snow- 
bird with Mary Lou Zeeman, was 
honored “for his transformative work 
on planar defects, on structures gen-
erated by inhomogeneities in oscil- 
latory media, and on stability for al- 
most planar fronts and viscous 
shocks, and for explaining intriguing 
experimental results and discover- 
ing new patterns in the process.” 
Created in memory of J.D. Crawford 
(1954–1998), the prize recognizes re- 
cent outstanding work on a topic in 
nonlinear science; previous recipients 
are Björn Sandstede, Yannis Kevre-
kidis, Dwight Barkley, and Andrew Stuart.



Belousov–Zhabotinsky reaction, whose mathematical 
idealization has the full two-dimensional euclidean 
symmetry group E(2).)

More recently, Golubitsky and his student Maria 
Leite, now at the University of Oklahoma, have inves-
tigated how bifurcations in the dynamics of coupled 
“cells” depend on the coupling architecture—that is, 
on the source of the input for each cell. An underlying 
premise is that the cells are “homogeneous” and “iden-
tically coupled.” This means that the dynamics x

i
 of 

cell i are described by an equation of the form x
i
´ = f (x

i
,

k other inputs), where f is the same for all i (homogeneity) 
and symmetric under permutations of the k other inputs 
(k being the “valency” of the network). For example, if
f(x,y,z) = f(x,z,y), a three-cell network of valency 2 
might have dynamics
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which corresponds to network 5 in Figure 1. Any such 
network obviously allows a synchronous solution x

1
 = 

x
2
 = x

3
 satisfying x´ = f (x, x, x). The question is, how 

stable is that solution, and what other possibilities arise 
as bifurcations? The answer clearly depends in part on 
the jacobean of f. But it depends just as clearly on the 
network architecture as well.

A given network can be represented by a directed graph, with arrows indicating the inputs. In her PhD dissertation, Leite classified the essentially differ-
ent three-cell networks of valency 1 and 2: There are 34 in all, as shown in Figure 1). (Leite received a Red Sock Award for this work at the 2005 Snowbird 
meeting.) By contrast, there are only three distinct two-cell networks. The number of networks grows exponentially, or even super-exponentially, with 
the number of cells (and the valency), Golubitsky says. Nevertheless, he thinks that the implications for dynamics may yet be manageable. In particular, 
the bifurcations that arise from the network structure are tied to the eigenspace types of the directed graphs’ adjacency matrices. The number of eigen-
space types seems to grow at a more leisurely pace, and each type likely has a relatively small number of bifurcations of co-dimension 1.

Even with large numbers of cells, symmetries in the architecture can reduce the analysis to a smaller “quotient” network. Golubitsky, Leite, and 
a long (and growing) list of colleagues are studying ways in which bifurcations for the quotient networks “lift” to the larger system, along with the 
possibility of additional bifurcations beyond the lifted ones. Catastrophe theory, it seems, could be on the cusp of a renaissance.

Barry A. Cipra is a mathematician and writer based in Northfield, Minnesota.

Figure 1. The 34 distinct homogeneous three-cell networks with valency n = 1, 2. From M.C.A. 
Leite and M. Golubitsky, “Homogeneous three-cell networks,” Nonlinearity, Vol. 19, 2006.


