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We may have learned in grade school to evaluate a polynomial like p(x) = 9x2 + 5x + 8 with three multiplications: 9 · x · x + 5 · x + 8, and to use around 
n(n + 1)/2 multiplications to evaluate a degree-n polynomial p at a single point. It is not hard to see how we can do this evaluation instead with just 
O(n) multiplications. (Try to evaluate p(x) with two multiplications and two additions.) Now suppose we want to evaluate p at n (special) points, the 
complex nth roots of unity. Remarkably, this can be done with a total of O(n log n) multiplications. Suppose now that only k  n of the evaluations 
are “large” and the others “small,” but we don’t know in advance which the large ones are. Can we find the locations and approximate values of the 
k large evaluations, in total computation time not much greater than k? Notice that we don’t have time to read all coefficients, or to evaluate a given 
polynomial exactly at even one point.

Remarkably, the answer is still yes! Beyond its appeal as a puzzle, this problem is a restatement of the discrete Fourier transform (DFT), which, along 
with continuous versions and their inverse transforms, is used throughout mathematics and related fields. In a paper to be published in the upcoming 
Proceedings of the 44th ACM Symposium on the Theory of Computing, four MIT researchers—Haitham Hassanieh, Piotr Indyk, Dina Katabi, and 
Eric Price—present an algorithm that computes a Fourier transform faster than the celebrated fast Fourier transform algorithm [9]. More precisely, the HIKP 
algorithm gives an approximation that is good enough in practice, on most data seen in practice, in runtime proportional to k log(n/k) log(n)—better than the 
FFT’s, as long as k/n ® 0, however slowly.

What was done, what are the limitations, and why are the limitations bearable in practice? What does the new algorithm give to applied mathematics, and 
how does it draw on classical results in applied mathematics?

■ ■ ■

The DFT takes a vector x of length n and multiplies it by the n-by-n matrix F whose (w,t) entry is exp(2piwt/n), returning the spectrum X of x. 
Equivalently, it regards the vector x as a sequence of coefficients of a polynomial and evaluates that polynomial on the complex points

e2pi/n,e2p·2i/n,e2p·3i/n, ··· e2p·(n–1)i/n.

In the theory of signal processing, the wth element of the spectrum can be regarded as giving the frequency content of x at frequency w. The Fourier 
transform can be used to analyze signals that come from, say, the human voice, handheld electronics, shopping patterns, or vibrations filtered by the 
earth.

The fast Fourier transform algorithm is generally credited to Cooley and Tukey [4]. The FFT algorithm computes an exact DFT on any input with com-
putation time O(n log n), which is the best, or close to the best, possible. Briefly, the DFT and its inverse can be framed as finding coefficients of a 
degree-(n – 1) polynomial that interpolates given values at the nth roots of unity. To find a degree-3 polynomial through values at ±1, ±i, the algorithm 
first interpolates separately through ±1 and ± i, getting linear p1(z) and pi(z), then quickly outputs 1+z2/2 p1(z) + 1–z2/2pi(z). It is this reduction of one 
problem of size n to two problems of size n/2 that results in the claimed runtime.

In practice, many signals that we encounter and want to analyze have frequency content at only a limited number of frequencies. Which notes are 
being played on a piano? Generally, we care more when a skilled pianist uses at most ten fingers and less when an entire birthday party of six-year-olds 
use 88 fists. In the case of k  n significant frequencies, algorithms (including HIKP) can be much faster than the general case. The HIKP algorithm 
cleverly draws on the signal processing literature in filter design and randomized algorithms.

The new algorithm builds on work from the last two decades on a class of algorithms that can be called sparse Fourier transform (SFT) methods. 
These results are of the following form: Fix n, k, and e. (Additional techniques are available for determining an appropriate k.) Given vector x Î n, 
compute some approximation ~X such that 

||X
~
 – X ||2 £ (1 + e)||Xk – X ||2,

where Xk is the best possible k-term approximation to the spectrum X of the input x. Many of these results, including HIKP, are randomized algorithms, 
meaning that they make random choices and must succeed with high probability with respect to those choices. (The input is not assumed to come 
from any distribution.)

The first result in this area was described by Mansour [13] (following related work by Goldreich, Levin, and Kushilevitz [7,12]), in which the 
problem was solved in runtime polynomial in k log n.  In [8], Gilbert, Muthukrishnan, and the author improved the runtime to k times an (unspecified 
and unoptimized) polynomial in log n. There are additional important results, some in different models [1–3,5,10,11]. These al-gorithms, however, 
are faster than the FFT only for k £ n/ log n (or smaller); this may have been the chief obstacle inhibiting their wide adoption.

The HIKP runtime of (k/e) log(n/k) log(n), or k   log(n) in certain (noiseless) special cases, beats the FFT up to constant factors for all values of k, improves 
on previous SFT methods in essentially all cases, and is optimal under certain assumptions. Simulations show that HIKP’s runtime beats the FFT’s with a 
break-even point of k = 217 and n = 222, a 3%-sparse signal, in the noiseless special case.

To see how sublinear-time Fourier algorithms work, consider a 1-sparse signal, i.e., Fx = X is zero except at one unknown coordinate, w. Suppose 
the length n is a power of 2.  Examining xt ± xt+n/2 gives the parity (least significant) bit of w; other bits are learned similarly. With more than one 
frequency, we need a randomized filterbank that likely (over the algorithm’s random choices) produces k new signals, in many of which exactly one 
frequency is present. A large fraction of the k terms present are found and removed, after which additional terms are sought.

Fourier Algorithmics Enters a Growth Period



The HIKP algorithm reflects innovations in several areas. It uses somewhat sophisticated filters that limit the number of samples from x while 
having good (though still approximate) filtering properties. Second, recovering log log(n) bits of the log n bits in w’s identity all at once turns 
out to be faster overall than recovering just one bit at a time. Finally, once a frequency component is identified, its contribution is subtracted 
in later rounds from the filtered version of the signal, rather than from the original signal.

It would appear that none of these techniques alone would suffice—in particular, innovations from several disciplines combined to produce 
the improved properties of the HIKP algorithm. Together, the innovations make the new algorithm much faster and (at last!) a viable competi-
tor to the FFT in practice.

Exploiting the new algorithm remains as a challenge for algorithm designers. Just as matrix multiplication algorithms and surrounding com-
putational infrastructure exploit sparse structure when present in large-scale computations, Fourier transform algorithms and infrastructure will 
need to exploit sparsity for large problems.
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