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Continual improvements in both computational assets and observational data are revolutionizing science and engineering. However, models, com-
putations, and observations are subject to a variety of sources of uncertainty, mandating the need for quantification and management of uncertainty. 
Bayesian hierarchical modeling is a framework for combining diverse datasets, mechanistic and statistical models, and computation in a fashion that 
manages uncertainty (see, for example, [1,5]).

Hierarchical probability models are sequences of conditional distributions that correspond to a joint distribution. Let X, Y, and Z be three random 
quantities (scalars, vectors, or space–time fields), and let p(x,y,z) denote their joint probability density. This density admits the factorizations

 
p (x,y, z) = p(x | y, z) p (y, z) = p (x | y, z) p (y | z) p(z),

where p (x | y, z)  is the density of X given Y = y and Z = z. This is elementary mathematics but suggests a powerful applied modeling strategy, in 
which we form models in three primary steps: (1) Data Model: a probability distribution of observations Y conditional on the processes or state 
variables X of interest and on model parameters qY; (2) Process Model: a prior distribution for X conditional on parameters qX; and (3) Parameter 
Model: a prior distribution for qY and qX. Bayes’ theorem provides the posterior distribution of X and the parameters conditional on the observed data
Y = y. The posterior distribution is the Bayesian answer. From it, we derive probabilities of hypotheses and events of interest, estimates, confidence 
intervals, predictions and associated intervals, etc.

The data model p ( y | x, qY) is typically a “measurement error model.” For example, we might consider a model based on Y = x + e, where e is a ran-
dom, unobservable error. The parameter qY might include unknown measurement error variances, measurement biases, and so forth. The power of the
strategy is the ability to treat diverse datasets. Suppose, for example, that Y = (Yw, Yψ), where Yw are wind measurements and Yψ are pressure measure-
ments over some region. X = (W, ψ) are true winds and pressures.  We expect that (Yw, Yψ) would display a complicated, difficult-to-model depen-
dence structure. If the lion’s share of that structure arises from the underlying relationship between W and ψ, however, we may be able to defend the 
data model

p ( yw, yψ | w, ψ, qY) = p( yw | w, qY) p( yψ) | ψ, qY);

that is, Yw, Yψ are conditionally independent. Notice that p ( yw | w, qY) does not include ψ in the conditioning; this does not mean that Yw and ψ are 
independent, but rather that they are conditionally independent given W = w.

The process model offers the opportunity to incorporate scientific modeling of the quantities of interest. Often, we formulate models from 
underlying differential equations or discretized versions of them [4,10]. For our wind–pressure example, the geostrophic approximation 
suggests that winds are proportional to the gradient of the pressure field. We can incorporate this notion in a stochastic geostrophic approxima-
tion,

p(w, ψ | qX) = pg(w | ψ, qX) p(ψ | qX),

where pg is based on the actual geostrophic relation [8]. This example indicates how we can incorporate mechanistic models among the quanti-
ties in X. In some examples we model the process of interest conditional on boundary and/or initial conditions and then model those conditions. 
Finally, with the parameter model we can incorporate further information (calibration studies, for instance, lead to priors for qY) in a fashion 
that allows for uncertainty. For example, physical theory may suggest the values, or at least interpretations, of some quantities in qX. This in-
formation is used to construct the prior, but allows for uncertainty. Moreover, that uncertainty responds to the data through the posterior dis-
tribution. 

Analysis of Bayesian hierarchical modeling is often compute-intensive. Such advances as Markov chain Monte Carlo, sequential Bayes, and particle 
filtering have made serious BHM applications possible (e.g., [7]). However, use of process models requiring runs of large-scale, supercomputer models 
for single iterations of a Monte Carlo Bayesian calculation are typically feasible. This suggests the need for approaches that can incorporate ensembles 
from large models. Let O = (O1, . . . ,On) denote an ensemble of size n. (We can account for ensembles from different models and/or generated
from various model parameterizations, but I do not do so here.)  The following potential strategies are organized around the BHM skeleton presented 
earlier.

First, consider modeling O as if the data were observational [2]. That is, we form a data model p (Y, O | x, qY, qO). The parameter qO includes varia-
tion from the ensembling, model-to-model differences, and model biases (or offsets), thereby allowing us to learn about these features based on Y. This 
framework also lends itself to the design of hybrid experiments involving both observational data and computer models. (See [6].)

Next, we can use model output to formulate a process model prior in a variety of ways. Much of the literature in the design and analysis of 
computer experiments (e.g., [9]) begins with a Gaussian process model for model output: p (o | q) for some collection of parameters q. In many 
cases, q are unknown parameters in a covariance function characterizing the dependence structure of output as a function of model inputs. This 
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model is then updated to produce p (o, q | O). Related ideas are known as “model emulators.” In any case, transferring such results to form 
priors on true processes (X ) remains a challenge. In yet another possibility, data analysis on model output can lead to parameter prior models 
(e.g., [3]). Finally, various combinations of these modeling strategies are feasible.  
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