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In a fitting homage to “an extraordinary man,” Alan Newell of the University of Arizona gave the inaugural Martin D. Kruskal Prize Lecture at this 
year’s SIAM Conference on Nonlinear Waves and Coherent Structures, held June 13–16 at the University of Washington, Seattle. Newell described 
some of his ideas for an alternative to the Standard Model in particle physics, based on phase transitions in pattern-forming systems, taking seriously 
the slogan on a T-shirt his longtime friend and colleague was known to wear: “Subvert the Dominant Paradigm.”

“Martin Kruskal was one of kind,” New-ell says. “He would always encourage doing slightly unusual things.” Dogged determination was another 
of his attributes, Newell recalls. “Once a problem gripped him, he never let go.”

Both traits were key to Kruskal’s signature achievement: the discovery of solitons (see sidebar). The particle-like behavior he and Norman Zabusky 
observed in numerical solutions to a classic wave equation inspired a paradigm shift in mathematical physics. Fifty years ago, integrable systems of 
differential equations were virtually synonymous with linearity; within a decade, integrable systems of nonlinear equations had taken center stage, a 
position the nonlinear theory has occupied ever since. “Linear theory,”  Newell quips, “is a rest home for applied mathematicians.”

Newell makes no claim that his own observations will shift any paradigms. But if they do, it will be due in part to the example of a man who was 
a role model for subversive thinking.

Whence Symmetry
The Standard Model is the outrageously successful theory that accounts for three-fourths of physics. (It unifies the strong, weak, and electromagnetic 

forces; only gravity escapes its embrace.) In the broadest of outlines, it posits quantum fields based on certain unitary and special unitary groups, from 
which spring the bosons and fermions of the observed (and sometimes unobserved) universe. Its most recent tour de force is the apparent spotting 
of the long elusive Higgs boson, which purports to explain why some particles have inertia or mass—the ratio of momentum to speed, or energy to 

speed squared.
A key word in the Standard Model is symmetry. In 

accord with the principle discovered by Emmy Noether 
nearly a hundred years ago, conserved properties stem 
from symmetries (put very loosely: Things that don’t 
change depend on changes that effect no change). The 
Standard Model sports a global spacetime playground 
based on translational and rotational symmetries, 
dotted with the swings, seesaws, and monkey bars 
of the symmetry groups SU(3), SU(2), and U(1). 
These symmetries (along with a batch of “acciden-
tal” ones that seemingly come for free) enforce a 
physics of conserved energy and momenta (both 
straight and angled), spin and charge (electric, color, 
and weak hyper). In particular, the unitary groups give 
rise to “fractional” spin and charge: quantities that 
require a full two or three turns to remain invariant.

To Newell, those groups seem somewhat jerry-
rigged: They’re posited precisely to give the results 
the theory needs. Accordingly, he set out to see if it 
would be possible to start with nothing more than the 
symmetries of translation and rotation and “stress” 
them into producing objects with fractional invariants. 
The Standard Model already makes use of symmetry 
breaking, of course. (It’s part of how the Higgs boson 
accomplishes its massive undertaking.) But Newell’s 
aim is to squeeze the local gauge symmetries out of the 
global symmetry of spacetime.

It doesn’t take a degree in theoretical physics 
to imagine that it might be possible. Evidence for 
spatial symmetry breaking is as plain as the ridges 
on your fingertips. “We have such systems all over 
the place,” Newell says. “They’re called pattern- 
forming systems.”

The “grand-daddy” of pattern-forming systems, 
Newell notes, is Rayleigh–Bénard convection, with its 
roiling regularity. A thin layer of fluid, heated from 

A Subversive Model of Particle Physics

Martin Kruskal (1925–2006) worked on a 
wide range of problems in pure and applied 
mathematics, but is best known for the dis-
covery of solitons. Made over the course 
of a decade in collaboration with Norman 
Zabusky, Robert Miura, John Greene, and 
Clifford Gardner, the discovery began with 
an analysis of the now-famous Fermi–Pasta–
Ulam problem. In a numerical experiment, 
the researchers sought to gauge the effect 
of weak nonlinearity in a system of coupled 
harmonic oscillators. They had expected the 
system to “thermalize,” with energy in the 
lowest Fourier mode flowing irreversibly into 
higher modes—indeed, the original idea for 
the experiment was to study the rate of ther-
malization. Instead, they found that the energy 
never went beyond the first few modes, and 
reverted to the first mode in almost periodic 
fashion.

Kruskal and Zabusky found that the con-
tinuum limit of the FPU system led to the 
Korteweg–de Vries equation, already familiar 
from the theory of uni-directional shallow 
water waves. The KdV equation had originally 
been introduced to account for the existence 
of “solitary” waves, famously first observed 
in 1834 by the Scottish engineer John Scott 
Russell. It has a simple solitary wave solution 
in the form of a hyperbolic secant whose speed 
varies with its amplitude: The taller the wave, 
the faster it goes. But Kruskal and Zabusky 
found additional gold in the KdV equation.

In a four-page paper published in Physical 
Review Letters in 1965, they reported the 
results of their own numerical experiments, in 

which they found that a single-crested cosine 
wave (in a domain with periodic boundary 
conditions) quickly decomposed into a train of 
solitary waves of different heights and, hence, 
different speeds. (Technically speaking, the 
hyperbolic secant is not a solution of the 
KdV equation on a finite interval with peri-
odic boundary conditions, but only the greatest 
of sticklers—like Kruskal—ever sweats the 
exponentially small stuff.) Because of their 
varying heights, the solitary waves—there 
were seven of them in the numerical experi-
ment—traveled at different speeds, and thus 
had to interact as they traveled around and 
around the periodic domain. That’s where the 
real surprise popped up and solitons earned 
their name: Instead of merging like raindrops 
or shattering like glass balls, the solitary 
waves emerged from the collisions intact.

It’s easy to be blasé these days about non-
linear waves that interact like particles, but 
it was an eye-opener in the 1960s. In their 
write-up, Kruskal and Zabusky underlined the 
key observation: “Here we have a nonlinear 
physical process in which interacting localized 
pulses do not scatter irreversibly.”

Kruskal realized that conserved quantities 
had to be lurking within the KdV equation. 
In fact, there are infinitely many. The KdV 
equation, moreover, turned out to be proto-
typical in this regard: Kruskal and colleagues 
started finding integrable systems under virtu-
ally every nonlinear rock they examined. The 
theory grew from a cottage industry to one 
of the main themes of modern mathematical 
physics.—BAC 
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below, becomes a rhythmic sea of stripes, with hot fluid forcing its way up along one edge of each stripe and denser, cool fluid diving down along 
the other edge. The width of the stripes (or honeycombs, also a frequently observed pattern) is determined by the physics, but the orientation is a 
more or less random choice. Indeed, different portions of the fluid may opt for different orientations. The upshot is that, in striped patterns, “phase 
grain boundaries” are widely seen, along with point defects known as concave and convex disclinations (see Figure 1). On your fingertips, these point 
defects are known as triradii and loops.

For these two-dimensional disclinations, an imaginary two-headed arrow perpendicular to a stripe, when transported continuously in a circle 
around the point defect, turns only halfway around, a 
natural analog to the fermion spin of 1/2. Newell and 
colleagues have worked out an extensive 2-D theory 
of “phase diffusion” to account for the stable patterns 
observed in phase grain boundaries. When the theory 
is taken into higher dimensions, the analog of concave 
disclinations leads to loops that twist by multiples of 
2p/3. In one case, the result is a defect with index ±2/3, 
which Newell calls a “pattern up quark”; in another 
case, the result has index ±1/3, for a “pattern down 
quark.” In the convex case, the 3-D analog is a “pattern 
lepton” with index ±1.

Despite the suggestive names and results, “this is 
not an attempt to replace the Standard Model,” Newell 
says. It’s “just a little game” that’s “more than likely 
destined for the dustbins of history.” Nonetheless, it’s 
interesting to see what happens to the simplest sym-
metries when a system is stressed far from equilibrium, 

he adds. “There’s a lot of interesting geometry. And there are so many open questions.”

Figure 1. What goes around comes around. Could point defects known as concave (left) and 
convex (right) disclinations, which arise in pattern-forming systems, account for fractional 
charges and spin in the Standard Model of particle physics?
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