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Environmental models are used to evaluate the fate of fertilizers in agricultural settings (including soil denitrification), the degradation of hydrocar-
bons at spill sites, and water supply for people and ecosystems in small to large basins and cities—to mention but a few applications of these models. 
They also play a role in understanding and diagnosing potential environmental impacts of global climate change. The models are typically mildly to 
extremely nonlinear. The persistent demand for enhanced dynamics and resolution to improve model realism [17] means that lengthy individual model 
execution times will remain common, notwithstanding continued enhancements in computer power. In addition, high-dimensional parameter spaces 
are often defined, which increases the number of model runs required to quantify uncertainty [2]. Some environmental modeling projects have access 
to extensive funding and computational resources; many do not.

The many recent studies of uncertainty quantification in environmental model predictions have focused on uncertainties related to data error and 
sparsity of data, expert judgment expressed mathematically through prior information, poorly known parameter values, and model structure (see, for 
example, [1,7,9,10,13,18]). Approaches for quantifying uncertainty include frequentist (potentially with prior information [7,9]), Bayesian [13,18,19], 
and likelihood-based. A few of the numerous methods, including some sensitivity and inverse methods with consequences for understanding and 
quantifying uncertainty, are as follows: Bayesian hierarchical modeling and Bayesian model averaging; single-objective optimization with error-based 
weighting [7] and multi-objective optimization [3]; methods based on local derivatives [2,7,10]; screening methods like OAT (one at a time) and the 
method of Morris [14]; FAST (Fourier amplitude sensitivity testing) [14]; the Sobol’ method [14]; randomized maximum likelihood [10]; Markov 
chain Monte Carlo (MCMC) [10]. There are also bootstrapping and cross-validation approaches.Sometimes analyses are conducted using surrogate 
models [12].

The availability of so many options can be confusing. Categorizing methods based on fundamental questions assists in communicating the essen-
tial results of uncertainty analyses to stakeholders. Such questions can focus on model adequacy (e.g., How well does the model reproduce observed 
system characteristics and dynamics?) and sensitivity analysis (e.g., What parameters can be estimated with available data? What observations are 
important to parameters and predictions? What parameters are important to predictions?), as well as on the uncertainty quantification (e.g., How 
accurate and precise are the predictions?).

The methods can also be classified by the number of model runs required: few (10s to 1000s) or many (10,000s to 1,000,000s). Of the methods listed 
above, the most computationally frugal are generally those based on local derivatives; MCMC methods tend to be among the most computationally 
demanding. Surrogate models (emulators)do not necessarily produce computational frugality because many runs of the full model are generally needed 
to create a meaningful surrogate model. With this categorization, we can, in general, address all the fundamental questions mentioned above using 
either computationally frugal or demanding methods. Model development and analysis can thus be conducted consistently using either computation-
ally frugal or demanding methods; alternatively, different fundamental questions can be addressed using methods that require different levels of effort.

Based on this perspective, we pose the question: Can computationally frugal methods be useful companions to computationally demanding meth-
ods? The reliability of computationally frugal methods generally depends on the model being reasonably linear, which usually means smooth nonlin-
earities and the assumption of Gaussian errors; both tend to be more valid with  more linear models. The reliability of computationally demand-
ing methods depends on wise choice of parameter-value ranges and on a sufficient number and proper distribution of parameter samples. Many 
theoretical and empirical comparisons suggest that frugal computational methods often produce results similar to those for computationally 
demanding methods [9], indicating that in many circumstances nonlinearities may not be as problematic as sometimes feared. Figure 1 compares 

uncertainty intervals calculated with computation-
ally frugal linear and nonlinear confidence intervals, 
and with demanding MCMC credible intervals. The 
problem is synthetic, which means that the true 
value of the prediction is known. For this problem, it 
appears that difficulties caused by model inadequacy 
are more serious than the approximations made in 
order to use computationally frugal instead of com-
putationally demanding UQ methods. This suggests 
that at times, a wise approach may be to use mainly 
computationally frugal UQ methods and to focus 
resources on exploring alternative models.

Recent investigations of model nonlinearity have 
suggested that models can be more nonlinear than the 
systems they attempt to replicate. In [8] and references 
cited therein, thresholds are discussed as a source of 
unrealistic nonlinearity. Commonly, below a thresh-
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Figure 1. Linear and 
nonlinear confidence 
intervals and nonlinear 
credible intervals (using 
INT as an example; 
106, 1594, and 420,000 
model runs, respec-
tively) on predicted 
change in streamflow 
caused by pumpage for 
three alternative mod-
els. The horizontal line 
defines the true value 
of the prediction, which 
is known for this syn-
thetic problem. The 
nonlinear credible inter-
vals are calculated by 
MCMC with a DREAM 
algorithm. (After [9].)



old value for simulated results, a variable is held 
constant, while above the threshold linear variations 
occur. Thresholds may be consistent with small-scale 
results, yet averaging mechanisms in complex envi-
ronments may justify a smoother function. Using a 
smoother curve profoundly affects the reliability of 
frugal methods based on local derivatives. Similarly, 
erratic performance of time-stepping routines can 
produce dramatic, and unrealistic, model nonlineari-
ties that deteriorate the reliability of computationally 
frugal methods of uncertainty evaluation. Making 
models more robust by eliminating false nonlin-
earities and numerical artifacts makes it easier to 
understand real system nonlinearities. The greater 
understanding is derived in part because the frugality 
of the computations allows analyses at multiple sets 
of parameter values. For example, graphs produced 
for different sets of parameter values (see Figure 2) 
showed that though the same parameters remained 
important, the dominant observation types changed. 
Such insight can be important to data-monitoring 
decisions and can be obscured by false linearities.

The results shown in Figures 2 and 3 address two 
of the fundamental questions posed earlier. Figure 
2 offers insight into the questions: What parameters 
can be estimated with available data? What observa-
tions are important to parameters? These questions can be answered with computationally demanding methods, such as MCMC and FAST, as well as 
computationally frugal methods, one of which is shown here [2,7]. The key to reliable results for the statistic shown is careful scaling, as discussed 
in [7].

The composite scaled sensitivity (CSS) and parameter correlation coefficient (PCC) are calculated as follows [7]:

    CSSk = {∑i=1,n [∑j=1,n (∂y′k/∂bj)bj(w½)ki]
2}½,           k = 1,np;                           (1)

                PCCk,j = Vk,j (b)/[Vj,j (b)½Vk,k (b)½] Vkj (b) = [s2(XTwX)–1] k, j,   k = 1,np;   j = 1,np.                                        (2)

For the results presented in this work, n is the number 
of observations; (∂y′k/∂bj) the sensitivity of the kth 
simulated value y′k to the jth parameter bj; and np the 
number of parameters. Sensitivities were calculated 
by MODFLOW-2000 [5] with the sensitivity-equation 
method in np + 1 model runs, or by perturbation with 
central differences in (2 × np) + 1 model runs using 
UCODE_2005 [11]. Vi,j(b) is the entry in the param-
eter variance–covariance matrix for parameters i and j; 
this is a variance for i = j, a covariance for i ≠ j. X is a 
matrix of sensitivities with entries equal to (∂y′k/bj), w 
is the weight matrix, and s2 is the unbiased regression 
variance. PCC for extremely correlated parameters 
can be calculated through creative use of round-off 
error [6,7]. 

Figure 3 addresses the question: What observations 
are important to predictions? The importance of exist-
ing old observations and potential new observations 
is considered. For both, the importance of different 
observations depends on choices made in model 
construction, and results shown in Figure 3 reveal 
consequences of such decisions. The computationally 
frugal observation–prediction (OPR) statistic used is 
defined as how much a calculated confidence interval 
would increase if existing observations were removed 
and how much it would decrease if new observations 
were added [16]. The equations are:

Figure 2. Parameter 
importance to observ- 
ed quantities or, con-
versely, the informa-
tion content from 
different observation 
types for the listed 
parameters. In this 
groundwater prob-
lem, T parameters 
are transmissivities 
and P parameters 
are porosities. The 
key lists observation 
types considered: 
hydraulic heads (a 
measure of potential 
energy); proximity of 
transported particles 
to a defined location 
at a defined time; the 
time it takes particles 
to travel between 
defined areas; the 
concentration of per-
chloroethylene and 
chlorofluorocarbon at defined locations and times; and the source of water reaching pumped 
wells. Parameter correlation coefficients (PCCs) showed little interdependence between 
parameters. The results shown require 21 parallelizable model runs. Results are similar for 
many sets of parameter values considered during the course of model calibration, suggesting 
that nonlinearity, though considerable for this problem, is not debilitating. (Modified from [4].)

Figure 3. Importance of observations to predictions of transport within the Nevada National 
Security Site (NNSS). Left, the NNSS is outlined in gray and the model boundary in black, 
and the transport locations are represented schematically. The observation–prediction (OPR) 
statistic is used to measure observation importance [16]. The existing old 501 hydraulic head 
observations are ranked. Right, evaluation of one potential new head measurement anywhere 
in model layer 1. The most important observations in the southwestern part of the model occur 
largely because the rocks there are defined in the model as hydraulically similar to the rocks in 
the NNSS, but their occurrence here under steep head gradients facilitates estimation of the 
parameter value. Each of these results required 49 parallelizable model runs. (Modified from 
[7] and [15].)



               OPRi = 100 × (sz(i) – sz)/sz                                    (3a)

     sz(i) = [(∂z/∂b)T[s2(X(i)
Tw(i) X(i))

–1] (∂z/∂b)]1/2                                                           (3b)

        sz = [(∂z/∂b)T[s2(XTwX)–1] (∂z/∂b)]1/2,                                                                                     (3c)

where i identifies the observation, and X(i) and w(i) indicate that the sensitivity matrix X and weight matrix w have been modified by the addition of 
rows and columns related to new observation i. The importance of existing observations is evaluated by the removal of rows and columns of X and w, 
as indicated by (–i); in practice, entries in the weight matrix are set to zero. The weight matrix is determined through an analysis of errors, as required 
to obtain minimum variance parameter estimates ([7], Appendix C). The use of a standard deviation in equation (3) instead of a confidence-interval 
width  is consistent with an assumed Gaussian distribution.

The brief analysis and references presented here suggest that increasingly, as models become more robust, a full uncertainty toolbox that includes 
computationally frugal methods, such as methods based on local derivatives, along with computationally demanding methods, such as MCMC, and 
presentation of results in the context of fundamental questions in ways that facilitate comparisons between different models and hypotheses, will best 
serve the needs of environmental modeling.
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