From SIAM News, Volume 38, Number 1, January/February 2005

Building Blocks and Excluded Sums

By Erik D. Demaine, Martin L. Demaine, Alan Edelman, Charles E. Leiserson, and Per-Olof Persson

If we peel away, layer by layer, the complexities of the fast multipole method, we find that its inner core is a computation of:

Excluded sums: ;xi and > x,

[j=il>1

In this model we are adding numbers x; and excluding a neighborhood of x,. In the FMM, the x; become representations of
functions, which are accurate only at some distance from point .

This core, though perhaps obvious, was buried for many years. It took a trip to Japan and years of classroom presentations
(Edelman, Leiserson), and a recent conversation over lunch at MIT (Demaine, Demaine, Edelman, Persson) before we could
articulate the essence of the FMM. Our hope is that this distillation will connect people working on N-body problems to geometric
algorithms. The goal is a stable computation of all N excluded sums with O(1) work per sum.

An obvious approach—to add all the x; and subtract the excluded x; (“sum(x)-x” in MATLAB)—fails for functions of interest,
because we would be adding and subtracting singularities. This is like the cancellation that occurs in floating-point subtraction.
Thus, we require that the excluded sums be computed without subtractions!

In one dimension, the row of numbers x; can be added pairwise. Applied recursively, thisrule yields the overall sum. Going “down
the tree,” we add parents and neighbors such that each level contains the excluded sum. The method requires O(N) additions and
storage for n elements, and it generalizes to
higher dimensions with the addition of

.. . 36.
blocks. This is essentially the parallel pre- TN - 0\
fix algorithm for computing sums on paral- /1 0\ ,,,,, /2,6\ > /26\ _____ /1_0\
lel computers. It underlies the usual fast 3 7 010 115 33 29 1 25 1 21
multipole method, in which the tree struc- 1/ \2 3/ \4 5/ \6 7/ \8 35/ \34 33{ \3231/ \3029/ \28

ture guarantees accuracy. The tree algo- ~ foooooe-

rithm is shown in Figure _1’ with excluded Figure 1. The tree algorithm for input data 1, ... ,8. It is easy to follow the pairs up the tree
sums computed for x; = i. (left). Moving down the tree (right), siblings are swapped and added to the new values of

An easier and more intuitive approach their parents; for example, siblings 5 and 6 (lefthand box) are swapped and then added to
their new parent, 25 (righthand box). The last row shows the sums with

abandons the tree structure. First, as shown
1,...,8 excluded.

in Figure 2, we add the x; starting from the
left, to obtain the prefix sum P,

(“cumsum(x)”). We compute the suffix Input data 1 2 3 4 5 6 7 8
sum S; in the same way, but from the right.
The excluded sum is y; = P, + Sy, and Pprefix sums P, 1 3 6 10 15 21 28 36 —»
the neighborhood exclude is y;= Suffixsums S; 36 35 33 30 26 21 15 8 -
Py + S

Compared with the tree algorithm, the
prefix algorithm is easier both to imple- Excluded sums 35 34 33 32 31 30 29 928

ment and to understand. It has fewer total
operations for neighborhood exclude (true
also in higher dimensions), and does not
require that n = 2% It forms the basis for nl P S
a new version of the fast multipole method now being developed (Edelman, Persson), S
with variation also in the function representations.

Can the algorithm be generalized to higher dimensions? For the excluded sum, we can
treat the data as one long vector and stay in one dimension. But the neighborhood exclude
needs a more sophisticated approach.

In two dimensions, there are four sums: Prefix sums for all the rows and then all the
columns produce the prefix—prefix sum PP;. Similarly, we obtain PS, SP;, and §S;, each
O(N) to compute. What we need now is a geometric construct that will combine these
sums in a non-overlapping way to fill a rectangular domain, excluding a square in the P N B B B
middle. One way to do this is shown in Figure 3. The neighborhood of i, is excluded in b I m

Figure 3. The four terms PP,.I., PS.!., SP,./., and

Figure 2. The prefix algorithm. The prefix and suffix sums P,,S. are computed as cumulative
sums starting from the left and from the right. The excluded sum isthenP_, + S, .

PP[—2J+1 + PS[+1,j+2 + SSi+2,j—1 + SPi—l,j—Z'
In D dimensions, we can cre.ate 2P clombinat.io.ns of prefix and suffix sums. How do 2P SS, “wrap around” the excluded L ontorcell
blocks from the corners combine to fill the original block, excluding an interior block? i to cover the shaded region.

That is the central question considered in

this article: Find 2° blocks such that (1) 1 _D 2_D
they filla D-dimensional3 X 3 X ... X 3
block, except the center cube, and (2) each
shares a corner with the containing block.
Some experimentation with building blocks
produces an answer in three dimensions (see
Figure 4).

For help in moving beyond three dimen-
sions (and understanding the higher-di-
mensional problem), we (Edelman,
Persson) described the problem over lunch
to Erik and Martin Demaine. Shortly after-
ward, the e-mail exchange reproduced be-
ginning on the bottom of this page took
place.

Figure 4. Block configurations that exclude the center blocks in one, two, and three
dimensions..

From: edelman@math.mit.edu

To: Erik Demaine <edemaine@mit.edu>
Date: Tue, 15 Jul 2003 12:46:57 -0400 (EDT)
Subject: Re: 3d geometry

Can you do this in arbitrary dimensions?

From: Erik Demaine <edemaine@mit.edu>

To: Alan Edelman <edelman@math.mit.edu>

Cc: Martin Demaine <mdemaine@mit.edu>

Date: Tue, 15 Jul 2003 16:52:39 -0400 (Eastern Standard Time)
Subject: Re: 3d geometry

Yes. Nice question. It led us to discover a general construction for such beasts. The construction is recursive, and behaves differently
depending on the parity of the dimension.

Let’s start with 1-D. Here there are only two unfilled squares surrounding the hole:
? 02

We can assign them to boxes arbitrarily:
A B

Let's move to 2-D. We know that every one-dimensional cross-section of a 2-D solution must be an instance of the 1-D solution. Hence
we obtain the following information:

?A?
D B
?C?

There are now four letters, and each one needs to extend so that it touches a corner. There are also exactly four unmarked corners. What
is essential for this to work is that the connections between unmarked corners and singleton letters that need to be extended form a cycle.
Therefore, we can choose one orientation of the cycle, and extend each letter into the next corner along the cycle. Thus:

DAA
D B
CCB

In 3-D, again we know that every two-dimensional cross-section of a 3-D solution must be an instance of this 2-D solution. This tells us
a lot. The first cross-section tells us:

??? DAA ?°?7?
??? D B ??7?

??2? CCB ?2°?
The second cross-section tells us:

??? DAA ??7?
DEE D B FFB
??? CCB ?°?°?

The third cross-section tells us:

?A? DAA ?F?
DEE D B FFB
?E? CCB ?C?

In fact, each of these cross-sections has a binary choice about whether it is clockwise or counterclockwise, but it does not matter which
we choose. Every letter used so far has been used three times, but must be used a fourth time to form a box, as well as to grab a corner
of the entire cube. This can be done in only one way:

DAA DAA FF?
DEE D B FFB
?EE CCB CCB

We are left with two question marks, which are at (diagonally opposite) corners, so they can simply be assigned their own letter each.

DAA DAA FFH
DEE D B FFB
GEE CCB CCB

Note how the 3-D case behaves identically to the 1-D case: after we derive all possible information from lower dimensions, there are exactly
two unlabeled corners, and we can label them arbitrarily.

To solve the 4-D problem, again we know that every three-dimensional cross-section of a 4-D solution must be an instance of this 3-D
solution. The first cross-section tells us:

??27? 2?2?27 ?7°7
??? ??°? ?°°
??? ??°? ??°?

DAA DAA FFH
DEE D B FFB
GEE CCB CCB

??2? ??2? ??°?
??? ??°? ?°°
??? ??°? ?°°

The second cross-section tells us:

??? DAA ??7?
??? DII ?°??
??2? KII ?°?°?

DAA DAA FFH
DEE D B FFB
GEE CCB CCB

??2? JJL ?°??
??? JJB ?°??
??2? CCB ?°?°?

The third cross-section tells us:
??? DAA ??°?

DEE DII NII
??2? KII ?°??

DAA DAA FFH
DEE D B FFB
GEE CCB CCB

??2? JJL ?°?°?
JJM JJB FFB
??? CCB ?°??

The fourth cross-section tells us:

?A? DAA ?207?
DEE DII NII
?E? KII ?I?

DAA DAA FFH
DEE D B FFB
GEE CCB CCB

?dJ? JJL ?F?
JJM JJB FFB
?P? CCB ?C?

Now we have used all information available from lower dimensions, and every position is labeled except for the 16 corners. Also, there are
exactly 16 letters, each of which must be assigned a corner. Some of these assignments are forced in order for the letters to form boxes:

DAA DAA ?07?
DEE DII NII
?EE KII ?II

DAA DAA FFH
DEE D B FFB
GEE CCB CCB

JJg? JJL FF?
JJM JJB FFB
?P? CCB CCB

Now all remaining letters that have not yet been assigned a corner are singleton letters (each appears only once). Furthermore, the
connections between singleton letters and unassigned corners form a cycle, so we can choose an arbitrary orientation of the cycle, and
assign each letter to the next corner along the cycle. For example:

DAA DAA NOO
DEE DII NII
GEE KII KII

DAA DAA FFH
DEE D B FFB
GEE CCB CCB

JJL JJL FFH
JJM JJB FFB
PPM CCB CCB

Again, notice how the 4-D solution acts just like the 2-D solution.
Running this algorithm one more time for 5-D produces the following decomposition:

DAA DAA NOO DAA DAA NOO 44V 1YY 1YY
DEE DQQ NQQ DEE DIT NII 44V 1II 1II
SEE SQQ 5Q0Q GEE KII KII GXX KII KII

DAA DAA WWH DAA DAA FFH RRV RRT FFT
DEE DQQ UQQ DEE D B FFB RRV RRB FFB
SEE SQQ UQQ GEE CCB CCB GXX CCB CCB

4

JJL JJL WWH JJL JJL FFH RR6 RRT FFT
JJ2 JgJ2 U33 JJdM JJB FFB RRM RRB FFB
7272 772 U33 PPM CCB CCB PPM CCB CCB

0

What remains to be shown is that indeed every dimension acts this way: in odd dimensions, all but two opposite corners are filled; and in
even dimensions, several corners are unfilled, but they are connected in a cycle with singleton letters. This is still a bit mysterious to me,
but the fact that it works up to five dimensions is pretty convincing.

After the E-mail

We recently found a combinatorial construction of the boxes (see theorem and proof in “New Combinatorial Construction”).

We hope that readers will enjoy thinking about this problem (as we have!). Approximation theory issues remain to be worked
out for the fast multipole application (adding functions with singularities, or their finite representations in the true algorithm).

These issues, which are at the core of the fast multipole method, are the subject of a forthcoming paper (Edelman, Persson).

The authors are all at MIT, where they are members of the Computer Science and Artificial Intelligence Laboratory (Demaine, Demaine, Edelman,
Leiserson), the Department of Electrical Engineering and Computer Science (E. Demaine, Leiserson), and the Department of Mathematics
(Edelman, Persson).

