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Dynamic Visibility and the Level Set Method
By Stanley Osher

The level set method (LSM), invented in 1987 by J.A. Sethian and me, has proved remarkably successful as a numerical (and
theoretical) device in a host of applications, many of them in imaging science. The original reference [9] has been cited almost 600
times (according to the ISI Web of Sci-
ence), and a recent query to Google’s search
engine gave nearly 2700 responses for
“level set methods.” The LSM is still an
active research area (for recent results, see
[7], a book published this year). In a ple-
nary talk at the First SIAM Conference on
Imaging Science, I gave a brief overview
of the LSM and the associated level set
technology and touched on a few imaging
applications. Among them was dynamic
visibility [11], which is briefly described
here.

The problem is easily stated: Given a
collection of closed surfaces representing
objects in space, determine quickly the
regions (in space or on the surfaces) that
are visible to an observer. This question is crucial to applications in fields as diverse as rendering, visualization, etching, and the
solution of inverse problems. In a 3D virtual-reality environment, knowing the visible region speeds up the rendering by enabling
us to skip costly computations on occluded regions.

Representing a family of surfaces implicitly as the zero level set of a single function ( )xϕ �
, ( ), ,x x y z=� ,  has several advantages,

particularly when things are moving. Topological changes are easily handled (without “emotional involvement”), and geometric
quantities, such as normals and curvatures, are also easily computed dynamically. Most published work in computer graphics and
computer vision uses explicit surfaces, usually constructed with triangles, but this is changing. The upcoming SIGGRAPH
conference (in San Antonio, this July) will have many LSM-related papers and a full-day course on LSM and PDE-based methods
in graphics. For a recent detailed report on the visibility problem with explicit surfaces, see [4].

In our approach to the dynamic visibility problem, as described in [10], we begin by laying down a simple Cartesian grid—this
is step one in almost all level set methods. Next, we compute the signed distance function ( )xϕ �

to the occluding region � (which
generally has many disjoint pieces). Here we can use the optimally fast algorithm of Tsitsiklis [12]. The function ϕ  approximately
satisfies the eikonal equation:

            (1a)

with

(1b)

Then, for a given vantage point 0x
�

, we use a simple, easily parallelizable, multiresolution algorithm of optimal complexity to
compute the visibility function ( )

0x xψ r

�
:
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Next, we allow 0x
�

to move with velocity d 0x
�

/dt. Along the way, we obtain fairly elegant geometric-based formulae for the motion
of the horizon. This is defined to be the set of visible points x

�
 lying in �� for which x

�
 – 0x

�
 is orthogonal to ��, i.e., for which
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We do the same for the motion of points on the cast horizon—that is, points that lie both on the extension of the ray connecting
a horizon point 0x

�
 to x

�
and on an occluder.

Simulation, using real data, of an airplane flying through the Grand Canyon. The regions
on the occluder that have not yet become visible are dark; the diamond-shaped dots show
the path of the airplane.
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�
 can be found quickly at each discrete time step. As ( )0x t

�
 flies through

a region, we can compute the invisible region at time t by computing the intersection
of the sets

                                                                                                                               (4)

for all 0 � ��� t. This is done by simple discrete Boolean operations.
In the plenary talk, I also gave a brief overview of the LSM and the associated level

set technology, and touched on a few other imaging applications: (1) interpolation of
unorganized points, curves, and surface patches [14,15]; (2) solution of PDEs on
embedded manifolds with a fixed 3D local Cartesian grid [1, 2]; (3) the LSM-induced
link [13] between (a) total variation-based image denoising [10], (b) active contours
(snakes) [3], and (c) Mumford–Shah image segmentation [5] . All work mentioned was
supported by the Office of Naval Research.

Looking to the future, we plan to modify two assumptions made in this work—that
rays travel in straight lines and that the occluders are motionless. Another future
direction emerged during my talk in Boston, when Arje Nachman of the Air Force
Office of Scientific Research asked about visibility for radar signals, which travel
around occluded regions and may return to the observer. We intend to use our new phase
space-based level set approach to ray tracing [5] (developed with support from AFOSR)
to analyze this and related problems.
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Topological changes in (x,y) space are
computed without “emotional involve-
ment” by using the zero level set of the
evolving level set function �(x,y,t).
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