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Comparing (Images of) Apples and Oranges
By Anuj Srivastava, Xiuwen Liu, and Ulf Grenander

Automatic recognition of objects (people, license plates, military vehicles, vegetation) from images is an increasing priority, one
in which statistical techniques are bound to play an important role. Explicit probability models for images have been attracting the
attention of researchers, most likely because of a growing appreciation for the variability of images, coupled with the realization
that exact mathematical/physical models may not be feasible. Any statistical approach will rely on probability models that capture
“essential” image variability and are computationally tractable.

Because images are very high dimensional, we are faced with the simultaneous tasks of model building and dimension reduction.
Tools for dimension reduction include principal components, independent components, wavelet transforms, and Fourier analysis.
Recent studies involving empirical distributions of reduced representations have revealed certain interesting patterns. For example,
a popular mechanism for decomposing images locally—in space and frequency—via wavelet transforms leads to coefficients that
are quite non-Gaussian—that is, the histograms display heavy tails, sharp cusps at the median, and higher correlations at different
scales. One such histogram is shown (on a log scale) at the lower left in Figure 1, with the corresponding image directly above it.

Explaining Non-Gaussian
Behavior of Images

A recently proposed prob-
ability model, built on physi-
cal concepts, has been suc-
cessful in explaining such
non-Gaussian behavior. The
main idea is as follows: Scenes
consisting of objects and im-
ages are made up of 2D ap-
pearances of the objects. Ob-
jects are placed in an image at
points {zi �  IR 2 | i = 1,
. . . , n} generated according to
a random process. The ith ob-
ject is centered at zi, and has
appearance gi chosen randomly and weighted by ai ~ N(0,1). A weighted superposition is used to form an image: I(z) = �n

i=1

aigi(z – zi).
Given an image I and a bank of linear filters {F ( j), j = 1, 2, . . . , J}, we compute for each filter F ( j) a filtered image I ( j) = I *

F ( j), where * denotes the 2D convolution operation. Possible filters include directional derivatives, Gabor filters, and the Laplacian
of the Gaussian. Each filter selects and isolates certain features present in the original image. Under certain assumptions, the density
function of the random variable I ( j)(z) has been shown [1] to be: for p > 0, c > 0, f (x;p,c) = 1/Z(p,c)|x| p–0.5

K(p–0.5)((2/c)1/2 |x|), where K is the modified Bessel function and Z  is the normalizing constant. We call these densities Bessel K forms
and refer to the parameters (p, c) as Bessel parameters.

As described in [1], p and c are easily estimated from the observed data,with p̂ = 3/SK(I( j))–3 and ĉ = SV(I( j))/ p̂ , where SK is the
sample kurtosis and SV is the sample variance of the pixel values in I ( j).

Figure 1 shows several examples, with images in different modalities (range, video, infrared) in the top row and the histograms
of their filtered versions (with arbitrary filters, not shown) in the bottom row. The overlapping estimated (solid lines) and observed
(dotted lines) densities demonstrate the good performance of this model.

If a filter F is applied to an image I to extract some specific feature—vertical edges, say—the resulting p has been shown [2] to
depend on two factors: (i) distinctness and (ii) frequency of occurrence of that feature in that image. Objects with sharper, distinct
edges have low p values, while scenes with many objects have large p values.

Metrics for Comparing Images

To compare marginal densities that take on Bessel K forms, we can use the L2-metric between them. A closed-form expression
for this metric is given in [2]. For comparing two images, I1 and I2, with a filter bank F (1), . . . , F (J), we let the parameter values be
given by: (p1

( j), c1
( j)) and (p2

( j), c2
( j)), respectively, for j = 1,2, . . . , J. A pseudometric between two images is then defined as:

Figure 1. Marginal densities (bottom row) for images (top row) filtered by arbitrary Gabor filters. Solid
lines denote Bessel K densities and broken lines, observed histograms.
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where d(p1, c1, p2, c2) is the L2 metric be-
tween the corresponding Bessel K forms.
For a simple illustration, consider the im-
ages of natural scenes (trees, lakes, bushes,
leaves) shown in Figure 2. The images are
numbered one to ten, from top left to bot-
tom right. Using 27 small-scale Gabor fil-
ters, we computed the pairwise distances dI

between them. Shown in the bottom panel
is a dendrogram clustering of images based
on dI. We can see that perceptually similar
images have been clustered together! Ex-
tensive experiments support the claim that
dI provides a powerful tool for image clas-
sification, analysis, and understanding.
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Some of the images used in this article are from the van-Hateren natural image database.
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Figure 2. Dendrogram clustering plot (bottom) for the images in the top row.


