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Stirs, Stars, Bugs, and Bounces
At SIAM Dynamical Systems Conference
By Barry A. Cipra

Five hundred mathematicians and their collaborators from a variety of disciplines met in Snowbird, Utah, May 20–24, for the
Sixth SIAM Conference on Applications of Dynamical Systems. As remnants of winter snow melted from the nearby ski slopes,
attendees at the conference heard talks on topics ranging from celestial mechanics to the scurrying of cockroaches.

Stirred, Not Shaken

Jerry Gollub, a physicist at Haverford College, described recent advances in the study of transient mixing. The basic problem
is an old one: What happens when you stir a splash of cream into a cup of coffee? More technically, if you start with a localized
impurity in a moving fluid, how is homogeneity eventually reached?

Researchers are getting insights from some novel experiments. In particular, Gollub’s group has studied a thin-film fluid in which
the flow is driven by an array of magnets and the impurity is a fluorescent dye. The effectively two-dimensional system is governed
by three dimensionless quantities: Reynolds number Re = LV/� (L
being the spacing of the magnets and V the fluid velocity), path
length p = V/fL (f being the forcing frequency), and Peclet number
Pe = LV/D (D being the diffusion coefficient).

The experiment starts with the dye isolated in the left half of a
square tank. The barrier is removed, and the dye begins to mix by
chaotic advection. A video shows an elaborate pattern of striations
developing in the moving fluid. Remarkably, the striations don’t
broaden, even though diffusion is mixing the dye into the rest of the
fluid at the smallest scales.

Even more remarkably, a series of snapshots taken at the forcing
frequency—in effect, a Poincaré return map—reveal an invariant
pattern, which only slowly fades as the fluid becomes homogeneous.
“Even in 150 cycles, the process is not yet complete,” Gollub notes.
If you weren’t told that you were watching a laboratory experiment,
you’d swear it was a carefully constructed computer simulation. This
work was described in Nature (Vol. 401, 1999, page 770).

More recently, to analyze what’s going on, Gollub’s postdoc Greg
Voth added approximately 400 fluorescent particles to the fluid and
traced their motion through 240 periods of the magnetic forcing,
taking 50 pictures per period—12,000 images in all. A color-coded,
animated map showing how each particle moves in one forcing cycle
calls to mind Van Gogh’s Starry Night, and reveals the presence of
two kinds of fixed points in the fluid. The fluid is strongly stretched
near the “hyperbolic” fixed points, while it simply circulates gently
near the “elliptic” fixed points (see Figure 1). Additional work, done
in collaboration with George Haller of Brown University, has used
direct measurements of the stretching in the flow to reveal the stable
and unstable manifolds associated with these fixed points. In particu-
lar, the unstable manifolds constitute “attracting lines” that organize
the evolution of the striations in the fluorescent dye: The contours lie generally parallel to the attracting lines.

In the future, Gollub says, the group plans to look at the possibility of predicting mixing rates—a parameter of considerable
importance in applications—by measuring stretching rates along the trajectories. They also hope to study mixing in turbulent flows,
where the velocity field is not time-periodic. Enough problems seem to be arising in the field to keep things stirred up for some time
to come.

New Dance Craze

Compared with the murky continuum of fluid mechanics, the stately progression of heavenly bodies would seem to offer little
challenge and few surprises for the modern applied mathematician. As anyone familiar with the famous three-body problem knows,
however, celestial mechanics is far from a closed book. Richard Montgomery of the University of California at Santa Cruz presented

Figure 1. Poincaré meets Van Gogh. The motion of a periodi-
cally forced fluid can be tracked by means of fluorescent par-
ticles. This portion of a black and white version of the Poincaré
map shows lines connecting the measured position of each
particle with its position one period later. A hyperbolic point is
clearly visible in the upper part of the plot, and two elliptic and
two hyperbolic points can be seen in the lower part.
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some of the latest discoveries in the repertoire of gravitational attraction. He and
Alain Chenciner at the University of Paris VII, along with Carles Simó of the
University of Barcelona and other colleagues, have found a slew of new periodic
orbits, some with hundreds of bodies chasing each other in a never-ending game
of follow-the-leader.

The new closed orbits are essentially the first such solutions to be found in more
than a hundred years. In 1878, the mathematical astronomer George Hill showed
that “tight binaries,” in which two nearby masses circle one another  while at the
same time circling a third, distant mass (think earth–moon–sun), can be periodic.
(The term “circle” is meant loosely; the actual paths are not described by any
simple equation.)

A century earlier, Euler and Lagrange had given two other solutions. In Euler’s,
the three masses are always collinear, while for Lagrange they maintain the shape
of an equilateral triangle. When all three masses are equal, Euler’s solution has
the outer two tracing a circle at opposite ends of a diameter, with the third mass
motionless at the center; Lagrange’s solution simply spins the equilateral triangle
about its center. In general, these 18th-century solutions have each mass moving
along an elliptical path, almost as if each were in its own two-body world.

The first new orbit—and the only new one, so far, for which a rigorous proof
has been given—has three equal masses tracing out a figure eight (Figure 2). It was found numerically in 1993, by Cris Moore at
the Santa Fe Institute. Montgomery and Chenciner rediscovered it two years ago and have proved its existence and stability.

The orbit’s stability was “a big surprise,” Montgomery says. The precise result is that the orbit is KAM-stable (the acronym refers
to the Kolmogorov–Arnold–Moser theorem). KAM orbits are not stable in the usual sense of dynamical systems. Rather, they are
stable in a probabilistic sense: The smaller the perturbation from the initial condition, the higher the probability that the trajectory
will never escape from the orbit. Moreover, the trajectories that do escape take an exponentially long time to do so—so long that
it is very difficult, if not impossible, to tell if a given small perturbation is headed that way.

Montgomery and Chenciner’s existence proof has three key ingredients. The first is the use of the principle of least action to
formulate the problem in terms of the calculus of variations. The second is a reconception of the orbit in terms of a path in “shape
space.” For three bodies, the shape space turns out to be the sphere: At each moment, the three bodies determine a triangle whose
shape is specified by two parameters, which can be turned into a latitude and a longitude. Although the obvious choice of parameters
might seem to be two of the angles, the actual identification is done differently (Figure 3). In particular, latitude (or, more precisely,
its cosine) is determined by the ratio of the triangle’s area to the area of an equilateral triangle with the same perimeter. (Which
hemisphere, north or south, depends on the orientation, clockwise or counterclockwise, of the labelling of the vertices.) Thus, the
north and south poles of the sphere correspond to equilateral triangles, while
the equator corresponds to triangles with zero area, i.e., collinear triangles.
Six meridians, spaced 60 degrees apart, correspond to isosceles triangles.
Any trajectory of the three bodies can be projected down to a path in the shape
space. Conversely, any path in the shape space can be lifted in various ways to
a trajectory. The trick is to see whether any of them obey Newton’s law.

The figure-eight orbit has an abundance of the existence proof’s third
ingredient: symmetry. At six equally spaced points in time during the orbit,
the three bodies are collinear, with one of the three at the figure eight’s
intersection point and the other two on opposite lobes. And midway between
colline-ations, the three bodies take the shape of an isosceles triangle. This
means that the entire orbit can be derived from just the first twelfth of it. This
was crucial, Montgomery says, in the final step of the proof: showing that the
three bodies don’t collide in the course of their newfound orbit.

When Montgomery first found the new orbit, he did not realize that all
three masses follow the same trajectory. It was Chenciner who discovered
this surprising property. Simó, in careful numerical analysis, corroborated it.
The researchers have dubbed a solution of this type a “choreography.” Twyla
Tharp, move over.

The simulations also provided the first hint of the orbit’s stability. The
computations were “crucial in making us trust the [theoretical] results,”
Montgomery recalls. But now, almost two years after the initial discovery,
the numerics have taken the lead. For the N-body community, there are
millions of new periodic orbits to sort through.

It was as if a dam had burst, Montgomery says. The first advance was a four-body choreography discovered by Joseph Gerver
of Rutgers University, in Camden, New Jersey. Gerver’s orbit belongs to a shape space of parallelograms; the four masses trace
out a double figure eight (see Figure 4). Spurred by Gerver’s result, Simó “went crazy,” Montgomery jokes. “He stayed up till 5
in the morning for about a month straight,” by the end of which he had numerical N-body choreographies with N up to 799.  More

Figure 2. Periodic orbit. Three equal masses loop
endlessly in a figure eight. At six equally spaced
times during the orbit, the masses are collinear.
An animated version, created by graduate stu-
dent Mike Wessler at MIT’s Artificial Intelligence
Laboratory, is available at http://www.ai.mit.edu/
people/wessler/halo/rmont.html.
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Figure 3. Shape space. Points on a sphere correspond
to oriented triangles, with equilateral triangles at the
poles and collinear triangles along the equator. With
luck and analysis, a closed curve in shape space can be
associated with a periodic orbit of three bodies.
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recently, he’s gone back to the N = 3 case and found nearly a million new solutions. “He’s far outstripped our ability to prove things
right now,” Montgomery admits.

The new orbits raise a host of new mathematical questions. They also pose at least one for astronomers: Do any of these cosmic
choreographies actually occur? The figure eight’s stability suggests that it might. However, its domain of stability—mainly the
extent to which the three masses can be unequal—is very small. According to Montgomery, numerical experiments done by
Douglas Heggie of the University of Edinburgh suggest that the probability of such a pas de trois “is somewhere between one per

galaxy and one per universe.” In other words, one way for extraterrestrials to advertise
their existence (and demonstrate their stellar engineering skills) would be to choreograph
a couple of constellations. As they say, the truth is out there.

Keeping Pace

Berkeley biologist Bob Full has something in common with the proverbial topologist
who can’t tell the difference between a donut and a coffee cup. In Full’s case, the
confusion concerns a person and a cockroach.

What Full has in mind is not a Kafkaesque comparison of appearance or human value,
but merely—and surprisingly—that when it comes to ambulation, Homo sapiens and
Periplaneta americana are, biomechanically speaking, a lot alike. Indeed, virtually all
the pedestrian critters studied by Full and colleagues, from kangaroos to millipedes,
adhere to a unique biomechanical strategy for getting around: In effect, their legs act as
pogo sticks.

Full’s group at Berkeley, dubbed Poly-PEDAL (for Performance, Energetics, Dynam-
ics of Animal Locomotion), has studied dozens of insects as they run on tiny treadmills,

over rugged obstacle courses, and across force fields of unflavored gelatin. (Under polarized light, the gelatin records the forces
exerted by individual footsteps.) In collaboration with robotics expert Dan Koditschek of the University of Michigan and
mathematicians John Guckenheimer of Cornell and Philip Holmes of Princeton, Full has developed new mathematical models that
describe the stability and control of animal gaits.

Modeling, Full says, makes it possible to formulate precise hypotheses about the ways animals control their forward motion. One
of the major discoveries is that the brain plays a different role in motion than was previously thought. The old theory put the brain
(and its subsidiaries) very much in the driver’s seat: Forward motion was maintained by constant monitoring of sensory data and
correction of deviations through an elaborate feedback system. The new theory relies instead on feedforward control. “Basically,
the control mechanism can be embedded in the animal itself,” Full explains. In effect, the brain simply says “keep going,” and
nature’s fine-tuning of muscle and bone does the rest.

Full and colleagues call this kind of mechanical feedback “preflexes,” because it operates automatically, even before the nervous
system’s reflexes kick in. One of the most convincing demonstrations (and a crowd favorite whenever the video clip is played) has
a cockroach running on a treadmill with a tiny “cannon” glued to its back, pointing to the side. When the cannon fires (it’s detonated
electrically, like the bridges blown up in World War II movies), the roach is jolted in equal and opposite reaction, but the hardy
product of evolution scarcely falters: Within a couple of steps, it’s back in full stride.

The new discoveries about animal gaits are motivating new approaches in robotics, Full says. Koditschek’s group, for example,
has incorporated feedforward techniques in a six-legged robot called RHex. With carefully calibrated springiness built into its legs
and control algorithms that take advantage of the mechanics, RHex is capable of thrashing its way over various kinds of terrain,
including dense brush and rocky slopes. (The latter, Full says, really caught the eye of NASA engineers, who had dismissed the
idea of sending a legged robot to Mars.) Video clips are available at the RHex Web site, http://ai.eecs.umich.edu/RHex/. With
progress being made at a rapid pace, Full sees a promising future for the advancing science of neuromechanics.

Follow the Bouncing Ball

Thomas Vincent, a mechanical engineer at the University of Arizona, studies a control problem that might seem simpler than
six-legged motion: the bouncing of a ball on a vibrating plate. But looks can be deceiving. Even when the ball is impaled on a rod,
there’s a lot of chaos to be kept in check. Vincent demonstrated the dynamics at the conference poster session and described the
control algorithms during a minisymposium.

Vincent’s poster, done in collaboration with Brad Paden of the University of California, Santa Barbara, was one of four winners
of the James Yorke Red Sock award. (Yorke is director of the Institute for Physical Sciences and Technology at the University of
Maryland, and a prominent figure in dynamical systems. He is also known for
wearing bright red socks. The color, he explains, facilitates sorting of the
family laundry.) The other winners were John Harlim and William Langford
(University of Guelph), for “The Codimension Three Cusp Hopf Birfurcation”;
Martin Homer (University of Bristol), for “Nonlinearity and Asymmetry in
the Vibrations of the Inner Ear”; and Tyler McMillen and Alain Goriely
(University of Arizona), for “Tendril Perversion in Intrinsically Curved Rods.”

The basic dynamics of the ball-and-plate system are fairly straightforward:
What goes up must come down, and then it goes back up again (Figure 5). The
theory was exposited by Guckenheimer and Holmes in their classic 1983 text,

Figure 4. Periodic parallelogram. Four
equal masses loop endlessly in a double
figure eight, discovered by Joseph Gerver.
At each moment, the four bodies are at the
vertices of a parallelogram.
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Figure 5. Follow the bouncing ball. The dynamics of a
ball (top, piecewise-parabolic curve) bouncing off a
vibrating plate (bottom, sinusoidal curve) are highly
complex. At a frequency of 30 radians/second, any
perturbation of an unstable period-1 solution leads to a
stable period-2 solution.
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Nonlinear Oscillations, Dynamical Systems
and Bifurcations of Vector Fields. The per-
tinent variables are the amplitude A and
frequency � of the vibrating plate and its
phase angle �j at the time of the jth bounce.
The coefficient of restitution e (the
bounciness of the ball) is also an important
parameter. If the height of the bounce is
large compared with the amplitude of the
plate’s vibration, the time between bounces
is approximately 2Vj /g, where Vj is the
departure velocity at the time of the jth
bounce. This updates the phase angle to
�j+1 = �j + 2� Vj/g. The new velocity, Vj+1,
can also be worked out as Vj+1 = eVj +
A(1 + e)� cos(�j + 2� Vj/g). (The plate is
assumed to be “infinitely” heavy compared
with the ball.)

In a paper published last year in the
International Journal of Bifurcation and
Chaos, Vincent and Alistair Mees of the
University of Western Australia analyzed
what happens when the frequency is varied
with each bounce, so that � is replaced by
�j. They also took into account the ratio r of
the ball-to-plate masses, which changes the
terms e and 1 + e in the velocity formula to
(e – r)/(1 + r) and (1 + e)/(1 + r), respectively. Letting �0 denote the nominal frequency of the system and defining �j as 2�0

Vj/g, they obtain a system of the form �j+1 = �j + (� j/�0)�j �j+1 = a�j + b�0�j cos�j+1, where a and b are considered fixed
parameters (that is, not dependent on frequency). It’s relatively straightforward to solve for periodic solutions, around which the
map can be linearized.

In Vincent and Mees’s analysis, A is fixed at 1.3 cm, e at 0.8, and r at 1/26. This corresponds to a = 0.73333 and b = 0.004594
sec2. They ran simulations with �0 at 22 and 30 rad/sec. In both cases the system, theoretically, has a period-1 solution in the absence
of control (i.e., for �j = �0). The solution is stable for �0 = 22, and unstable for �0 = 30. But by adding control—that is, by varying
�j appropriately—they were able to create stability in the latter case and increase it in the former.

They tested two control algorithms: an LQR (linear-quadratic-regulator) method and a “greedy” method that seeks to minimize
the mean square error just one step ahead (instead of looking further into the future). The greedy algorithm works particularly well
in the � = 22 case, more than doubling the range of initial heights for which the period-1 solution is asymptotically stable. And
both algorithms turn the unstable, � = 30 solution into a nicely stable, periodic pattern. However, to make things work, especially
in the higher-frequency case, they found it necessary to replace the linear map derived from the high-bounce approximation with
a data-based linear approximation (Figure 6). (The heights of the bounce corresponding to the fixed points for � = 22 and 30 are
approximately 11 and 6.5 cm, respectively. Neither value is large enough compared with the amplitude A = 1.3 cm to completely
justify the high-bounce approximation.)

More recently, the researchers have run experiments with an actual bouncing ball apparatus, built by Paden’s company, Magnetic
Moments. The laboratory results, Vincent reports, show that the control algorithms work as well in practice as they do in
simulations. Visitors to the poster at Snowbird were able to see for themselves: A steel ball bounced hypnotically up and down.
For those who didn’t make it to the meeting, there’s a video clip at Vincent’s Web site (http://www.ame.arizona.edu/
faculty/vincent/vincent.html).
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Figure 6. Getting control. At 30 radians/second, a data-based approximation and either
LQR control (top) or greedy control (bottom) can be used to stabilize the ordinarily unstable
period-1 solution.

Barry A. Cipra is a mathematician and writer based in Northfield, Minnesota.


