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Community Lecture 2001

The Continuing Appeal of Small-world Networks
By James Case

The I.E. Block Community Lecture has become a highlight of the SIAM Annual Meeting; this year’s lecture, given in San Diego
on July 11 by Steve Strogatz of Cornell University, was no exception. Titled “Collective Dynamics of Small-world Networks,” the
lecture concerned a loosely defined class of networks that seems to include many if not most of the ones science and industry would
like to learn more about. Many of the results presented were first obtained by Strogatz in collaboration with Duncan Watts, then
a graduate student at Cornell and currently at Columbia University (Department of Sociology) and the Santa Fe Institute.

Large sparse networks are all around us. Of the six billion people in the world, few are acquainted with more than a thousand
others. The “global acquaintance graph” thus contains fewer than 3 × 1012 edges and is sparse in comparison with the complete
graph on six billion nodes, which has about six million times as many edges. A brain, with about ten billion neurons, each connected
to perhaps ten thousand others, has a comparably sparse wiring diagram. The Internet links millions of computers, relatively few
of which ever communicate directly with one another, meaning that  the “Internet connection graph” is also large and sparse.

The foregoing networks are partially random, in that people make unlikely acquaintances, and neurons and computers make
chance long-range connections. Yet people know their neighbors, neurons connect to nearby neurons, and computers are linked
in local networks far more often than if such connections were completely random. Practically important networks, then, seldom
resemble either totally random graphs or the completely regular graphs (such as chains, rings, grids, lattices, trivalent maps, and

complete graphs) of traditional graph theory.
A random graph of order n is nothing more than a set of n vertices, together with an

edge set that is generated in some random fashion. But random graph theory as it
currently exists is mainly concerned with edge sets generated in either of two specific
ways. After n(n – 1)/2 numbered balls—representing the edges of the complete graph
on n nodes—have been placed in an urn,  either m of them are withdrawn at random, or
all the balls are withdrawn in succession, each one retained or discarded with a
probability of  p or 1 – p, respectively. Many of the fundamental properties of the
resulting classes of random graphs, along with the techniques for analyzing them, were
developed during the late 1950s and early 1960s by Alfred Rényi and Paul Erdös.
Statistically speaking, there is little difference between the resulting classes of graphs
as long as n is large and m = np. The results can be compared with graphs of commercial
or scientific importance, large numbers of which can now be constructed from Internet
data.

Many such graphs—representing road maps, food chains, electric power grids,cellular,
metabolic, or neural networks, telephone call graphs, influence networks, and the like—

are large and sparse. More than a few
resemble those discussed by Watts and
Strogatz in that they share some traits with
random graphs and others with regularly
structured graphs.

Three statistics have proven particularly
fruitful in the study of large sparse net-
works: (1) the average k over all vertices v
of the number of edges incident on v; (2)
the average over all connected pairs of
distinct vertices of the length L (measured
in edges) of the shortest connecting path;
and (3) the (dimensionless) frequency C
with which three connected vertices are
completely connected, meaning that
each pair of vertices is connected by
an edge. Obviously, 0 < k < n – 1,
1 < L < n – 1, and 0 < C < 1. L is
known as the “characteristic path length”
of the graph in question; k is called the
“average vertex degree,” and C the “clus-
tering coefficient.” Graphs in which L is
about as small as in a random graph with

The large sparse graphs dis-
cussed in San Diego by I.E.
Block Community Lecturer
Steve Strogatz (above) rep-
resent real-world networks
ranging from electric power
grids to “influence net-
works”; these “small-world”
graphs, as discussed in the
accompanying article, “oc-
cupy an intermediate posi-
tion in the graph-theoretic fir-
mament, between the per-
fectly regular and the totally
random extremes.”
Another San Diego highlight
(right): Vincent Blondel of
l’Université Catholique de
Louvain received the SIAM
Activity Group on Control and
Systems Theory Prize, which is awarded every three years in recognition of outstanding
work by young researchers. Blondel, shown here with SIAG/CST vice-chair Mary Ann Horn,
has studied the computational complexity of a variety of control problems. He was cited for
addressing “fundamental problems in systems and control theory from a novel point of
view, involving a creative combination of disparate tools.” In certain contexts, according
to the prize citation, Blondel’s research “delineates the limitations of mathematical analysis
and computation.”
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the same n,k, but in which C is much larger,  are called “small-world graphs,” in homage to the cliché traditionally invoked when
people from distant parts of the world turn out to have friends in common.

The ultimate small-world graph is the so-called Kevin Bacon graph (KBG), in which the nodes represent actors who have
appeared (any time, anywhere) in one or more feature films in which pairs of vertices are connected by an edge whenever the
corresponding actors have appeared together in at least one feature film. Watts lists a number of factors that make the KBG worthy
of serious study [3]. For one thing, the data are reliable. The entire history of motion pictures has resulted in the creation of only
about 150,000 feature films, with a combined cast of about 300,000 actors, all of which are listed in a single searchable database
(at www.us.imdb.com). Moreover, about 90% of the actors listed are part of a single connected component KBG* of the graph that
includes about 225,000 actors in about 110,000 films. Strictly speaking, Watts and Strogatz’s analysis of the KBG applies only to
KBG*, since only connected graphs are of interest in the present line of inquiry.

KBG* is sufficiently large (n = 225,226) and sparse (k � 61) that L could conceivably vary over several orders of magnitude,
while C might lie almost anywhere in the unit interval. Yet the graph is not so large that it cannot be stored and manipulated by
a (suitably powerful) computer. Specifically, if n were even a single order of magnitude larger, it would be difficult to find any
computer that could hold the connected component in memory at one time, as must be done to compute statistics like L and C with
reasonable dispatch. The KBG is so named because (a) every actor who has ever appeared in an American-made film is connected
to Bacon by a path of length four or less, and (b) every actor in the entire graph—whatever his or her nationality—is connected
to him by a path of length at most eight. It is almost anticlimactic to learn that the decidedly more accomplished Rod Steiger has
an even shorter average path length than Bacon to other members of KBG*.

Two other small-world networks investigated by Watts and Strogatz are the moderately large (n = 282) and sparse (k = 14)
neural wiring diagram of the tiny worm known as Caenorhabditis elegans—C. elegans for short—and the electric power
transmission grid for the several states (as well as portions of the Canadian provinces) located west of the Rocky Mountains, wherein
n = 4971 and k = 2.67. The former graph is scientifically important, while the latter is commercially so, especially in a year of
rolling brownouts. Like the KBG, both offer the advantages of tractable size and accurate documentation.

Empirical evidence suggests that even remarkably sparse random
graphs have low values of L/n and C, while comparably sparse regularly
structured graphs combine significantly higher values of both quantities.
It might therefore be conjectured that the two statistics are correlated,
causing the pairs (L/n,C) obtained from a variety of large sparse graphs
to cluster about a straight line of positive slope in the unit square. To
demonstrate that this is not the case, Watts and Strogatz devised a scheme
for redirecting, in turn—with probability p—each edge of a ring graph in
which n vertices are arranged in a circle and each vertex is originally
connected to each of its k nearest neighbors. A small example (for
n = 20, k = 4) appears in Figure 1.

The ring graphs actually employed in the analysis were significantly
larger. The results for small positive values of p are somewhat disordered
versions of the originals in which approximately nkp/2 of the nk/2 original edges have been assigned new destinations. The degree
of disorder obviously increases with p, becoming nearly total as p nears unity. The surprising results are tabulated in Figure 2, in
which the ratios L(p)/L(0) and C(p)/C(0) are plotted against the parameter p, which is scaled exponentially for ease of interpretation.
Whereas L(p) falls off rapidly to something barely exceeding L(1) as p increases from 0, C(p) is almost constant for small values
of p, indicating the existence of an entire interval of p-values in which C(p) approximates C(0) while L(p) approximates L(1). For
such values of p, the corresponding graphs combine short characteristic lengths with nearly maximal clustering. By this
construction, Watts and Strogatz give precise meaning—in at least one special case—to the notion that small-world graphs occupy
an intermediate position in the graph-theoretic firmament, between
the perfectly regular and the totally random extremes.

The combination of a short characteristic length and a high
degree of clustering—which roughly distinguishes small-world
networks from other large sparse networks—can be deadly, as in
the case of certain diseases likely to be transmitted from one
acquaintance to another. The short characteristic lengths facilitate
transmission between remote clusters, while the high degree of
clustering assures that few members of an infected cluster will
remain uninfected. On the other hand, the same two characteristics
are ideal for communication networks—either human or robotic—
since they decrease the number of times a message must be
“handled” en route to its destination.

A somewhat similar and particularly striking result was obtained
by Newman, Moore, and Watts [1] when they considered a slightly
different procedure for turning the original (completely regular)
ring into a small-world graph. Instead of redirecting each edge in
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Figure 1. Progression from regularity to randomness,
beginning with a small ring graph in which n = 20, k = 4.
(Figures 1 and 2 adapted from [3].)

Figure 2. Decline of the ratios C(p)/C(0) and L(p)/L(0) for the
case n = 1000, k = 10.
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turn—with probability p—to a new destination, they simply inserted nkp shortcuts between randomly selected pairs of nodes to
conclude that L(p) � n*f(nkp)/k, where

The estimate is asymptotically correct in the limits n � � (corresponding to large system size) and either nkp � � or
nkp � 0 (corresponding to many or few shortcuts, respectively). Figure 3 indicates that the formula is also qualitatively correct
for intermediate numbers of shortcuts, although the actual average shortest distances are slightly longer than the estimated ones.

The “old-boy” network to which the directors of the nation’s largest companies belong can be described as a graph in which
vertices represent directors, and pairs of vertices are joined by edges if and
only if the corresponding directors sit together on one or more boards.
Vernon Jordan turns out (or did as of 1999) to play the Rod Steiger role
among the directors of companies included in the Fortune 1000—a list that
ranks the largest U.S. firms according to revenue—by sitting on no fewer
than nine distinct boards. Jordan is one of an elite group who sit on many
boards, creating an “overlap” that unites virtually all large U.S. firms into a
giant “web of corporate governance.” Reformers once portrayed this web of
“interlocking directorates” as a potent menace to society, although the public
quickly lost interest.

The data on interlocking directorates are more accurately recorded by a
bipartite than a unipartite graph, as illustrated in Figure 4 for a situation
involving four boards with a total of 16 members, 11 of whom are distinct.
The unipartite display (Figure 4b) omits some of the information contained
in Figure 4a, in that triangle FHI, which corresponds to board 3, looks for all
the world like triangle FGI, which does not correspond to any of the boards.

Let pj denote the probability that a director sits on exactly j boards, and let
qk denote the probability that a board includes exactly k members. The
sequence {pj} is a rapidly decreasing one, with most directors sitting on only
one Fortune 1000 board, while {qk} has a distinct peak at around 10 members. Assume, by way of a null hypothesis, that the Fortune
1000 network is a random member of the ensemble of all bipartite graphs with the same sequences {pj} and {qk}. It seems natural
to measure the degree of clustering in the “web of corporate governance” by determining the sequence {rz} of probabilities rz that
a randomly chosen board member sits with a total of z others on the several Fortune 1000 boards to which he or she belongs. To
that end, let

                                                                                        f0(x) = �j pjx j

and

g0(x) = �k qkx
k

be the generating functions associated with the empirical distributions
{pj} and {qk}. If we now choose a random edge, and follow it to its board
(rather than its member) end, the distribution of the number of other edges
emanating from that board can be shown to be generated by g1(x) = g0´(x)/
g0´(1). For a randomly chosen director,  the generating function for z is
then

G0(x) = f0(g1(x)) = �z rzx
z,

the coefficients of which can be determined by repeated differentiation:
rz = (1/z!)(d zG/dxz)|x=0.

Figure 5 shows that the predicted sequence {rz} agrees closely with the
actual distribution. Similarly, the predicted clustering coefficient agrees, to
within 1%, with the observed value, suggesting that the proposed random
model captures a good deal of the structure of the actual network. Yet it
must be confessed that in two other bipartite networks—pairing film
actors with the films they appeared in, and biomedical scientists with the
papers they co-authored—the model underestimates the degree of clus-
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Figure 3. Average path length, normalized by system
size, plotted as a function of the average number of
shortcuts (small circles) as compared with the theoreti-
cal formula (solid curve). (Figures 3–5 adapted from
[2].)

Figure 4. Information is lost in the passage from a
bipartite (a) to a unipartite (b) representation.
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tering by half.
Useful generalizations have already been made regarding large sparse

real-world networks, and still more useful ones appear to await discovery.
It should therefore become increasingly possible to distinguish between
surprising properties of a particular large sparse network, and properties
to be expected in any such graph. Similar networks are under investiga-
tion in numerous branches of science and technology, and closely related
discoveries are being made with surprising regularity. Although it is
probably too soon to unify so diverse a field, the first to try have much to
show for their efforts.
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Figure 5. Agreement between predicted and observed
values of {rz }.


