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Mechanical systems subject to non-smooth impacts from unilateral constraints are interesting not only because of their many
technological applications—which include walking, hopping, and juggling robots, gear- and cam-based mechanisms, hammering
tasks, and manipulation problems related to spacecraft—but also because of the challenging new control problems they suggest.
Many available control algorithms, for example, like those based on classical Lyapunov stability theory, require uniqueness and
continuity with respect to theinitial conditions of the solution to the dynamical system being controlled; these properties can belost
in the presence of unilateral constraints, even in the simple case of linear equations and constraints.

Such systems have appeared in the scientific literature since the early works of Newton and Hertz. For an extensive review of
existing results, the interested reader isreferred to [2].

In thelast few years, much research has been devoted to the control of so-called hybrid dynamical systems|[1, 4, 5]—systems
whosedescriptionincludesboth a“ continuous-time” and a“ discrete-time” component. Mechanical systemssubject to non-smooth
impactsrepresent asubclass of hybrid systems: Continuous-time descriptions can be given between any two adjacent impact times,
but the overall behavior of the system can be captured only if some propertiesof the phenomenaaretaken into account. Inthisway,
the postimpact state of the system can be computed as afunction of the preimpact state. A number of problems concerned with the
modeling of impact events are till unsolved [2].

The Hamiltonian structure that can be attributed to unconstrained mechanical systems, combined with the special type of
discontinuities generated by theimpacts, makesit easier to deal with such asubclassthan with thewholeclass of hybrid dynamical
systems. The results obtained are thus more powerful. Inthisarticle, we discuss control problemsthat cannot be solved within the
framework of classical control theory, requiring special formulation and/or ad hoc mathematical tools.

Mechanical Systems with Inequality Constraints

Throughout the article, we consider finite-dimensional mechanical systems that can be described by a vector q(t) € R" of
generalized coordinates. If (t) is constrained to belong to an admissible region, say
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there can betimest, at which q(t) isnot differentiable, i.e., impact times. If f(q(t)) = Oforsomei e { 1,2,...,m} andfor some
t € R, then some parts of the mechanical system are, at such times, in contact with themselves or with the external environment.
Animpact can occur at acertaintimet, € R only if, at such atime, f,(q(t.)) = Oforsomei e {1,2,...,m}.1ff(q(t)) = Ofor more
thanoneindexi € { 1, 2, ..., m} and for the sametimet, then there are multiple contacts at timet.

By assuming that the impacts do not cause instantaneous | oss of energy, the method of Valentine variables makesit possible to
model mechanical systems subject to inequality constraints [3] by means of the Hamilton principle. Such amethod consists of a
double transformation of the inequality constraints, first into equality constraints and then, for convenience, into differential
constraints.

If T(q(t),q(t)) = (/2) q'(t) B(q(t)) §(t) isthe kinetic energy and U,,(q(t)) = U(q(t)) — g'(t) E u(t) thetotal potential energy of
the mechanical system (taking into account the action of the vector u(t) e R” of the generalized control forces), we can denote the
LagrangianfunctionasL(q(t),q(t)) :=T(q(t),q(t)) — U(q(t)). Thedifferential equation describing the motion of the systemisthen
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wherel, arethederivatives (defined only in thedistributional sense) of the Lagrange multipliersused to account for the differential
constraints and J;(q) denotes the (column) Jacobian vector of f,(q). For computation of the system behavior from given initial
conditions, equation (2) is integrated in the intervals between impact times, with the following Erdmann-\Weierstrass cor ner
conditions satisfied at the impact times:



=" (t2)B(a(t.))a(t). (3a)

i | (3b)

The Erdmann—Weierstrass corner condition (3a) statesthat the kinetic energiesimmediately before and after an impact must be
equal, whereas equation (3b) relatesthejump q(t;) — ¢(t.) of thegeneralized velocitiesto thejump A(t7) — A;(t7) of the Lagrange
multi-pliers. Inthe case of single impacts, we can obtain unigue sol utions to equations (3a)—(3b) by requiring that the mechanical
system stay within the admissible region; hence, such equations allow the postimpact velocities to be determined as functions of
the preimpact velocities and of the system configuration.

Some control problems can be solved for mechanical systems subject to unilateral constraints without accounting for the
constraintsin the design of the control law. For one such problem—the stabilization of an admissible equilibrium configuration—
we assume that all the state variables q(t) and q(t) are mea-sured and apply a standard “ proportional -derivative” control law.

Under mild assumptions, it can be proved [3] that, for practical purposes, the equilibrium point of the “closed-loop system” is
asymptotically stable. Indeed, such an equilibrium point hasasort of stability property that islimited to the generalized coordinates
g, the generalized velocitiesq, the classical attractivity property with respect to g, § and the generalized reaction forcesi, (which
are necessarily excluded from the stability requirement). Such properties have been demonstrated by using the total energy of the
system (including aterm due to the proportional action in the control law) asa L yapunov functional and making use of asuitable
extension of LaSalle’ s theorem.

In control theory, LaSalle's theorem represents a powerful result from Lyapunov stability theory, allowing the guarantee of
asymptotic stability when it is possible to prove only that the time derivative of a candidate Lyapunov functional is negative
semidefinite, and not negative definite. An extension provedin [3] provided asimilar result for systemsin which some of the state
variables (the velocity variables) are subject to jumps because of the impulsive values of some of the other state variables (the
generalized contact forces).

Velocity Observers for Systems Subject to Non-smooth Impacts

Inthe previous section, we described a problem invol ving non-smooth impactsthat can be sol ved with the same control law used
to solvethecorresponding problemfor an unconstrained system. Thisisnot the casefor the problem of estimating vel ocity variables
when they cannot be measured directly.

In general, for adynamical system whose state x(t) cannot be measured directly, the problem of asymptotic state estimation
consists of designing a dynamical system (called the “state observer”) that has as input the measured output of the system (the
variable we call y(t)) and that produces as output an estimate X(t) of the state x(t) such that the estimation error x(t) — X(t)
asymptotically tendsto zero when the time variable t tendsto +oo. A general design procedure whose efficiency iswell known, at
least for linear time-invariant dynamical systems, consists of designing the state observer asadynamical system whose dynamical
equations are the same as those of the system whose state is to be estimated, with the addition of a suitable correction term,
proportional to the difference between the measured output and its estimate. State observersdesigned according to suchaprinciple
are known in the literature as L uenberger observers.

For unconstrained linear mechanical systems, such aprocedure can be used to design vel ocity observers. Observers of thistype
cannot be used as such in the presence of impacts, however (unless the magnitude of the jumps in the velocities occurring at the
impact times tends to zero for large times). Therefore, “ad hoc” observation algorithms must be used in presence of non-smooth
impacts. In this section, we use a simple example to discuss this problem.

Consider adimensionless ball with unitary mass, constrained to move along avertical line in the upper half-space delimited by
aperfectly rigid horizontal plane, and denote by —q(t) itsdistance from the plane. Assuming that thereisno dissipation at theimpact
times or during the free motion of the ball, such adynamical system can be written in state—space form (with only the position of
the mass to be measured) as follows:

x(t) = A x(t) + Bg,

te (tt.,),iecZ (49)
y(t) = Cx(t), teR, t>t, (4b)
qt) = —4(t), ieN (40)

wheret,istheinitial time;t,,i € N aretheimpact times; x(t) := [q(t) q(t)]", gisthe gravity accel eration; y(t) isthe measured output
y(t) = q(t) = x,(t); and A, B, and C are suitable matrices.



In the absence of impacts, an asymptotic observer for system (44), (4b) can be given as follows:

x(t)=Ax(t)+B g+K B(t) -Cx(t)g (5)
where
(o). (0
W=

isthe estimate of x(t) and

kO
K=
]

with k;, k, being positive real numbers.

It is easy to see that this dynamical system cannot be taken as an observer for the mass in the presence of an infinite sequence
of impacts (asimplied by the gravity acceleration), as at each impact time we have anonzero jJump in ¢(t) that can be reproduced
inv(t) only asymptotically. In asimulation performed to show the drawbacks of the dynamical system (5) asavelocity observer,
thegainsaregivenask, = 3andk, = 2andtheinitial conditionsasq(0) = —2,g(0) = 10, §(0) = -2, v(0) = 0.Figure1 shows
thebehavior of position g(t) (with thedashed line delimiting the admissibleregion), vel ocityq(t), and statevariables q(t), v(t) (bold
lines) of the dynamical system (5); q(t) and v(t) tend to alimit-cycle.

The alternative observer proposed here for system (4) is

x>

(t)=A%(t) +B g +K B/(t) -CX(t)B

t0(tt,,).0 2, (63)
U(t)=-9(t"), 10N, (6b)

adlight modification of (5) that takes into account the impacts through equation (6b).

A simulation was performed with the same gainsand initial conditions used for the observer (5). Figure 2 clearly showsthefast
convergence of the estimated state (((t) and v(t)) toward the actua state a(t), 4( L:I a(t), o(t)
Vs ikl v

(q(t) andq(t)) of the mechanical system, despitetheimpacts affecting the af
mass behavior (compare the plots of Figure 1 with those of Figure 2). |
Thesolution proposed herefor the simple example of the bouncing ball 10 y
can be used for any linear mechanical system, provided that all position 1] J,.r"
variablesare measured and that the impact times are detected inreal time 1 a0 ¥
(although the estimates obtained are“ robust” with respect to small delays R
in the detection of impacts). ol - R I I I B
Control of Underactuated Systems Through Impacts Figure 1. Drawbacks of a classical velocity observer: plots

) . . ofq(t), 4(t) [m] and q(t), \(t) [m/s] versus t[s]; the estimates
In the preceding sections, we described two standard problems for arg(,ép‘if,iéd{n bo% e VO frvs] sl

unconstrained systems, showing how they can be solved despite the
presence of the ineguality constraints and the corresponding impacts. In qlt), 4(t) g(t), #le)
this concluding section, we present a problem of a completely different e e, A p—
type, showing in a simple example how impacts can be used to regulate
the position of an underactuated mechanical system. Such asystem—that
is, asystem in which the number of scalar control inputsis smaller than
the number of degrees of freedom—would otherwise be uncontrollable.
Consider the mechanism shown in Figure 3, which consists of two
infinitely rigid mating gears. L et x(t) and y(t) be the angular positions of
the gears. Assumethat there is abacklash between the two mating gears, Figure 2. Behavior of the observer (6): plots ofq(t), §()
and that the measuring unit used for x(t) and y(t) issuch that thisbacklash [n% andd(t), I(t) [m/s] versus time t [S]J.'t,fe est,-mgte’s gre
isequal to 1. Thepositionsof thetwo gearsarethusconstrained by thetwo  reported in bold.
inequalities
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x(t) — y(t) <0, (79)
y(t) = x(t) —1<0. (7b)
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For simplicity, weassumethat therotational inertiaof each gear isequal to 1, and that

only the second gear is actuated: The first one is amost always in free motion, if we
excludethetimesat which impacts occur. Denote by u(t) thetorque exerted at timet on
the rotation axis of the second gear. The Euler—Lagrange equations (to be satisfied

between any two consecutive impact times) are

x(t)+ A, (t)=A,(t)=0,

y(t)+A, (1) - A, (t) = u(t),

where A,(t) and A,(t) are the reaction torques resulting from possible
contactsand impactsresulting from thefirst and the second constraint,
respectively. The postimpact vel ocities can be expressed as functions
of the preimpact vel ocities, whether theimpact isdueto thefirst or the
second constraint:

X(t) = W),
y(t) = X(t).

The control problem to be solved isthe dead-beat regul ation to zero
of the position of thenonactuated gear. Thegoal, in other words, isthat,
independent of the initial conditions, there exists for the closed-loop
systemafinitetime T; suchthat x(t) = Oforall t>T;; theimpactswith
the actuated gear are the only way to obtain this result. Starting from
the equations above, afeedback control law has been designed, based
on a discrete-time interpretation of the dynamical system to be con-
trolled. The results of a simulation of the closed-loop system are
reportedinFigure4; fromtheinitial conditionsx(0) = 0.1,y(0) = 0.5,
X(0) = 1, y(0) = -1, the desired position x = 0 is attained in 2
seconds.
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Figure 3. Two mating gears with back-
lash.
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Figure 4. Simulation results for the regulation of the

nonactuated gear.
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