from SIAM NewsVolume 32, Number 4

Exploiting Parallel Hardware In
Solving Optimization Problems

By Erling Andersen and Knud Andersen

Making an optimal choice, given a number of possibilities and constraints, is a fundamental problem in economics and
engineering. Examples include the optimal choice of a portfolio of stocks, given a budget and diversity requirementsathe optim

design of a truss, given certain load requirements; and the determination of an optimal production
plan, given the current manufacturing equipment.

In many cases suchAPPLlCATlONS ON problems can be formulated as mathematical optimization problems, in
which a function is maximized or minimized, given a set of decision variables and mathemati-
cal constraints specify- ADVANCED ing the set of feasible decisions. Efficient solution methods are important

because practical opti- mization problems, even when simplified, can be very large.
In a linear optimiza- ARCHITECTURE tion (LO) problem, a linear function is minimized or maximized, subject to

a number of linear COMPUTERS equalities and inequalities in which all the variables are continuous. Even
though this is a restric- Greg Astfalk, Editor tive class of problems, many applications of LO exist. One way to reduce
the solution time for ' large LO problems is to exploit more powerful computer hardware and, in
particular, parallel computers, which provide a relatively inexpensive source of computational

power. In this article we describe the parallel capabilities recently added to our LO software, called MOSEK.

A Parallel Interior-point Optimizer
The core of MOSEK consists of several algorithms for solving the LO problem:

minimize ¢’ x
subject toAx = b
x=0 (1)

where cJR", AOR™ ", andb (DR ™ are parameters axdIR" are the decision variables. In practiceandn can range from one
to several million. For most problems, the mafiis almost always sparse; for typical large-scale problems, more than 99% of
the entries oA are zero.

MOSEK offers two algorithms for the solution of (1): a primal simplex algorithm, the classical method for solving (1), and an
interior-point algorithm. Recently, interior-point algorithms have become a strong competitor of the simplex method. titérior-p
algorithms differ from the simplex algorithm in generating, rather than a sequence of extreme-point solutions, a seqirgace of po
in the interior of the positive orthant. These points converge toward the optimal solution. Theoretically, interior-pdhminalgor
have excellent convergence properties because of their polynomial complexity, first proved in [3]. This theoretical édficiency
confirmed in practice. Almost independent of the size of (1), an interior-point algorithm solves the problem in 10-t0&iterati

A single iteration of an interior-point algorithm, which involves a Cholesky factorization of a matrix of dimension
m x m, is much more computationally expensive than an iteration of the simplex algorithm. The computational complexity of one
simplex iteration i©(mn), whereas that of an interior-point iteratiorDig?).

Not much work is performed at each iteration of the simplex algorithm, and the advantage that can be gained from parallelizatio
is therefore limited. Furthermore, the simplex iterations themselves must be performed sequentially.

For an interior-point algorithm, however, the computationally expensive iterations turn out to be an advantage because they ca
be parallelized. Therefore, our focus here is the parallelization of the interior-point algorithm.

We chose the Silicon Graphics shared-memory platform as our initial architectural target for several reasons. First; the sharec
memory architecture eliminates most of the problems of data distribution. Second, MOSEK is coded in C, making the SGI platform,
with its Power C language, a good development environment. Third, other platforms, like the parallel Suns and Hewlett—Packards
are similar to the SGI. At a later stage, it should be easy to port the SGI code to those platforms as well. A recenplyresfieed
interface called OpenMP (see http://www.openmp.org/) provides facilities that are close to the extensions included in the Powel
C language on several hardware platforms. OpenMP is supported by Compaq (a.k.a. Digital), Hewlett—Packard, IBM, Intel, SGI,
and Sun.

To make a program capable of exploiting multiple processors, it is necessary to insert compiler directives into the code in the
form of “pragmas.” These language constructs are illustrated by the following code fragment:

#pragma parallel
#pragma pfor(i=0; 10000; i)
{

for (i=0 ; i<10000; ++i)
X[i] = yiI;

In this example, Power C will divide the loop into a number of independent parts, corresponding to a range of indices. Each par
is then executed by its own thread, and each thread is allocated to a processor. Hence, the loop is parallelized.

The pragma, with its instruction to the compiler that the loop can be parallelized, is needed because not all loopsbean safely
automatically parallelized. To improve parallel efficiency, it is necessary to reorganize the code in such a way thatsware loop
be parallelized. An importantissue in the code reorganization is that it should be possible to divide the work of aljpameqggal
the processors such that good load balancing is achieved.

Due to space limitations, we cannot discuss the MOSEK interior-point algorithm in detail here; the interested readet is referre
to[1, 2]. Because the interior-point algorithm in MOSEK was not initially designed for parallel execution, it was necessaty to
pragmas into the source code and reorganize some of the computations to give it parallel capabilities.

Each iteration of an interior-point algorithm involves the solution of a set of linear equations resulting from the appfication
Newton’s method to a set of nonlinear equations. Solving these linear equations is nearly equivalent to solving the n@nsal equa
in the methods used to solve linear least-squares problems.

The two most computationally expensive operations in this approach are the matrix—-matrix product

AAT (2)
and the Cholesky decomposition
AAT=LLT 3

wherel is a positive-definite lower triangular matrix. Because the columAscé rescaled in each iteration of the interior-point
algorithm, the computations (2) and (3) are repeated in each iteration. After the Cholesky decomposition has been computed, tf
coefficient matrix_ andL" are used to solve several systems of linear equations. For certain LO problems, matrix—vector products
of the form

AX (4)
and
Aly (5)

can also be computationally expensixeafdy are known vectors of appropriate dimension).

The computation of (5) in parallel is easy because, in MOSEHKA thatrix is stored in a sparse column-wise format. We can
thus parallelize the matrix—vector product (5) by letting each processor independently compute the inner producisaretween
a subset of the columns Af

This approach cannot be applied to evaluate (4) in parallel &viestored column-wise. Kis stored row-wise, however, an
approach identical to that used for the evaluation of (5) can be used for (4). Whenever the MOSEK interior-point algorithm is
executed in parallek is stored both row-wise and column-wise. At the cost of some additional storage, then, parallelization
becomes trivial; in practice, owing to the sparsity\pthe storage penalty is not significant.

For most LO problems the computation of (4) and (5) is not time consuming, whereas the computation of (2) and the Cholesky
decomposition (3) can require between 50% and 80% of the total computation time. Forming the matrix—matrix product can
obviously be done in parallel, because two columns of the matrix (2) can be computed independently. We parallelizedhis operati
by giving each processor responsibility for the computation of a subset of the columns in (2).

Parallel Cholesky

Once (2) has been computed, the Cholesky decomposition is performed. Doing the Cholesky decomposition in parallel is no
a trivial task. One complication is thAtis an unstructured sparse matrix, which implies #halt and, hencel. are sparse.
Exploitation of the sparsity is important for reducing both the storage requirements and the amount of computation.

It is well known that the sparsity afis dependent on the ordering of the rows and columA#bfTherefore, we would like
to perform a symmetric ordering of the rows and columns of (2) such that the number of nondzésasinimized. This is not
possible: Choosing an optimal ordering is an NP-complete problem. It is thus only heuristics, such as the minimum-degree
algorithm, that can be used. In MOSEK the first step is to compute a symmetric ordering of the matrix (2), after whicethe spar
data structure fok is created. This ordering is a one-time effort.

2

Without loss of generality, we assume thAas of full row rank; the matrix (2) is then positive-definite and symmetric.idf
initialized with (2), it is easy to verify that

D‘il L21 D:
B‘Zl L22 H

d 0 0

O
1 1 6
E) L, - L21L112(L21L112)TH ©

gz 0
mLfl)T(LZlLllz)T O

Ho 1 H

Herel ,, is square antl,,?is the Cholesky decomposition Iof,. SinceL is positive-definite, the matrix

L, - L21L;1%(L21L;1%)T @

is also positive-definite. The decomposition (6) can be applied recursively, and an algorithm for computing the Cholesky
decomposition is obtained. In particulal.jfis chosentobeal x 1 block, the algorithm is very simple. It should be emphasized
that the resulting algorithm is mathematically equivalent to Gaussian eliminatignvith the pivot element chosen to be on the
diagonal.

The update (7) can be performed immediately after

L ®

has been computed. The update of a particular part of (7) can also be delayed until this part is needed in the comghgations. If
update is performed immediately, the resulting algorithm is called a “push Cholesky”; otherwise, it is called a “pull Cholesky.

If L is a fully dense matrix, push Cholesky can easily be parallelized, as followsk Krshosen to be a small multiple of the
number of available processoks; is the leadings x k block ofL. L,,2is then computed sequentially on a single processor. This
is followed by the computation of (8) and (7). These two tasks can easily be split into small independent tasks, which can be
accomplished on several processors. Since the amount of work performed in each subtask is known, good load balancing can
obtained. Hence, If is a dense, or nearly dense, matrix, we know how to comyeffeciently in parallel. As mentioned earlier,
however| tends to be a large sparse matrix.

For instancel. can be of the form

>
>

>
>

X X X X
X X X X

>
>
>

X X X

r
I

MO0 OO000 000006

880 e e e e e

(9)

Eachxin (9) denotes a non-zero; all the remaining coefficients are zero. The uppetan die seen to be very sparse, whereas

3

the lower triangular corner of the matrix forms a more dense submatrix. This observation holds ingeneral for the Cholesky
decompositions arising in the interior-point algorithm implemented in MOSEK, because of the way the symmetric reordering of
AAT is done.

The sparsity irl actually turns out to be an advantage, because it implies that some of the computations can be performed
independently. In the examplematrix, column 1 updates column 3 and column 2 updates column 5. In this way the sparsity of
L gives rise to these tasks, which can be performed independently. This is of obvious advantage for parallelization.

Elimination Trees
To describe the dependencies in the elimination process, we introduce the elimination tree [4], which is defined as:

parent[j]:=
. ly =0, Ok>j
E’nin{khkj 20}, ese
Additionally,
T[]j] := the subtree rooted at nogdim the elimination tree
and

H[T[j]] := {height of the tree}T[j]

Thus, all the subtrees rooted at the leaf nodes have height 1, all the subtrees rooted at the parents of the leaf nigtie2 have he
and so forth. Finally, we define

sublevelK] := {j: H[T[j]]= k}

implying that all subtrees that have the same height belong to the same sublevel. For the examplar@)idnesublevelre
shown in Table 1.

nodef) 12345678910

paren{fj] 35799789100
HITLI 1121213456

Table 1. Definition of parent and sublevel

Even though this algorithm runs in parallel,for the example (9). it has some disadvantages. Unless the

number of nodes at each sublevel is larger than the number of processors, and the amounts of work required to updgs all the no
on a sublevel are fairly similar, use of this algorithm does not lead to good load balancing. Stated differently, the @gonigsm
that the elimination tree be well balanced. Unfortunately, it is well known that the minimum-degree ordering does noagenerate
well-balanced elimination tree.

From the construction of the elimination tree, it follows that the number of nodes on each sublevel decreases as tineleublevel i
increases. The size of the subtrees increases as well. If cut at a certain level, detwtieddjythe elimination tree splits into a
large number of small subtrees and one fairly large parent tree. This can be illustrated by the example

g

g

a

a

g
L O (10)
d
B

oooOoood

(k+1)1 (k+1)2 *** I‘(k+1)k I‘(k+1)(k+1)

inwhich itis assumed thiasubtrees appear

when the elimination tree is cut off at a __Preprocessed Non-zeros

given level. Itis furtherassumed that all the Name Rows Columns CAATT 0.0

nodes corresponding to one subtree are

ordered sequentially, which means that pjregest 30643 271596 625601 4000913

blockL; corresponds to all the nodes of one chinese 8067 41154 226851 68408

subtree. The last blocky. .1 IS the par- dbir1 7154 24862 1112931 2279495

ent tree, which can be assumed to be fairly dfl001 3810 8910 40103 798902

dense, given an appropriate choice for the ken-18 39856 89347 177502 1274821

cutlevel. many 20145 183062 482605 3510790
Clearly, the small subtrees correspond- mod2 21769 24351 905326 905326

ing to the firsk blocks can be processed in 3321250 gggg $f§;§ iigggg iggg%g

parallel. Moreover, if the cutlevel is chosen SlormG2-125 47786 129994 286161 SROG61

appropriately, the number of subtrees avail=
able for distribution among processors Willrap1e 2. The test problems.
be large enough to achieve good load bal-

ancing. For factorization of the lagt+l)

block, the following procedure is used to Solution time (s) Speedup
factorize all the nodes, one sublevel at a
time: First, all the nodes at the current Platform 1 2 4 2 4

sublevel are updated with the information
from the firstk blocks. To distribute the

work equally among processors, a list for SGI bitest 794 476 460 L7 L7

. chinese 185 106 88 1.7 2.1
each node on t_he currentsublevelis formed. dbirl 332 184 154 18 29
The list contains the nodes from the first dfioo1 81 55 35 15 23
part that are used to update the block (no- ken-18 128 90 71 1.4 18
tice that any node in the first part can many 1272 759 556 1.7 2.3
appear in only one list). All the nodes at the mod?2 128 94 78 1.4 1.6
current sublevel, considered as one matrix, nugl15 1243 712 509 1.7 2.4
are then updated in parallel by techniques pds-20 246 166 132 15 19
similar to those used for a parallel push- stormG2-125 403 253 221 1.6 1.8

Cholesky update. When all the nodes on&a

given sublevel have been updated, each bg.eSt 2‘2135 1;;6 113'9
node is factored with a parallel dense gb[nese :
. . irl 490 315 1.6

Cholesky decomposition (with all proces- dfloo1 138 92 15
sors used to factor one node at a time). ken-18 155 132 12

. nugl5 2075 1321 1.6

Computational Results many 1931 1398 14
At this point, we have discussed the mod2 183 148 13
major tasks that have been parallelized pds-20 347 237 15
stormG2-125 804 568 1.4

within the MOSEK interior-point algo-
rithm. Certain other less time consumin .

tasks have also been parallelized but aglfé"b'e 3. Timing results.

not discussed here.

We emphasize that our implementation is not intended to be scalable for a large number of processors. Nevertheless, it is ol
experience that if the computation of the Cholesky decomposition is the dominant computational cost in the solution of (1), our
implementation does scale reaably well on systems of up to 16 processors.

To show the effectiveness of our approach, we present computational results obtained with MOSEK. Table 2 gives the statistic
for our test problems, which were chosen to represent different problem domains, such as multi-commodity network flows,
stochastic programming, and LP relaxations of quadratic assignment and set-covering problems.

The table shows the numbers of rows, columns), and non-zeros iAA” andL. The dimension df is identical to the number
of rows, and the matrik for nugl15is therefore dense. Before optimization of the problems witlSEK) the software package
XPRESS-MPwas used to preprocess and rescale them.

Table 3 presents computational results for the test problems. The problems were run on a 16-processor SGI Origin 2000 comput
with 2 gigabytes of memory and a two-processor PC computer that has 128 megabytes of memory and runs Windows NT.

Table 3 shows the solution times (in CPU seconds) for the test problems run on the master processor with one, two, and fot
processors. The speedups are also shown. (The definition of speelprpogssors is the time required to solve the problem with
one processor divided by the time required wiitocessors.) In general, ideal linear speedups are not obtained, in part because
not all operations are parallelized and in part because of the load-balancing effects. This is especially true for collgputationa
inexpensive problems likeen-18 For computationally expensive problems, however, good speedups are achieved; even on the

5

inexpensive PC hardware, a respectable speedup is realized on two processors.

Conclusion

Even though the work of an interior-point algorithm cannot be split into a number of independent tasks, we have obtained gooc
speedups for compu-tationally expensive problems on shared-memory machines. The speedup is realized on both the SGI platfor
and the less expensive PC platform. The implementation described here is not scalable to a large number of processors; F
hardware, though, is not likely to be equipped with large numbers of processors any time soon.

The Web site for the MOSEK software discussed in this article is http://www.mosek.com.

References

[1] E.D. Andersen and K.D. AnderseA, parallel interior-point based linear programming solver for shared-memory multiprocessor
computers: A case study based on the XPRESS LP sbéamical report, CORE, UCL, Belgium, 1997.

[2] E.D. Andersen and K.D. Anderserhe APOS linear programming solver: An implementation of the homogeneous alg®dtimical
Report Publications from Department of Management No. 2/1997, also available as CORE Discussion Paper 9730, Departmententylanag
Odense University, Denmark, 1997.

[3] N. KarmarkarA polynomial-time algorithm for linear programmingom-binatorica, 4 (1984), 373—-395.

[4] J.W.H. Liu, The role of the elimination tree in sparse factorizatiStAM J. Mat. Anal. Appl., 11:1 (1990), 134-172.

Erling Andersen (e.d.andersen@twi.tudelft.nl) is a TMR Research Fellow at TU Delft, The Netherlands. Knud Andersen
(kda@eka.globalnet.co.uk) is a software developer at Dash Associates in Royal Leamington Spa, UK.

