
1

from SIAM News, Volume 32, Number 4

APPLICATIONS ON
A D VA N C E D
A R C H I T E C T U R E
C O M P U T E R S
Greg Astfalk, Editor

Exploiting Parallel Hardware in
Solving Optimization Problems
By Erling Andersen and Knud Andersen

Making an optimal choice, given a number of possibilities and constraints, is a fundamental problem in economics and
engineering. Examples include the optimal choice of a portfolio of stocks, given a budget and diversity requirements; the optimal
design of a truss, given certain load requirements; and the determination of an optimal production
plan, given the current manufacturing equipment.

In many cases such problems can be formulated as mathematical optimization problems, in
which a function is maximized or minimized, given a set of decision variables and mathemati-
cal constraints specify- ing the set of feasible decisions. Efficient solution methods are important
because practical opti- mization problems, even when simplified, can be very large.

In a linear optimiza- tion (LO) problem, a linear function is minimized or maximized, subject to
a number of linear equalities and inequalities in which all the variables are continuous. Even
though this is a restric- tive class of problems, many applications of LO exist. One way to reduce
the solution time for large LO problems is to exploit more powerful computer hardware and, in
particular, parallel computers, which provide a relatively inexpensive source of computational
power. In this article we describe the parallel capabilities recently added to our LO software, called MOSEK.

A Parallel Interior-point Optimizer

The core of MOSEK consists of several algorithms for solving the LO problem:

 minimize cT x
 subject to Ax = b

 x ≥ 0 (1)

where c ∈R n, A ∈R m × n, and b ∈R m are parameters and x ∈R n are the decision variables. In practice, m and n can range from one
to several million. For most problems, the matrix A is almost always sparse; for typical large-scale problems, more than 99% of
the entries of A are zero.

MOSEK offers two algorithms for the solution of (1): a primal simplex algorithm, the classical method for solving (1), and an
interior-point algorithm. Recently, interior-point algorithms have become a strong competitor of the simplex method. Interior-point
algorithms differ from the simplex algorithm in generating, rather than a sequence of extreme-point solutions, a sequence of points
in the interior of the positive orthant. These points converge toward the optimal solution. Theoretically, interior-point algorithms
have excellent convergence properties because of their polynomial complexity, first proved in [3]. This theoretical efficiency is
confirmed in practice. Almost independent of the size of (1), an interior-point algorithm solves the problem in 10–100 iterations.

A single iteration of an interior-point algorithm, which involves a Cholesky factorization of a matrix of dimension
m × m, is much more computationally expensive than an iteration of the simplex algorithm. The computational complexity of one
simplex iteration is O(mn), whereas that of an interior-point iteration is O(n3).

Not much work is performed at each iteration of the simplex algorithm, and the advantage that can be gained from parallelization
is therefore limited. Furthermore, the simplex iterations themselves must be performed sequentially.

For an interior-point algorithm, however, the computationally expensive iterations turn out to be an advantage because they can
be parallelized. Therefore, our focus here is the parallelization of the interior-point algorithm.

We chose the Silicon Graphics shared-memory platform as our initial architectural target for several reasons. First, the shared-
memory architecture eliminates most of the problems of data distribution. Second, MOSEK is coded in C, making the SGI platform,
with its Power C language, a good development environment. Third, other platforms, like the parallel Suns and Hewlett–Packards,
are similar to the SGI. At a later stage, it should be easy to port the SGI code to those platforms as well. A recently defined portable
interface called OpenMP (see http://www.openmp.org/) provides facilities that are close to the extensions included in the Power
C language on several hardware platforms. OpenMP is supported by Compaq (a.k.a. Digital), Hewlett–Packard, IBM, Intel, SGI,
and Sun.

To make a program capable of exploiting multiple processors, it is necessary to insert compiler directives into the code in the
form of “pragmas.” These language constructs are illustrated by the following code fragment:

2

#pragma parallel
 #pragma pfor(i=0; 10000; i)
{
 for (i=0 ; i<10000; ++i)
 x[i] = y[i];
}

In this example, Power C will divide the loop into a number of independent parts, corresponding to a range of indices. Each part
is then executed by its own thread, and each thread is allocated to a processor. Hence, the loop is parallelized.

The pragma, with its instruction to the compiler that the loop can be parallelized, is needed because not all loops can safely be
automatically parallelized. To improve parallel efficiency, it is necessary to reorganize the code in such a way that more loops can
be parallelized. An important issue in the code reorganization is that it should be possible to divide the work of a loop equally among
the processors such that good load balancing is achieved.

Due to space limitations, we cannot discuss the MOSEK interior-point algorithm in detail here; the interested reader is referred
to [1, 2]. Because the interior-point algorithm in MOSEK was not initially designed for parallel execution, it was necessary to insert
pragmas into the source code and reorganize some of the computations to give it parallel capabilities.

Each iteration of an interior-point algorithm involves the solution of a set of linear equations resulting from the application of
Newton’s method to a set of nonlinear equations. Solving these linear equations is nearly equivalent to solving the normal equations
in the methods used to solve linear least-squares problems.

The two most computationally expensive operations in this approach are the matrix–matrix product

AAT (2)

and the Cholesky decomposition

AAT = LLT (3)

where L is a positive-definite lower triangular matrix. Because the columns of A are rescaled in each iteration of the interior-point
algorithm, the computations (2) and (3) are repeated in each iteration. After the Cholesky decomposition has been computed, the
coefficient matrix L and LT are used to solve several systems of linear equations. For certain LO problems, matrix–vector products
of the form

Ax (4)

and

ATy (5)

can also be computationally expensive (x and y are known vectors of appropriate dimension).
The computation of (5) in parallel is easy because, in MOSEK, the A matrix is stored in a sparse column-wise format. We can

thus parallelize the matrix–vector product (5) by letting each processor independently compute the inner products between y and
a subset of the columns of A.

This approach cannot be applied to evaluate (4) in parallel when A is stored column-wise. If A is stored row-wise, however, an
approach identical to that used for the evaluation of (5) can be used for (4). Whenever the MOSEK interior-point algorithm is
executed in parallel, A is stored both row-wise and column-wise. At the cost of some additional storage, then, parallelization
becomes trivial; in practice, owing to the sparsity of A, the storage penalty is not significant.

For most LO problems the computation of (4) and (5) is not time consuming, whereas the computation of (2) and the Cholesky
decomposition (3) can require between 50% and 80% of the total computation time. Forming the matrix–matrix product can
obviously be done in parallel, because two columns of the matrix (2) can be computed independently. We parallelize this operation
by giving each processor responsibility for the computation of a subset of the columns in (2).

Parallel Cholesky

Once (2) has been computed, the Cholesky decomposition is performed. Doing the Cholesky decomposition in parallel is not
a trivial task. One complication is that A is an unstructured sparse matrix, which implies that AAT and, hence, L are sparse.
Exploitation of the sparsity is important for reducing both the storage requirements and the amount of computation.

It is well known that the sparsity of L is dependent on the ordering of the rows and columns of AAT. Therefore, we would like
to perform a symmetric ordering of the rows and columns of (2) such that the number of non-zeros in L is minimized. This is not
possible: Choosing an optimal ordering is an NP-complete problem. It is thus only heuristics, such as the minimum-degree
algorithm, that can be used. In MOSEK the first step is to compute a symmetric ordering of the matrix (2), after which the sparse
data structure for L is created. This ordering is a one-time effort.

3

Without loss of generality, we assume that A is of full row rank; the matrix (2) is then positive-definite and symmetric. If L is
initialized with (2), it is easy to verify that

L L

L L

L

L L I

I

L L L L L

L L L

I

T

T T

11 21

21 22

11

21 11

22 21 11 21 11

11 21 11

1

2

1

2

1

2

1

2

1

2

1

2

0

0

0

0









 =

















−

























−

− −

−

()

() ()

 (6)

Here L11 is square and L11
–1/2 is the Cholesky decomposition of L11. Since L is positive-definite, the matrix

L L L L L T
22 21 11 21 11

1

2

1

2−
− −

() (7)

is also positive-definite. The decomposition (6) can be applied recursively, and an algorithm for computing the Cholesky
decomposition is obtained. In particular, if L11 is chosen to be a 1 × 1 block, the algorithm is very simple. It should be emphasized
that the resulting algorithm is mathematically equivalent to Gaussian elimination on L, with the pivot element chosen to be on the
diagonal.

The update (7) can be performed immediately after

 L L21 11

1

2
− (8)

has been computed. The update of a particular part of (7) can also be delayed until this part is needed in the computations. If the
update is performed immediately, the resulting algorithm is called a “push Cholesky”; otherwise, it is called a “pull Cholesky.”

If L is a fully dense matrix, push Cholesky can easily be parallelized, as follows: First, k is chosen to be a small multiple of the
number of available processors; L11 is the leading k × k block of L. L11

–1/2 is then computed sequentially on a single processor. This
is followed by the computation of (8) and (7). These two tasks can easily be split into small independent tasks, which can be
accomplished on several processors. Since the amount of work performed in each subtask is known, good load balancing can be
obtained. Hence, if L is a dense, or nearly dense, matrix, we know how to compute L efficiently in parallel. As mentioned earlier,
however, L tends to be a large sparse matrix.

For instance, L can be of the form

L

x

x

x x

x

x x

x

x x x

x x x x x

x x x x

x x x x x x

=







































(9)

Each x in (9) denotes a non-zero; all the remaining coefficients are zero. The upper part of L can be seen to be very sparse, whereas

4

the lower triangular corner of the matrix forms a more dense submatrix. This observation holds ingeneral for the Cholesky
decompositions arising in the interior-point algorithm implemented in MOSEK, because of the way the symmetric reordering of
AAT is done.

The sparsity in L actually turns out to be an advantage, because it implies that some of the computations can be performed
independently. In the example L matrix, column 1 updates column 3 and column 2 updates column 5. In this way the sparsity of
L gives rise to these tasks, which can be performed independently. This is of obvious advantage for parallelization.

Elimination Trees

To describe the dependencies in the elimination process, we introduce the elimination tree [4], which is defined as:

parent j

l k j

k l

kj

kj

[] =

= ∀ >

≠{ }






:

, ,

min ,

0 0

0 else

Additionally,

T[j] := the subtree rooted at node j in the elimination tree

and

H[T[j]] := {height of the tree} T[j]

Thus, all the subtrees rooted at the leaf nodes have height 1, all the subtrees rooted at the parents of the leaf nodes have height 2,
and so forth. Finally, we define

sublevel[k] := { j: H[T[j]]= k}

implying that all subtrees that have the same height belong to the same sublevel. For the example (9), the parent and sublevel are
shown in Table 1.

Even though this algorithm runs in parallel, it has some disadvantages. Unless the
number of nodes at each sublevel is larger than the number of processors, and the amounts of work required to update all the nodes
on a sublevel are fairly similar, use of this algorithm does not lead to good load balancing. Stated differently, the algorithm requires
that the elimination tree be well balanced. Unfortunately, it is well known that the minimum-degree ordering does not generate a
well-balanced elimination tree.

From the construction of the elimination tree, it follows that the number of nodes on each sublevel decreases as the sublevel index
increases. The size of the subtrees increases as well. If cut at a certain level, denoted by cutlevel, the elimination tree splits into a
large number of small subtrees and one fairly large parent tree. This can be illustrated by the example

(10)

L

L

L

L L L L
kk

k k k k k k

11

22

1 1 1 2 1 1 1

O

L+() +() +() +() +()

























Table 1. Definition of parent and sublevel
for the example (9).

node(j) 1 2 3 4 5 6 7 8 9 10

parent[j] 3 5 7 9 9 7 8 9 10 0
H[T[j]] 1 1 2 1 2 1 3 4 5 6

5

in which it is assumed that k subtrees appear
when the elimination tree is cut off at a
given level. It is further assumed that all the
nodes corresponding to one subtree are
ordered sequentially, which means that
block Lii corresponds to all the nodes of one
subtree. The last block, L(k+1)(k+1), is the par-
ent tree, which can be assumed to be fairly
dense, given an appropriate choice for the
cutlevel.

Clearly, the small subtrees correspond-
ing to the first k blocks can be processed in
parallel. Moreover, if the cutlevel is chosen
appropriately, the number of subtrees avail-
able for distribution among processors will
be large enough to achieve good load bal-
ancing. For factorization of the last (k+1)
block, the following procedure is used to
factorize all the nodes, one sublevel at a
time: First, all the nodes at the current
sublevel are updated with the information
from the first k blocks. To distribute the
work equally among processors, a list for
each node on the current sublevel is formed.
The list contains the nodes from the first
part that are used to update the block (no-
tice that any node in the first part can
appear in only one list). All the nodes at the
current sublevel, considered as one matrix,
are then updated in parallel by techniques
similar to those used for a parallel push-
Cholesky update. When all the nodes on a
given sublevel have been updated, each
node is factored with a parallel dense
Cholesky decomposition (with all proces-
sors used to factor one node at a time).

Computational Results

At this point, we have discussed the
major tasks that have been parallelized
within the MOSEK interior-point algo-
rithm. Certain other less time consuming
tasks have also been parallelized but are
not discussed here.

We emphasize that our implementation is not intended to be scalable for a large number of processors. Nevertheless, it is our
experience that if the computation of the Cholesky decomposition is the dominant computational cost in the solution of (1), our
implementation does scale reasonably well on systems of up to 16 processors.

To show the effectiveness of our approach, we present computational results obtained with MOSEK. Table 2 gives the statistics
for our test problems, which were chosen to represent different problem domains, such as multi-commodity network flows,
stochastic programming, and LP relaxations of quadratic assignment and set-covering problems.

The table shows the numbers of rows (m), columns (n), and non-zeros in AAT and L. The dimension of L is identical to the number
of rows, and the matrix L for nug15 is therefore dense. Before optimization of the problems with MOSEK, the software package
XPRESS-MP was used to preprocess and rescale them.

Table 3 presents computational results for the test problems. The problems were run on a 16-processor SGI Origin 2000 computer
with 2 gigabytes of memory and a two-processor PC computer that has 128 megabytes of memory and runs Windows NT.

Table 3 shows the solution times (in CPU seconds) for the test problems run on the master processor with one, two, and four
processors. The speedups are also shown. (The definition of speed-up on k processors is the time required to solve the problem with
one processor divided by the time required with k processors.) In general, ideal linear speedups are not obtained, in part because
not all operations are parallelized and in part because of the load-balancing effects. This is especially true for computationally
inexpensive problems like ken-18. For computationally expensive problems, however, good speedups are achieved; even on the

 Solution time (s) Speedup

Platform 1 2 4 2 4

SGI bitest 794 476 460 1.7 1.7
chinese 185 106 88 1.7 2.1
dbir1 332 184 154 1.8 2.2
dfl001 81 55 35 1.5 2.3
ken-18 128 90 71 1.4 1.8
many 1272 759 556 1.7 2.3
mod2 128 94 78 1.4 1.6
nug15 1243 712 509 1.7 2.4
pds-20 246 166 132 1.5 1.9
stormG2-125 403 253 221 1.6 1.8

PC bitest 1445 746 1.9
chinese 229 172 1.3
dbir1 490 315 1.6
dfl001 138 92 1.5
ken-18 155 132 1.2
nug15 2075 1321 1.6
many 1931 1398 1.4
mod2 183 148 1.3
pds-20 347 237 1.5
stormG2-125 804 568 1.4

Table 3. Timing results.

Table 2. The test problems.

 Preprocessed Non-zeros

 Name Rows Columns AAT L

 bitesest 30643 271596 625601 4000913
 chinese 8067 41154 226851 68408
 dbir1 7154 24862 1112931 2279495
 dfl001 3810 8910 40103 798902
 ken-18 39856 89347 177502 1274821
 many 20145 183062 482605 3510790
 mod2 21769 24351 905326 905326
 nug15 6630 22275 115204 4538918
 pds-20 6834 71354 140995 1238728
 stormG2-125 47786 129994 286161 589661

6

inexpensive PC hardware, a respectable speedup is realized on two processors.

Conclusion

Even though the work of an interior-point algorithm cannot be split into a number of independent tasks, we have obtained good
speedups for compu-tationally expensive problems on shared-memory machines. The speedup is realized on both the SGI platform
and the less expensive PC platform. The implementation described here is not scalable to a large number of processors; PC
hardware, though, is not likely to be equipped with large numbers of processors any time soon.

The Web site for the MOSEK software discussed in this article is http://www.mosek.com.

References
[1] E.D. Andersen and K.D. Andersen, A parallel interior-point based linear programming solver for shared-memory multiprocessor

computers: A case study based on the XPRESS LP solver, Technical report, CORE, UCL, Belgium, 1997.
[2] E.D. Andersen and K.D. Andersen, The APOS linear programming solver: An implementation of the homogeneous algorithm, Technical

Report Publications from Department of Management No. 2/1997, also available as CORE Discussion Paper 9730, Department of Management,
Odense University, Denmark, 1997.

[3] N. Karmarkar, A polynomial-time algorithm for linear programming, Com-binatorica, 4 (1984), 373–395.
[4] J.W.H. Liu, The role of the elimination tree in sparse factorization, SIAM J. Mat. Anal. Appl., 11:1 (1990), 134–172.

Erling Andersen (e.d.andersen@twi.tudelft.nl) is a TMR Research Fellow at TU Delft, The Netherlands. Knud Andersen
(kda@eka.globalnet.co.uk) is a software developer at Dash Associates in Royal Leamington Spa, UK.

