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Parallel Computation of Gravity Wave
Turbulence in the Earth’s Atmosphere
By Joseph M. Prusa, Piotr K. Smolarkiewicz, and Andrzej A. Wyszogrodzki

Gravity waves (GWs) are ubiquitous internal waves in which the restoring force is buoyancy. In the Earth’s atmosphere, GWs
are generated whenever a parcel of air is disturbed from its equilibrium position. Disturbing sources include topographic features

(e.g., mountains), convective instabilities (e.g., thunderstorms), frontal motions, and oscillations of jet
streams. When the amplitude of a GW approaches its inverse vertical wavenumber, the wave “breaks”
and generates a localized region of intense turbulence.

Strong GWs near the surface in the lee of mountains are responsible for spectacular down-slope
windstorms, such as the Boulder chinook, the Santa Ana winds, and the Yugoslavian bora. Such storms
often generate hurricane-force winds and are a serious threat to personal safety, buildings, and surface
and air transportation. At higher altitudes, GWs can be of sufficient magnitude to alter the mean state
of the atmosphere.

The wave drag induced by the breaking of small-scale GWs (~10 km) is now thought to be an
important issue in improving subgrid parameterizations for global atmospheric flow models. More
generally, the propagation and evolution of GWs may be a key component in determining the spectral

energy of the atmosphere at mesoscales (~100 km).

Physical Problem

We modeled the evolution of an internal gravity wave packet generated by a disturbance in the lower atmosphere and its
subsequent breaking at higher altitudes. For direct resolution of as many of the physically important length scales as possible, a
grid spacing of 380 meters was used throughout a 200 × 30 × 110 km (zonal, meridional, vertical, respectively) domain. The result
was a 544 × 80 × 291 computational grid of 12.7 million points. The solution, generated on a CRAY T3E, showed spectacular detail
(revealing the evolution of multiple subranges of turbulence) and clearly demonstrated the advantages of highly parallel
technologies.

The disturbance was modeled as Gaussian in its spatial–temporal evolution, with a maximum forcing amplitude of 200 meters
at t = 2 hours and peak half-widths of 2 km and 1 hour. The basic state of the atmosphere was one of uniform zonal wind (uo = –32 meter-
second–1), stability (N = 0.020 second–1), and density scale height (H = 6.63 km). N represents the Brunt–Väisällä, or buoyancy,
frequency; it is the frequency of oscillation of a parcel of air undergoing adiabatic, stable vertical displacements about an
equilibrium state. This basic state and forcing favored the development of a monochromatic, 2D primary (convective) instability
at 130 minutes [4]. This was followed within a Brunt–Väisällä period (~5 minutes) by a secondary (spanwise) instability that
induced 3D flow structures. The ensuing wavebreaking generated a highly inhomogeneous, anisotropic turbulence that developed
in accord with the physics of a wave packet propagating into a very deep model atmosphere—it was not initialized according to
any a priori turbulence model, nor was it constrained by domain size.

Some idea of the inhomogeneity of the wavefield can be gleaned from Figure 1, which shows a contour density plot of the natural
log of the potential temperature (θ) field (ln(θ) ~ entropy). The vertical plane of this plot is perpendicular to the zonal flow. The
plot shows the wavefield to be homogeneous in the spanwise direction (left to right is south to north) but inhomogeneous in the
vertical. (Notice that the complete altitude range is 15 ≤ z ≤ 125 km. The regions above and below those shown in Figure 1 are very
smooth and characterized by constant stratification.) Similar inhomogeneity occurs in the zonal direction (west to east). The aniso-
tropy of the turbulence can be seen in Figure 2, which shows the velocity derivative skewness Si :
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where i = 1, 2, or 3, denoting the zonal (Figure 2(a)), meridional (Figure 2(b)), or vertical (Figure 2(c)) wind and coordinate,
respectively. Here 〈·〉 denotes an averaging operator over a volume of space. For isotropic turbulence, Su = Sv

= Sw ~ 0.5 [3]. The zonal velocity derivative skewness Su shown in Figure 2(a) matches this value in the region of vigorous breaking
(–70 ≤ x ≤ 10 km). In Figure 2(b,c), however, smaller mean values of Sv and Sw are seen in this region, with Sv being very close
to zero. This indicates that the vertical and, especially, the meridional velocity derivatives are more symmetrical functions about
their mean values (i.e., they are Gaussian-like). These differences in Si may result from preferential vortex stretching induced by
the stratification of the basic state [3] as well as by the 2D nature of the primary instability.
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We assessed the evolution of the turbulence by examining 1D energy spectra. At the onset
of the primary instability (t ~ 130 minutes), the spectra showed energy strongly concentrated
at a fundamental mode, with zonal wavelength λx = 15.5 km. A buoyancy subrange [11]
rapidly developed upscale of the fundamental mode. With the onset of secondary instability
(t ~ 140 minutes), an inertial subrange appeared upscale of the buoyancy subrange. The
spectra also showed a second “inertial-like” regime at the longest wavelengths (λx ≥ 30 km)
for 120 ≤ t  ≤ 150 min. This time interval closely matches the period in which significant
accelerations to the zonal mean wind occur and is thus consistent with a 2D inverse energy
cascade [2]. For t ≥ 150 min, breaking has extensively modified the background state and
obliterated the primary wavefield.

Model Description

The underlying solver is an incompressible-type fluid model cast in a curvilinear rotating
framework, with a subgrid-scale turbulence parameterization and water substance phase-
change processes included. The distinctive aspect of our model is its numerical design, which
incorporates a two-time-level, either semi-Lagrangian [7] or Eulerian [8], nonoscillatory
forward-in-time (NFT) algorithm. The finite-difference approximations to the resulting
trajectory-wise or point-wise integrals of the governing fluid equations have at least second-
order accuracy. In the work described here, the semi-Lagrangian option was used.

The conservation laws for the dependent variables of the model can all be written in the
compact Eulerian form:

                                                
∂ρ

∂
+ ∇⋅( ) = ( )*

*
ψ ψ ρ

t
Fv * ΨΨ                          (1)

or, equivalently, in the compact Lagrangian form:

                                                             
D

Dt
F

ψ = ( )ΨΨ                                                           (2)

Here,  ψ denotes any of the three Cartesian velocity components (u, v, w), the potential
temperature, and water substance mixing ratios (e.g., vapor, cloud water, rain), as well as
turbulent kinetic energy.  ρ ρ* ≡ G  is the reference (Boussinesq-type) density profile
premultiplied by the Jacobian of the coordinate transformation (from the Cartesian to the
terrain-following, time-dependent, curvilinear framework). The advective velocity  v* ≡  ρ* V ≡ ρ* (u, v, ω), with ω denoting the
“vertical” component of transformed (contravariant) velocity, satisfies the anelastic (filtered to remove sound waves) mass
conservation law:

                                                                                     
∂ρ
∂

+ ∇⋅*

t
v* = 0                                                                                       (3)

and D/Dt (≡ ∂ / ∂t + V ⋅ ∇ ) in (1) denotes the material derivative. The time derivative must be retained in (3) because of the time
variation in the coordinate transformation [4]. The associated F(ΨΨ) terms on the right-hand side of (1) and (2) are generally
functionals of the vector ΨΨ of all dependent variables ψ. They represent the sum of the resolved and subgrid-scale parts of the total
forcings. In the momentum equations the resolved terms include pressure-gradient forces, Coriolis accelerations, and buoyancy
force, as well as wave-absorbing devices in the vicinity of open boundaries. In the thermodynamic equations the resolved terms
include heat and moisture sink/sources resulting from the phase changes of water and the wave absorbers near the boundaries. The
subgrid-scale forcing terms are fairly complex but standard. We employ a turbulence model based on the prognostic turbulent
kinetic energy (TKE) equation or, optionally, its abbreviated version—the celebrated Smagorinsky model.

The integration of the discrete equations over a timestep uses a regular unstaggered mesh. We write the finite-difference
approximations to (1) and (2) in the compact form:

                                                                                    ψ ψi i
n nLE tF+ += ( ) +1 10 5~ . ∆ (4)

Here, LE denotes either the advective semi-Lagrangian or the flux-form Eulerian NFT transport operator; ~ .ψ ψ≡ +n ntF0 5∆  and
the indices i and n have the usual meaning of spatial and temporal location on a (logically) rectangular Cartesian mesh. Completion
of the model timestep requires the F n+1 values of forcings in (4). GW absorbers, Coriolis accelerations, condensation, and pressure-
gradient forces are treated implicitly, whereas subgrid-scale terms and slow phase-change tendencies (such as rain formation or
evaporation) are treated explicitly. The implicitness of the pressure-gradient forces is essential in that it enables projection of the
preliminary values LE ~ψ( )  onto solutions of the continuity equation (3). Here, this requires a straightforward algebraic inversion
of the linear system (4) and the formulation of the boundary value problem for pressure implied by the continuity constraint (3).
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Figure 1. Contour density plot of
the potential temperature field ln(θ)
in the vertical yz (meridional × verti-
cal) plane at zonal location x =
–35 km and time t = 155 minutes
showing a region of vigorously
breaking waves. Lighter grays de-
note larger values.
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The resulting elliptic equation is solved (subject to appropriate
boundary conditions) via the generalized conjugate-residual ap-
proach—a preconditioned nonsymmetric Krylov solver [9]. The
numerical stability of the computations is controlled by proper
limiting of Courant or Lipschitz numbers C = ∆ ∆tV X/  and
L = ∆t ∂ ∂( )V x/ , respectively, for the Eulerian or semi-Lagrangian
variants of the model.

The problem was executed in two dimensions on a 544× 1 × 291
grid for 120 minutes of the physical time. At this point, several
Brunt–Väisällä periods before the onset of primary instability, we
created the 3D domain by repeating the solution in the spanwise
direction y and seeding the buoyancy field with low-amplitude (1%
of the basic state) white noise. Further computations continued in 5-
minute increments of physical time. The time chosen for 3D seeding
was carefully selected on the basis of data generated in earlier 2D
(cases LR, G1, and HR of [4]) and 3D [5] experiments. The run was
terminated at 180 minutes, the point at which breaking had con-
sumed the zonal extent of the domain.

No explicit subgrid-scale viscosity was employed in this sim-
ulation. Instead,the removal of energy at the grid scale was effected
with the monotonicity option in the semi-Lagrangian interpolator
[7]. The foundation for this option is a topological constraint
whereby no two streamtubes are allowed to intersect. Essentially,
energy is removed at the grid scale to the extent needed to avoid local
negative entropy production [4]. This corresponds well to the
Kolmogorov micro-scale, which is the same order of magnitude as
the grid size at the initial altitude of breaking.

We conducted additional 3D simulations at a lower resolution
(625 m) on the CRAY T3D at the National Center for Atmospheric
Research (NCAR), using both the TKE and Smagorinsky subgrid-
scale models. Compared with the monotonicity option alone, the
subgrid-scale results appeared to be overly damped with respect to fine-scale features, and did not show inertial subranges in spectra
at the highest wavenumbers. Although the subgrid models can be tuned to produce an inertial subrange, the nonstationarity of the
turbulence makes such tuning a tedious task. Our NFT method with either monotonic interpolation (semi-Lagrangian model) or
flux-form advection (Eulerian model) bypasses this difficulty.

Parallelization Versus Portability Strategy

In recent years a number of new machines based on massively parallel processing (MPP) technology have become available for
large-scale computations in science and engineering. While these machines make possible levels of computation that were
previously unthinkable, a number of important problems can still be addressed successfully with conventional vector supercomputers,
single-processor scalar workstations, and even modern PCs. For the best utilization of the wide range of computing resources now
available for science and engineering, application codes require a high degree of portability between different systems.

The Fortran code adopted for the purpose of this study has been described in the literature [1,6]. The traditional CFL stability
condition for the Eulerian algorithm limits local communications to nearest neighboring points on the mesh; the semi-Lagrangian
algorithm admits Courant numbers exceeding unity and results in irregular communication patterns extending over a number of
grid points. To take full advantage of MPP systems, we used a single-program, multiple-data (SPMD) message-passing approach
to implement the solver. This parallelization approach was found to be superior to the use of High-Performance Fortran (HPF).

For the GW experiment, we used a two-dimensional horizontal decomposition of the grid (the default for our applications) and
explicitly dimensioned each array to contain a subgrid plus extra space for a copy of the neighboring processors’ boundary cells.
The extra boundary points, often referred to as “halo cells,” are used to minimize communication. The number of halo cells depends
on the local stencils used in the model algorithm and on the maximum Courant number. In the simulations reported here,  C ≤ 3.

When necessary, the halo cell information is updated by having each processor exchange information with its neighbors. This
communication process can be further economized by having halos updated only partially, with the selected information exchanged
between processors depending on the finite-difference algorithms employed. Reduction operations like sums and extrema,
unavoidable in fluid models, require global exchanges of information between all processors. In general, to exchange messages
between processors we use the portable and widely supported MPI (Message-Passing Interface) standard. However, on the CRAY
T3D and T3E we also have the option of using  SHMEM (shared–distributed memory data-passing support) library routines.

To enhance the portability of the code, we use the same halo-update subprograms on the distributed- or shared-memory parallel
architectures as on single-processor machines. On single-processor and shared-memory platforms, all updates are elementary.
They employ one processor for the total domain dimension, with halos used to set appropriate conditions at the domain boundaries.

Figure 2. Contour density plot of velocity derivative
skewnesses Su, Sv, and Sw in the horizontal xy (zonal ×
meridional) plane at altitude z = 100 km and time t = 155
minutes. The averaging volumes for the Si computations
were (10 × 5 × 7.5 km) in (zonal × meridional × vertical) extent.
The region of vigorous wavebreaking/broken waves is –70 ≤
x ≤ 10 km. Contours are shown at Si = –1, –0.35, 0, 0.35 (bold),
0.65,  and 1. Lighter grays denote larger values.
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In this case, there is no need for an explicit message-passing protocol, and only selected parts of total arrays are rewritten to halo
cells on the processor.

Input/output (I/O) operations also cause serious problems for code portability. In general, outputted fields should be independent
of the machine size and the number of parallel processors used in simulations. This is especially important for postprocessing of
large simulations. The output files must also be readable on different platforms with different binary file formats. In our code, one
processor performs all I/O communication operations, collecting arrays from certain processors and distributing them among
others. These I/O operations depend on the particular computer at hand and are important to the overall model performance.
Keeping the total grid array on one processor does have the disadvantage of limiting the size of the application. This drawback is
more than offset by the simplicity in coding possible with this approach, which seems to offer optimal performance.

Performance

We used the 512-processor CRAY T3E at the National Energy Research Scientific Computing Center (NERSC) in Berkeley to
conduct our numerical experiments. Table 1 outlines the computational cost of the GW experiment performed versus the overall
model performance (measured by the wall-clock time) as functions of the simulated physical time, timestep ∆t, number of timesteps
Nt, and average number of iterations Nit in the elliptic Krylov solver (per timestep) per 5-minute portion of the experiment.

In addition to summarizing elementary aspects of the model efficiency, this table illustrates the important point that overall model
performance (in addition to the relative performance of various model components, such as advective transport and the pressure
solver) is an elusive entity—it is a complicated function of the simulated flow. Consider, for instance, that at 145 minutes, at the
onset of vigorous wavebreaking, accuracy arguments [4,7] dictate halving the timestep. As the flow becomes more quiescent
following the onset of breaking, however, the elliptic solver converges (see [10] for a discussion of the convergence criteria) after
only a third as many iterations. Table 2 gives a similar set of data for an earlier, lower-resolution (at 625 m) but otherwise identical,
experiment run on a 24-processor CRAY J90 at NCAR in multitasking mode [5].

Although the J90 experiment was
more than an order of magnitude smaller
than the T3E experiment, the total J90
wall-clock time was 20 times greater
than that for the T3E. A more objective
assessment of the performance on the
GW experiment can be obtained with
an elementary analysis using Amdahl’s
law and a comparison based on the CPU
times listed in Tables 1 and 2. Given a
typical performance of 75 Mflops (well
established for our code) on one proces-
sor of the J90, the comparison indicates
that an average speed of 10 Gflops was
achieved on the T3E with 99.0%
parallelization of the code. This level of
parallelization is especially noteworthy
because of the elliptic Krylov solver
that lies at the heart of the computations.
Additional information, particularly
with regard to scalability and cross-
platform performance issues, can be
found in [6].

Regardless of any objective model-
performance measures, the single most
important outcome of this study cannot be overstated: In our earlier GW experiments on the CRAY J90 at NCAR, simulation of
5 minutes of physical time required several days (including time spent waiting in economy queues). The present experiments on
the 512-processor T3E, on a grid an order of magnitude larger, were executed essentially overnight for the same 5-minute period
of simulated physical time!
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