
1

from SIAM News, Volume 31, Number 4

Programming Parallel Applications
In Cilk
By Charles E. Leiserson and Aske Plaat

Cilk (pronounced “silk”) is a C-based algorithmic, multithreaded language for parallel programming being developed
at the MIT Laboratory for Computer Science. Cilk makes it easy to program irregular parallel applications, especially as
compared with data-parallel or message-passing programming systems. Many regular and irregular Cilk applications run
nearly as fast as comparable C programs on one processor, and they scale well to many processors.

Cilk allows a programmer to concentrate on structuring a program to expose parallelism and exploit locality, leaving the
runtime system with the responsibility for scheduling the computation to run efficiently on a
given platform. The Cilk programmer need not worry about protocols and load balancing,
which are handled by Cilk’s provably efficient runtime system. Unlike other multithreaded
languages, however, Cilk is algorithmic, in that the runtime system’s scheduler guarantees
provably efficient and predictable performance.

The basic Cilk language consists of C with the addition of three new keywords—cilk ,
spawn , and sync —to indicate parallelism and synchronization. Figure 1 shows a Cilk program
that computes the nth Fibonacci number. (This program uses an inefficient, exponential-time
algorithm. Although logarithmic-time methods are known, the program nevertheless provides
a good didactic example.) If the keywords cilk , spawn , and sync are deleted from a Cilk

program, the result is a syntactically and semantically correct C program, which we call the C elision of the Cilk program.
Cilk is a faithful extension of C in that a Cilk program’s C elision provides a legal implementation of the parallel semantics.

The keyword cilk identifies a Cilk procedure definition, which is the parallel analog of a C function, and which has an
argument list and body just as a C function does. A Cilk procedure can spawn subprocedures in parallel and synchronize
upon their completion.

As in C, most of the work in a Cilk procedure is executed serially; parallelism is created when the invocation of a Cilk
procedure is immediately preceded by the keyword spawn . A spawn is
the parallel analog of a C function call, and as with a C function call,
execution proceeds to the child when a Cilk procedure is spawned. For
a C function call, however, the parent suspends until its child has
returned, whereas for a Cilk spawn, the parent can continue to execute
in parallel with the child. Indeed, the parent can continue to spawn
children, producing a high degree of parallelism. Cilk’s scheduler
takes the responsibility for scheduling the spawned procedures on the
processors of the parallel computer.

A Cilk procedure cannot safely use the return values of the children
it has spawned until it executes a sync statement. If all of its children
have not completed when it executes a sync , the procedure suspends
and does not resume until all the children have completed. The sync
statement is a local “barrier,” as opposed to the global barriers some-
times used in, for example, message-passing programming. In Cilk, a
sync waits only for the spawned children of the procedure to complete.
When all the children have returned, execution of the procedure
resumes at the point immediately following the sync statement. In the
Fibonacci example, a sync statement is required before the statement
return (x+y) , to avoid the anomaly that would occur if x and y were
summed before each had been computed. A Cilk programmer uses the
spawn and sync keywords to expose the parallelism in a program. The
Cilk runtime system takes the responsibility for scheduling the proce-
dures efficiently.

Cilk’s runtime system supports C’s semantics for stack-allocated
storage. A pointer to a local variable can be passed to a subroutine, but
a pointer to a local variable cannot be returned, since local variables are

APPLICATIONS ON
A D VA N C E D
A R C H I T E C T U R E
C O M P U T E R S
Greg Astfalk, Editor

Figure 1. A parallel Cilk program for computing the
nth Fibonacci number.

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>

cilk int fib (int n)
{

if (n<2) return n;
else
{

int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);

}
}

cilk int main (int argc, char *argv[])
{

int n, result;
n = atoi(argv[1]);
result = spawn fib(n);
sync;
printf (“Result: %d\n”, result);
return 0;

}

2

deallocated automatically on a return. Cilk supports these features of C’s semantics exactly, while allowing subprocedures
to execute in parallel. In addition, Cilk supports heap memory through a malloc() function.

The Cilk language also supports several advanced parallel programming features. “Inlets” give the user nonstandard
ways to incorporate a returned result of child procedures into a procedure frame. Cilk also allows a procedure to abort
speculatively spawned work. A procedure can also interact with Cilk’s scheduler to test whether it is “synched” without
actually executing a sync . The Cilk-5 reference manual [8] provides complete documentation of the Cilk language.

The Cilk Model of Multithreaded Computation

Cilk supports an “algorithmic” model of parallel computation. Specifically, it guarantees that programs are scheduled
efficiently by its runtime system. A Cilk program execution consists of a collection of procedures—technically, procedure
instances—each of which is broken into a sequence of nonblocking threads. In Cilk terminology, a thread is a maximal
sequence of instructions that ends with a spawn , sync , or return statement. The first thread that executes when a procedure
is called is the procedure’s initial thread, and the subsequent threads are successor threads. At runtime, the binary “spawn”
relation causes procedure instances to be structured as a rooted tree; the dependencies among their threads form a directed
acyclic graph (dag) embedded in this spawn tree, as illustrated in Figure 2.

A correct execution of a Cilk program must obey all the dependencies in the dag, since a thread cannot be executed until
all the threads on which it depends have completed. These dependencies form a partial order, permitting many ways of
scheduling the threads in the dag. The order in which the dag unfolds and the mapping of threads onto processors are crucial
decisions made by Cilk’s scheduler. Every active procedure has an associated state that requires storage, and every
dependency between threads assigned to different processors requires communication. Thus, different scheduling policies
may yield different space and time requirements for the computation.

It can be shown that for general multithreaded dags, no good scheduling policy exists. That is, a dag can be constructed
for which any schedule that provides linear speedup also requires an expansion of space that is vastly more than linear [4].
Fortunately, every Cilk program generates a well-structured dag that can be scheduled efficiently [5].

The Cilk runtime system implements a provably efficient scheduling policy based on randomized work-stealing. During
the execution of a Cilk program, a processor that runs out of work asks another processor, chosen at random, for work to
do. Locally, a processor executes procedures in ordinary serial order (just as in C), exploring the spawn tree in a depth-first
manner. When a child procedure is spawned, the processor saves local variables of the parent on the bottom of a stack and
commences work on the child. When the child returns, the bottom of the stack is popped (as in C) and the parent resumes.
When another processor requests work, however, work is stolen from the top of the stack, that is, from the end opposite that
normally used.

Cilk’s work-stealing scheduler executes any Cilk computation in nearly optimal time. From an abstract theoretical
perspective, there are two fundamental limits to the speed at which a Cilk program can run. Let us denote by TP the execution
time of a given computation on P processors. The work of the computation is the total time needed to execute all threads
in the dag. We can denote the work by T1, since the work is essentially the execution time of the computation on one
processor. Notice that with T1 work and P processors, the lower bound TP ≥ T1/P must hold.* The second limit is based on
the program’s critical-path length, denoted by T∞, which is the execution time of the computation on an infinite number

Figure 2. The Cilk model of multithreaded computation. Each procedure,
shown as a rounded rectangle, is broken into sequences of threads, shown as
circles. A downward edge indicates the spawning of a subprocedure. A horizon-
tal edge indicates the continuation to a successor thread. An upward edge
indicates the returning of a value to a parent procedure. Edges of all three types
are dependencies that constrain the order in which threads can be scheduled.

* This abstract model of execution time ignores memory-hierarchy effects but is nonetheless quite accurate [3].

3

of processors or, equivalently, the time needed to execute threads along the longest path of dependency. The second lower
bound is simply TP ≥ T∞.

Cilk’s work-stealing scheduler executes a Cilk computation on P processors in time TP ≤ T1/P + O(T∞), which is
asymptotically optimal. Empirically, the constant factor hidden by the big O is often close to 1 or 2 [3], and the formula

TP ≈ T1/P + T∞ (1)

is a good approximation of runtime. This model assumes that the parallel computer has adequate bandwidth in
its communication network. To interpret this performance model, we can use the notion of average parallelism, which is
given by the formula P T T= ∞1 / . The average parallelism is the average amount of work for every step along the critical path.
Whenever P P<< , meaning that the actual number of processors is much smaller than the average parallelism of the
application, we have equivalently that T1/P >> T∞. Thus, the model predicts that TP ≈ T1/P and the Cilk program is
guaranteed to run with almost perfect linear speedup. The measures of work and critical-path length provide an algorithmic
basis for evaluating the performance of Cilk programs over the entire range of possible parallel machine sizes. Cilk provides
automatic timing instrumentation that can calculate these two measures during a run of a program.

Cilk’s runtime system also provides a guarantee on the amount of cactus stack space used by a parallel Cilk execution.
If the (cactus) stack space required for a P-processor execution is denoted by SP, then S1 is the space required for an execution
on one processor. Cilk’s scheduler guarantees that for a P-processor execution, we have SP ≤ S1P, which is to say that the
average space per processor is bounded above by the serial space. In fact, much less space may be required for many
algorithms (see [2]), but the bound SP ≤ S1P serves as a reasonable limit. If a computation uses moderate amounts of memory
when run on one processor, we can be assured that it will use no more space per processor when run in parallel.

The algorithmic complexity measures of work, critical-path length, and space—together with the fact that a programmer
can count on them when designing a program—justify the designation of Cilk as an algorithmic multithreaded language.

Experiments

The Cilk distribution (see http://theory.lcs.mit.edu/~cilk) contains a variety of sample programs that explore the difficulty
of solving problems in parallel. Some of these programs, such as that for computing a sparse Cholesky factorization, have
irregular inputs. Others, like the backtrack searching algorithm used to solve the n-queens problem, have irregular
structures in the computation. Because of Cilk’s flexibility in expressing parallelism, irregular problems pose no undue
hardship with respect to execution efficiency. The minimal loss of performance sometimes experienced is generally due
to parallel algorithms that are intrinsically less efficient than the serial algorithms they replace. This section describes some
preliminary performance measurements for the sample programs.

Table 1 shows speedup measurements for the programs, as well as measurements of work (T1), critical-path
length (T∞), and average parallelism P T T=()∞1 / . The machine used for the test runs was an otherwise idle Sun Enterprise
5000 SMP, with eight 167-megahertz UltraSPARC processors, 512 megabytes of main memory, 512 kilobytes of L2 cache,
116 kilobytes of instruction L cache, and 16 kilobytes of data L1 cache, running Solaris 2.5 and a version of Cilk-5 that used
gcc 2.7.2 with optimization level –O3. The times are for complete runs, except for cilksort , lu , cholesky , and fft
(which are starred in the table). For these codes, the time required to read in the input (the setup time) was sufficiently long
as compared with the runtime that
only the core algorithm was mea-
sured. For cholesky , numbers for
two sparse matrices from the
Harwell–Boeing test set [6] are re-
ported. The matrix BCSSTK29 has
dimension 13,992, with 619,488, or
0.3%, of the matrix entries being
nonzeros. The BCSSTK32 matrix
has dimension 44,609, with
1,029,655, or 0.05%, of the entries
being nonzeros. Ordering of the two
matrices was done with MATLAB’s
minimum-degree ordering heuris-
tic, which is not included in the
cholesky benchmark. Regrettably,
our time measurements are accurate
only to within about 10% due to the
unpredictability of today’s deeply
pipelined processor architectures
caused, for example, by direct-

Table 1. Performance of sample Cilk programs. Times are in seconds. Measurements are
for a complete run of the program, except for programs labeled with an asterisk (*), for
which, because of large setup times, only the core algorithm was measured. Programs
labeled with a dagger (†) are nondeterministic, and the runtime on one processor is
therefore not the same as the work performed by the computation; for these programs, the
value for T1 indicates the actual work of the computation, and not the runtime on one
processor.

Program Size T1 T∞ P T1/TS T8 T1/T8 TS/T8

blockedmul 1024 29.9 0.0044 6730 1.05 4.3 7.0 6.6
notempmul 1024 29.7 0.015 1970 1.05 3.9 7.6 7.2
strassen 1024 20.2 0.58 35 1.01 3.54 5.7 5.6
cilksort * 4,100,000 5.4 0.0049 1108 1.21 0.90 6.0 5.0
queens † 22 150 0.0015 96898 0.99 18.8 8.0 8.0
knapsack † 30 682 0.0017 392343 1.21 85 8.0 6.6
lu * 2048 155.8 0.42 370 1.02 20.3 7.7 7.5
cholesky * BCSSTK29 87 0.64 136 1.22 18 4.8 3.9
- BCSSTK32 1427 3.4 420 1.25 208 6.9 5.5
heat 4096 × 512 62.3 0.16 384 1.08 9.4 6.6 6.1
fft * 220 4.3 0.0020 2145 0.93 0.77 5.6 6.0
Barnes-Hut 216 124 8.3 15 1.02 25 5.0 4.9

4

mapped caches and instruction alignment.
The column T1/TS gives the overhead of the one-processor Cilk run versus that of our best serial C algorithm, showing

that the overhead imposed by the Cilk runtime system is generally small. The T8 column gives the time in seconds for an
eight-processor run. The speedup column, T1/T8, gives the time of the eight-processor run of the parallel program compared
with that of the one-processor run (or work, in the case of the nondeterministic programs) of the same parallel program. (The
measurements for queens and fft , which show a speedup for the Cilk implementation over the C implementation, are
likely caused by a difference in code alignment in the instruction prefetch buffer.) The TS/T8 column gives the speedup
relative to the C code.

Two of the sample programs, queens and knapsack (marked by a dagger (†) in the table), are nondeterministic
programs. The work of these programs depends on how they are scheduled. For these programs, the figures in the column
labeled T1 (and the other dependent figures) give the work in the computation as the sum of the individual execution times
of the threads, rather than as the time of a one-processor run, as would otherwise be implied. For the other (deterministic)
programs, the measures of T1 and work are synonymous. By reporting work and critical-path measurements, Cilk makes
possible meaningful speedup measurements of programs whose work depends on the actual runtime schedule. Convention-
ally, speedup is calculated as the one-processor execution time divided by the parallel execution time. This methodology,
while correct for deterministic programs, can lead to misleading results for nondeterministic programs, since two runs of
the same program can actually be different computations. Cilk’s instrumentation can compute the work on any number of
processors by adding the execution times of individual threads, thereby allowing speedup to be calculated properly for
nondeterministic programs.

As can be seen from the table, all the programs exhibit generally good speedups. Even the complicated and irregular
Barnes-Hut code achieves a speedup of 4.9 on eight processors, which is at least as good as any implementation we have
found in the literature or on the Web. Furthermore, as can be seen in the T1/TS column, the performance of any of our Cilk
programs running on one processor is generally indistinguishable from that of the comparable C code. The sorting example
and the sparse Cholesky factorization are worst cases for this set of examples; even for these programs, the single-processor
Cilk performance is within 25% of our fastest C code run for the problem. The slowdown for sorting is due to the fact that
our parallel algorithm, unlike a good serial quicksort, cannot be performed in place. The slowdown of the Cholesky
factorization is due to the overhead incurred in our quad-tree representation of sparse matrices.

As a final note on the performance of Cilk, we mention one unfortunate aspect of Cilk’s current dependence on the
otherwise outstanding gcc compiler technology. Some machines have native C compilers that are heavily optimized to
exploit the machines’ floating-point capability. We have found that these native compilers can sometimes produce floating-
point code that is nearly twice as fast as that produced by gcc (although gcc remains competitive for integer-dominated
calculations). Since our cilk2c compiler does not produce ANSI-standard C output, but rather exploits some of the
advanced capabilities of gcc , we cannot directly take advantage of these native compilers. Consequently, in order to obtain
the best performance on programs with heavy use of floating-point code, a user must use the native compiler to separately
compile C functions containing the floating-point inner loops and link them with the gcc -compiled cilk2c output of the
rest of the program. We hope to alleviate this inconvenience by eventually providing a new Cilk compiler that translates
Cilk into ANSI-standard C.

Conclusion

To produce high-performance parallel applications, programmers often focus on communication costs and execution
time, quantities that are dependent on specific machine configurations. Cilk’s philosophy argues that a programmer should
think instead about work and critical-path length, abstractions that can be used to characterize the performance of an
algorithm independent of the machine configuration. Cilk provides a programming model in which work and critical-path
length are measurable quantities, and it delivers guaranteed performance as a function of these quantities. Moreover, Cilk
programs “scale down” to run on one processor with nearly the efficiency of analogous C programs.

Cilk’s fork/join parallelism is well suited for expressing divide-and-conquer algorithms. Some algorithms, such as FFT
and Cholesky factorization, have traditionally been implemented with for loops. For efficient implementations, the steep
memory hierarchy of a modern computer forces these algorithms to be reformulated in a blocked fashion, making the
algorithms harder to understand and reducing their scalability and portability. Divide-and-conquer solutions, which
parallelize naturally in Cilk, exploit the memory hierarchy of today’s microprocessors better than for loops do. The natural
blocking that occurs with the divide-and-conquer paradigm often allows recursive programs to exploit multilevel caching
almost optimally without knowing the specific cache sizes.

As a case in point, consider Strassen’s algorithm for matrix multiplication, which is a divide-and-conquer algorithm.
Conventional wisdom has it that although Strassen’s algorithm is theoretically superior (running in Θ(n2.81) time) to the
ordinary algorithm that employs a triply nested for loop, the constant factor overheads are so large that in practice it is suited
only for very large matrices. Surprisingly, in our measurements, it is 48% faster than a blocked version of the traditional
algorithm for matrices of moderate size. As memory hierarchies become taller, divide-and-conquer algorithms like
Strassen’s will become more and more appealing, especially since the complexity of implementation appears to be about
the same for the two algorithms. Moreover, an algorithm like Strassen’s is easy to code in Cilk, which takes care of all the

5

complexities of scheduling and load balancing.
Because the semantics of Cilk are a simple and natural extension of C semantics, solution of regular and irregular

problems in Cilk imposes insignificant runtime overhead compared with that incurred in solving the problems in C.
Programming in parallel can be harder, however, because obtaining parallelism sometimes involves changing a serial
algorithm in a way that sacrifices efficiency. Our initial experiences in writing Cilk programs for regular and irregular
problems, however, lead us to believe that this loss of efficiency is frequently small or negligible. Nevertheless, more
experience with Cilk will be required to evaluate its effectiveness across a wide range of applications. The Cilk developers
invite you to program your favorite application in Cilk.

The Cilk developers are currently working to enhance the Cilk system environment, including support for parallel I/O
and streams, job scheduling, and fault tolerance. Cilk software, documentation, publications, and up-to-date information
are available via the Web at http://theory.lcs.mit.edu/~cilk. Detailed descriptions of the foundation and history of early Cilk
versions can be found in [1, 7].

Acknowledgments

We consider ourselves fortunate to have worked on Cilk with many talented people. Thanks in particular to Mingdong Feng, Matteo
Frigo, Phil Lisiecki, Keith Randall, Bin Song, and Volker Strumpen for their contributions to the Cilk-5 release. Thanks to Bobby
Blumofe of the University of Texas at Austin for his continuing contributions. Michael Halbherr, Chris Joerg, Bradley Kuszmaul, Rob
Miller, and Yuli Zhou all made substantial contributions to earlier releases. Research on Cilk has been supported in part by the Defense
Advanced Research Projects Agency under grant N00014-94-1-0985. Aske Plaat was supported in part by a postdoctoral fellowship from
the Erasmus University, Rotterdam, the Netherlands.

References

[1] R.D. Blumofe, Executing Multithreaded Programs Efficiently, PhD thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, September 1995, also available as MIT Laboratory for Computer Science Technical
Report MIT/LCS/TR-677.

[2] R.D. Blumofe, M. Frigo, C.F. Joerg, C.E. Leiserson, and K.H. Randall, An analysis of dag-consistent distributed shared memory
algorithms, Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms and Architectures, June 1996, Padua, Italy, 297–
308.

[3] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and Y. Zhou, Cilk: An efficient multithreaded runtime
system, Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, July 1995, Santa
Barbara, CA, 207–216.

[4] R.D. Blumofe and C.E. Leiserson, Space-efficient scheduling of multithreaded computations, in Proceedings of the 25th Annual
ACM Symposium on Theory of Computing, May 1993, San Diego, CA, 362–371.

[5] R.D. Blumofe and C.E. Leiserson, Scheduling multithreaded computations by work stealing, in Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, November 1994, Santa Fe, NM, 356–368.

[6] I. Duff, R.G. Grimes, and J.G. Lewis, Users’ Guide for the Harwell-Boeing Sparse Matrix Collection (Release I), CERFACS,
October 1992, TR/PA/92/86.

[7] C.F. Joerg, The Cilk System for Parallel Multithreaded Computing, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, January 1996, also available as MIT Laboratory for Computer Science Technical Report MIT/
LCS/TR-701.

[8] Cilk-5.0 (Beta 1) Reference Manual, Supercomputing Technology Group, Massachusetts Institute of Technology, March 1997,
available on the World Wide Web at http://theory.lcs.mit.edu/~cilk.

Charles E. Leiserson and Aske Plaat are at the MIT Laboratory for Computer Science.

