

Matrix Equations and Model Reduction

Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany

benner@mpi-magdeburg.mpg.de

Outline

- Introduction
- Mathematical Basics
- Model Reduction by Projection
- 4 Interpolatory Model Reduction
- Balanced Truncation
- 6 Solving Large-Scale Matrix Equations
- Final Remarks

Outline

- Introduction
 - Model Reduction for Dynamical Systems
 - Application Areas
 - Motivating Examples
- Mathematical Basics
- Model Reduction by Projection
- 4 Interpolatory Model Reduction
- Balanced Truncation
- 6 Solving Large-Scale Matrix Equations
- Final Remarks

 oduction
 Mathematical Basics
 MOR by Projection
 RatInt
 Balanced Truncation
 Matrix Equations

Introduction

Model Reduction — Abstract Definition

Problem

Given a physical problem with dynamics described by the states $x \in \mathbb{R}^n$, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

roduction Mathematical Basics MOR by Projection RatInt Balanced Truncation Matrix Equations

Introduction

Model Reduction — Abstract Definition

Problem

Given a physical problem with dynamics described by the states $x \in \mathbb{R}^n$, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

roduction Mathematical Basics MOR by Projection RatInt Balanced Truncation Matrix Equations

Introduction

Model Reduction — Abstract Definition

Problem

Given a physical problem with dynamics described by the states $x \in \mathbb{R}^n$, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

Introduction Mathematical Basics MOR by Projection RatInt Balanced Truncation Matrix Equations

Introduction

Model Reduction for Dynamical Systems

Dynamical Systems

$$\Sigma : \left\{ \begin{array}{lcl} \dot{x}(t) & = & f(t, x(t), u(t)), & x(t_0) = x_0, \\ y(t) & = & g(t, x(t), u(t)) \end{array} \right.$$

with

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), u(t)), \\ \hat{y}(t) = \widehat{g}(t, \widehat{x}(t), u(t)). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^q$.

Original System

$$\Sigma: \left\{ \begin{array}{l} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{array} \right.$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), \underline{u}(t)), \\ \hat{y}(t) = \widehat{g}(t, \widehat{x}(t), \underline{u}(t)). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^q$.

Goal

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals.

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), \underline{u}(t)), \\ \widehat{y}(t) = \widehat{g}(t, \widehat{x}(t), \underline{u}(t)). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^q$.

Goal:

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

Original System

$$\Sigma: \left\{ \begin{array}{l} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{array} \right.$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^q$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), u(t)), \\ \widehat{y}(t) = \widehat{g}(t, \widehat{x}(t), u(t)). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^q$.

Goal:

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals.

Secondary goal: reconstruct approximation of x from \hat{x} .

Parameter-Dependent Dynamical Systems

Dynamical Systems

$$\Sigma(p): \begin{cases} E(p)\dot{x}(t;p) &= f(t,x(t;p),u(t),p), & x(t_0) = x_0, \\ y(t;p) &= g(t,x(t;p),u(t),p) \end{cases}$$
 (a)

with

- (generalized) states $x(t; p) \in \mathbb{R}^n$ ($E \in \mathbb{R}^{n \times n}$),
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t; p) \in \mathbb{R}^q$, (b) is called output equation,
- $p \in \Omega \subset \mathbb{R}^d$ is a parameter vector, Ω is bounded.

Applications:

- Repeated simulation for varying material or geometry parameters, boundary conditions,
- Control, optimization and design.

Requirement: keep parameters as symbolic quantities in ROM.

Parameter-Dependent Dynamical Systems

Dynamical Systems

$$\Sigma(p): \begin{cases} E(p)\dot{x}(t;p) &= f(t,x(t;p),u(t),p), & x(t_0) = x_0, \\ y(t;p) &= g(t,x(t;p),u(t),p) \end{cases}$$
 (a)

with

- (generalized) states $x(t; p) \in \mathbb{R}^n$ ($E \in \mathbb{R}^{n \times n}$),
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t; p) \in \mathbb{R}^q$, (b) is called output equation,
- $p \in \Omega \subset \mathbb{R}^d$ is a parameter vector, Ω is bounded.

Applications:

- Repeated simulation for varying material or geometry parameters, boundary conditions,
- Control, optimization and design.

Requirement: keep parameters as symbolic quantities in ROM.

Linear Systems

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lcl} E\dot{x} & = & f(t,x,u) & = & Ax+Bu, \quad E,A\in\mathbb{R}^{n\times n}, \qquad B\in\mathbb{R}^{n\times m}, \\ y & = & g(t,x,u) & = & Cx+Du, \quad C\in\mathbb{R}^{q\times n}, & D\in\mathbb{R}^{q\times m}. \end{array}$$

Linear Systems

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lcl} E\dot{x} & = & f(t,x,u) & = & Ax+Bu, \quad E,A\in\mathbb{R}^{n\times n}, \qquad B\in\mathbb{R}^{n\times m}, \\ y & = & g(t,x,u) & = & Cx+Du, \quad C\in\mathbb{R}^{q\times n}, \qquad D\in\mathbb{R}^{q\times m}. \end{array}$$

Linear, Time-Invariant Parametric Systems

$$E(p)\dot{x}(t;p) = A(p)x(t;p) + B(p)u(t),$$

$$y(t;p) = C(p)x(t;p) + D(p)u(t),$$

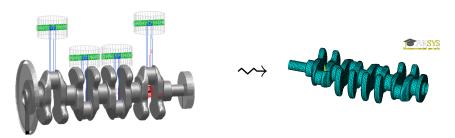
where $A(p), E(p) \in \mathbb{R}^{n \times n}, B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n}, D(p) \in \mathbb{R}^{q \times m}$.

ntroduction viatnematical Basics NIOR by Projection Ratint Balanced Funcation Niatrix Equations

Application Areas

Structural Mechanics / Finite Element Modeling

since \sim 1960ies



- Resolving complex 3D geometries ⇒ millions of degrees of freedom.
- Analysis of elastic deformations requires many simulation runs for varying external forces.

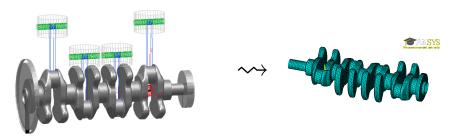
Standard MOR techniques in structural mechanics: modal truncation, combined with Guyan reduction (static condensation) \leadsto Craig-Bampton method.

INTOQUECTION VISITEMATICAL BASICS WICH BY Projection Ratint Balanced Truncation Watrix Equations

Application Areas

Structural Mechanics / Finite Element Modeling

since \sim 1960ies



- Resolving complex 3D geometries ⇒ millions of degrees of freedom.
- Analysis of elastic deformations requires many simulation runs for varying external forces.

Standard MOR techniques in structural mechanics: modal truncation, combined with Guyan reduction (static condensation) \rightsquigarrow Craig-Bampton method.

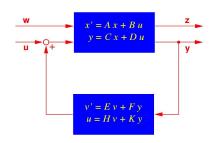
since ~ 1980 ies

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: N > n.



Practical controllers require small N ($N\sim 10$, say) due to

- real-time constraints,
- increasing fragility for larger N.
- \implies reduce order of plant (n) and/or controller (N).

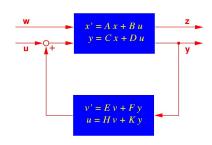
since \sim 1980ies

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: $N \geq n$.



Practical controllers require small N ($N\sim 10$, say) due to

- real-time constraints,
- increasing fragility for larger N.

 \implies reduce order of plant (n) and/or controller (N).

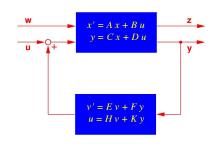
since \sim 1980ies

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: N > n.



Practical controllers require small N ($N\sim 10$, say) due to

- real-time constraints,
- increasing fragility for larger N.
- \implies reduce order of plant (n) and/or controller (N).

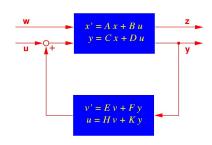
since \sim 1980ies

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: N > n.



Practical controllers require small N ($N\sim 10$, say) due to

- real-time constraints,
- increasing fragility for larger N.
- \implies reduce order of plant (n) and/or controller (N).

roduction Mathematical Basics MOR by Projection RatInt Balanced Truncation Matrix Equations

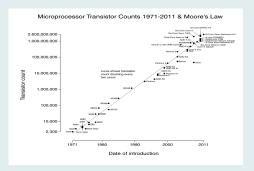
Application Areas

Micro Electronics/Circuit Simulation

since $\sim \! 1990 ies$

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Moore's Law (1965/75) states that the number of on-chip transistors doubles each 24 months.



Source: http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore'sLaw_-_2011.svg

Micro Electronics/Circuit Simulation

11/96

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.

Application Areas Micro Electronics/Circuit Simulation

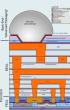
Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
- Increase in packing density and multilayer technology requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.

Intel 4004 (1971)	Intel Core 2 Extreme (quad-core) (2007)
1 layer, 10μ technology	9 layers, 45 <i>nm</i> technology
2,300 transistors	> 8, 200, 000 transistors
64 kHz clock speed	> 3 GHz clock speed.

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density and multilayer technology requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.



Source: http://en.wikipedia.org/wiki/Image:Silicon_chip_3d.png.

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
- Here: mostly MOR for linear systems, they occur in micro electronics through modified nodal analysis (MNA) for RLC networks. e.g., when
 - decoupling large linear subcircuits,
 - modeling transmission lines,
 - modeling pin packages in VLSI chips,
 - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

Micro Electronics/Circuit Simulation

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.

 ∼→ Clear need for model reduction techniques in order to facilitate or even. enable circuit simulation for current and future VLSI design.

Micro Electronics/Circuit Simulation

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.

→ Clear need for model reduction techniques in order to facilitate or even enable circuit simulation for current and future VLSI design.

Standard MOR techniques in circuit simulation:

Krylov subspace / Padé approximation / rational interpolation methods.

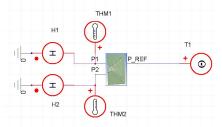
Application Areas

Many other disciplines in computational sciences and engineering like

- computational fluid dynamics (CFD),
- computational electromagnetics,
- chemical process engineering,
- design of MEMS/NEMS (micro/nano-electrical-mechanical systems),
- computational acoustics,
- . . .

Electro-Thermic Simulation of Integrated Circuit (IC)

SIMPLORER[®] test circuit with 2 transistors.



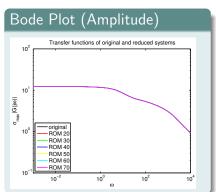
- Conservative thermic sub-system in SIMPLORER: voltage → temperature, current → heat flow.
- Original model: n = 270.593, $m = q = 2 \Rightarrow$ Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
 - Main computational cost for set-up data $\approx 22min$.
 - Computation of reduced models from set-up data: 44–49sec. (r = 20-70).
 - Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
 7.5h for original system, < 1min for reduced system.
 - Speed-up factor: 18 including / ≥ 450 excluding reduced model generation!

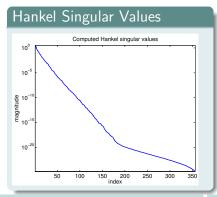
Motivating Examples

Electro-Thermic Simulation of Integrated Circuit (IC)

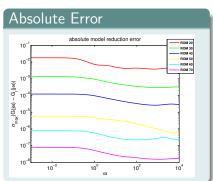
[Source: Evgenii Rudnyi, CADFEM GmbH]

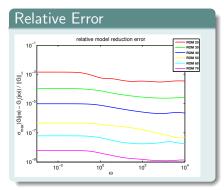
- Original model: n = 270.593, $m = q = 2 \Rightarrow$ Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
 - Main computational cost for set-up data $\approx 22min$.
 - Computation of reduced models from set-up data: 44–49sec. (r = 20-70).
 - Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
 7.5h for original system, < 1min for reduced system.
 - Speed-up factor: 18 including / ≥ 450 excluding reduced model generation!





- Original model: n = 270.593, $m = q = 2 \Rightarrow$ Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
 - Main computational cost for set-up data $\approx 22min$.
 - Computation of reduced models from set-up data: 44–49sec. (r = 20-70).
 - Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
 7.5h for original system, < 1min for reduced system.
 - Speed-up factor: 18 including / ≥ 450 excluding reduced model generation!





Motivating Examples

A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

• Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

$$\epsilon v_t(x,t) = \epsilon^2 v_{xx}(x,t) + f(v(x,t)) - w(x,t) + g,$$

$$w_t(x,t) = hv(x,t) - \gamma w(x,t) + g.$$

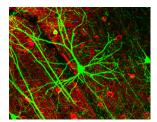
with f(v) = v(v - 0.1)(1 - v) and initial and boundary conditions

$$v(x,0) = 0,$$
 $w(x,0) = 0,$ $x \in [0,1]$

$$(x,0)\equiv 0, \qquad x\in [0,1]$$

$$v_{x}(0,t) = -i_{0}(t),$$
 $v_{x}(1,t) = 0,$ $t \geq 0,$

where
$$\epsilon = 0.015$$
, $h = 0.5$, $\gamma = 2$, $g = 0.05$, $i_0(t) = 50000t^3 \exp(-15t)$.



Source: http://en.wikipedia.org/wiki/Neuron

Motivating Examples

A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

• Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

$$\epsilon v_t(x,t) = \epsilon^2 v_{xx}(x,t) + f(v(x,t)) - w(x,t) + g,$$

$$w_t(x,t) = hv(x,t) - \gamma w(x,t) + g,$$

with f(v) = v(v - 0.1)(1 - v) and initial and boundary conditions

$$v(x,0) = 0,$$
 $w(x,0) = 0,$ $x \in [0,1]$
 $v_x(0,t) = -i_0(t),$ $v_x(1,t) = 0,$ $t \ge 0,$

where
$$\epsilon = 0.015$$
, $h = 0.5$, $\gamma = 2$, $g = 0.05$, $i_0(t) = 50000t^3 \exp(-15t)$.

- Parameter g handled as an additional input.
- Original state dimension $n = 2 \cdot 400$, QBDAE dimension $N = 3 \cdot 400$, reduced QBDAE dimension r = 26, chosen expansion point $\sigma = 1$.

troduction Mathematical Basics MOR by Projection RatInt Balanced Truncation Matrix Equations

Motivating Examples

A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

duction Mathematical Basics MOR by Projection RatInt Balanced Truncation Matrix Equations

Motivating Examples

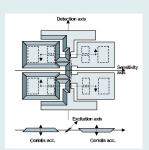
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

- Voltage applied to electrodes induces vibration of wings, resulting rotation due to Coriolis force yields sensor data.
- FE model of second order: $N = 17.361 \rightsquigarrow n = 34.722, m = 1, q = 12.$
- Sensor for position control based on acceleration and rotation.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

Application: inertial navigation.



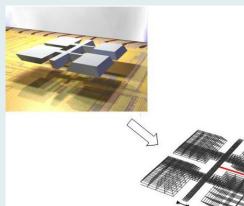
Introduction Mathematical Basics MOR by Projection RatInt Balanced Truncation Matrix Equations

Motivating Examples

Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model: $M(d)\ddot{x}(t) + D(\Phi, d, \alpha, \beta)\dot{x}(t) + T(d)x(t) = Bu(t)$.



Motivating Examples

Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FF model:

$$M(d)\ddot{x}(t) + D(\Phi, d, \alpha, \beta)\dot{x}(t) + T(d)x(t) = Bu(t),$$

wohei

$$M(d) = M_1 + dM_2,$$

 $D(\Phi, d, \alpha, \beta) = \Phi(D_1 + dD_2) + \alpha M(d) + \beta T(d),$
 $T(d) = T_1 + \frac{1}{d}T_2 + dT_3,$

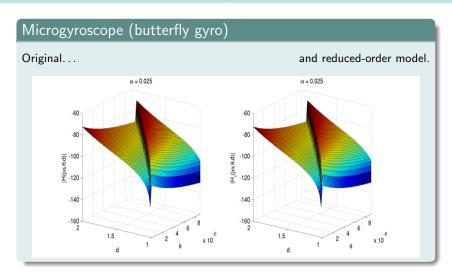
with

- width of bearing: d,
- angular velocity: Φ,
- Rayleigh damping parameters: α, β .

Introduction Mathematical Basics MOR by Projection RatInt Balanced Truncation Matrix Equations Fir

Motivating Examples

Parametric MOR: Applications in Microsystems/MEMS Design



Mathematical Basics MOR by Projection RatInt Balanced Truncation Matrix Equations

Outline

- 1 Introduction
- Mathematical Basics
 - Numerical Linear Algebra
 - Systems and Control Theory
 - Qualitative and Quantitative Study of the Approximation Error
- Model Reduction by Projection
- 4 Interpolatory Model Reduction
- Balanced Truncation
- 6 Solving Large-Scale Matrix Equations
- Final Remarks

Numerical Linear Algebra

Image Compression by Truncated SVD

- A digital image with $n_x \times n_y$ pixels can be represented as matrix $X \in \mathbb{R}^{n_x \times n_y}$, where x_{ij} contains color information of pixel (i,j).
- Memory (in single precision): $4 \cdot n_x \cdot n_y$ bytes.

$\mathsf{Theorem}\;(\mathsf{Schmidt} ext{-Mirsky/Eckart-Young})$

Best rank-r approximation to $X \in \mathbb{R}^{n_x \times n_y}$ w.r.t. spectral norm:

$$\widehat{X} = \sum\nolimits_{j=1}^r \sigma_j u_j v_j^T,$$

where $X = U\Sigma V^T$ is the singular value decomposition (SVD) of X. The approximation error is $||X - \widehat{X}||_2 = \sigma_{r+1}$.

Idea for dimension reduction

Instead of X save $u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r$. \rightarrow memory = $4r \times (n_x + n_y)$ bytes.

Numerical Linear Algebra

Image Compression by Truncated SVD

- A digital image with $n_x \times n_y$ pixels can be represented as matrix $X \in \mathbb{R}^{n_x \times n_y}$, where x_{ij} contains color information of pixel (i, j).
- Memory (in single precision): $4 \cdot n_x \cdot n_y$ bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to $X \in \mathbb{R}^{n_x \times n_y}$ w.r.t. spectral norm:

$$\widehat{X} = \sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T},$$

where $X = U\Sigma V^T$ is the singular value decomposition (SVD) of X. The approximation error is $||X - \widehat{X}||_2 = \sigma_{r+1}$.

Idea for dimension reduction

Instead of X save $u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r$. \rightarrow memory = $4r \times (n_x + n_y)$ bytes.

Numerical Linear Algebra

Image Compression by Truncated SVD

- A digital image with $n_x \times n_y$ pixels can be represented as matrix $X \in \mathbb{R}^{n_x \times n_y}$, where x_{ij} contains color information of pixel (i,j).
- Memory (in single precision): $4 \cdot n_x \cdot n_y$ bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to $X \in \mathbb{R}^{n_x \times n_y}$ w.r.t. spectral norm:

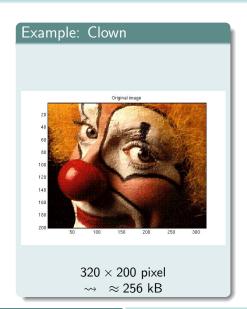
$$\widehat{X} = \sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T},$$

where $X = U\Sigma V^T$ is the singular value decomposition (SVD) of X. The approximation error is $||X - \widehat{X}||_2 = \sigma_{r+1}$.

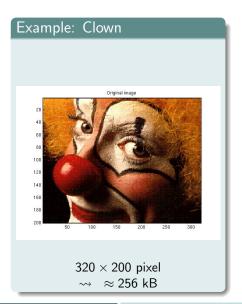
Idea for dimension reduction

Instead of X save $u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r$. \rightsquigarrow memory = $4r \times (n_x + n_y)$ bytes.

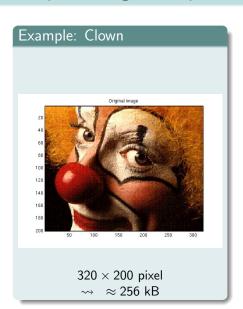
Example: Image Compression by Truncated SVD



Example: Image Compression by Truncated SVD

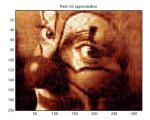


• rank r = 50, ≈ 104 kB



• rank r = 50, ≈ 104 kB

• rank r = 20, ≈ 42 kB

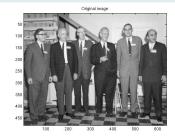


Mathematical Basics MOR by Projection RatInt Balanced Truncation Matrix Equations

Dimension Reduction via SVD

Example: Gatlinburg

Organizing committee Gatlinburg/Householder Meeting 1964: James H. Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, Fritz L. Bauer.

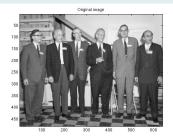


 640×480 pixel, ≈ 1229 kB

Dimension Reduction via SVD

Example: Gatlinburg

Organizing committee Gatlinburg/Householder Meeting 1964: James H. Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, Fritz L. Bauer.

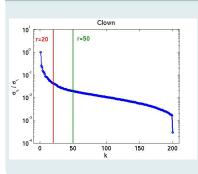


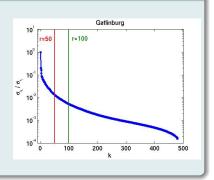
 640×480 pixel, ≈ 1229 kB

• rank r = 100, ≈ 448 kB

• rank r = 50, ≈ 224 kB

Image data compression via SVD works, if the singular values decay (exponentially).





The Laplace transform

Definition

The Laplace transform of a time domain function $f \in L_{1,loc}$ with $dom(f) = \mathbb{R}_0^+$ is

$$\mathcal{L}:f(t)\mapsto f(s):=\mathcal{L}\{f(t)\}(s):=\int_0^\infty \mathrm{e}^{-st}f(t)\,dt,\quad s\in\mathbb{C}.$$

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations ("frequency response analysis"), one takes re s=0 and im $s\geq 0$. Then $\omega:=\operatorname{im} s$ takes the role of a frequency (in [rad/s], i.e., $\omega=2\pi v$ with v measured in [Hz]).

The Laplace transform

Definition

The Laplace transform of a time domain function $f \in L_{1,loc}$ with $dom(f) = \mathbb{R}_0^+$ is

$$\mathcal{L}:f(t)\mapsto f(s):=\mathcal{L}\{f(t)\}(s):=\int_0^\infty e^{-st}f(t)\,dt,\quad s\in\mathbb{C}.$$

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations ("frequency response analysis"), one takes re s=0 and im $s\geq 0$. Then $\omega:=\operatorname{im} s$ takes the role of a frequency (in [rad/s], i.e., $\omega=2\pi v$ with v measured in [Hz]).

Lemma

$$\mathcal{L}\{\dot{f}(t)\}(s) = sF(s).$$

The Laplace transform

Definition

The Laplace transform of a time domain function $f \in L_{1,loc}$ with $dom(f) = \mathbb{R}_0^+$ is

$$\mathcal{L}:f(t)\mapsto f(s):=\mathcal{L}\{f(t)\}(s):=\int_0^\infty \mathrm{e}^{-st}f(t)\,dt,\quad s\in\mathbb{C}.$$

F is a function in the (Laplace or) frequency domain.

Lemma

$$\mathcal{L}\{\dot{f}(t)\}(s) = sF(s).$$

Note: for ease of notation, in the following we will use lower-case letters for both, a function and its Laplace transform!

Mathematical Basics MOR by Projection RatInt Balanced Truncation Matrix Equations

Systems and Control Theory

The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform $(x(t)\mapsto x(s),\,\dot{x}(t)\mapsto sx(s))$ to linear system

$$E\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

with x(0) = 0 yields:

$$sEx(s) = Ax(s) + Bu(s), \quad y(s) = Cx(s) + Du(s),$$

The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s))$ to linear system

$$E\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

with x(0) = 0 yields:

$$sEx(s) = Ax(s) + Bu(s), \quad y(s) = Cx(s) + Du(s),$$

⇒ I/O-relation in frequency domain:

$$y(s) = \left(\underbrace{C(sE - A)^{-1}B + D}_{=:G(s)}\right)u(s).$$

G(s) is the transfer function of Σ .

Linear Systems in Frequency Domain

Application of Laplace transform $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s))$ to linear system

$$E\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

with x(0) = 0 yields:

$$sEx(s) = Ax(s) + Bu(s), \quad y(s) = Cx(s) + Du(s),$$

⇒ I/O-relation in frequency domain:

$$y(s) = \left(\underbrace{C(sE - A)^{-1}B + D}_{=:G(s)}\right)u(s).$$

G(s) is the transfer function of Σ .

Goal: Fast evaluation of mapping $u \rightarrow y$.

The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s))$ to linear system

$$E\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

with x(0) = 0 yields:

$$sEx(s) = Ax(s) + Bu(s), \quad y(s) = Cx(s) + Du(s),$$

⇒ I/O-relation in frequency domain:

$$y(s) = \left(\underbrace{C(sE - A)^{-1}B + D}_{=:G(s)}\right)u(s).$$

G(s) is the transfer function of Σ .

Goal: Fast evaluation of mapping $u \rightarrow y$.

Example.

The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

$$\begin{array}{lll} E\dot{x} &=& Ax+Bu, & E,A\in\mathbb{R}^{n\times n},\ B\in\mathbb{R}^{n\times m},\\ y &=& Cx+Du, & C\in\mathbb{R}^{q\times n},\ D\in\mathbb{R}^{q\times m}, \end{array}$$

by reduced-order system

$$\begin{array}{lll} \hat{E}\dot{\hat{x}} & = & \hat{A}\hat{x} + \hat{B}u, & \hat{E}, \hat{A} \in \mathbb{R}^{r \times r}, \ \hat{B} \in \mathbb{R}^{r \times m}, \\ \hat{y} & = & \hat{C}\hat{x} + \hat{D}u, & \hat{C} \in \mathbb{R}^{q \times r}, \ \hat{D} \in \mathbb{R}^{q \times m} \end{array}$$

of order $r \ll n$, such that

$$||y - \hat{y}|| = ||Gu - \hat{G}u|| \le ||G - \hat{G}|| \cdot ||u|| < \text{tolerance} \cdot ||u||.$$

The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

$$\begin{array}{lll} E\dot{x} &=& Ax+Bu, & E,A\in\mathbb{R}^{n\times n},\ B\in\mathbb{R}^{n\times m},\\ y &=& Cx+Du, & C\in\mathbb{R}^{q\times n},\ D\in\mathbb{R}^{q\times m}, \end{array}$$

by reduced-order system

$$\begin{array}{lll} \hat{E}\dot{\hat{x}} & = & \hat{A}\hat{x} + \hat{B}u, & \hat{E}, \hat{A} \in \mathbb{R}^{r \times r}, \ \hat{B} \in \mathbb{R}^{r \times m}, \\ \hat{y} & = & \hat{C}\hat{x} + \hat{D}u, & \hat{C} \in \mathbb{R}^{q \times r}, \ \hat{D} \in \mathbb{R}^{q \times m} \end{array}$$

of order $r \ll n$, such that

$$||y - \hat{y}|| = ||Gu - \hat{G}u|| \le ||G - \hat{G}|| \cdot ||u|| < \text{tolerance} \cdot ||u||.$$

 \implies Approximation problem: $\min_{\text{order } (\hat{G}) < r} ||G - \hat{G}||$.

Systems and Control Theory Properties of linear systems

Definition

A linear system

$$E\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

is stable if its transfer function G(s) has all its poles in the left half plane and it is asymptotically (or Lyapunov or exponentially) stable if all poles are in the open left half plane $\mathbb{C}^- := \{z \in \mathbb{C} \mid \Re(z) < 0\}$.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or Hurwitz), i.e., the spectrum of $A - \lambda E$, denoted by $\Lambda(A, E)$, satisfies $\Lambda(A, E) \subset \mathbb{C}^-$.

Note that by abuse of notation, often *stable system* is used for asymptotically stable systems.

Properties of linear systems

Definition

A linear system

$$E\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

is stable if its transfer function G(s) has all its poles in the left half plane and it is asymptotically (or Lyapunov or exponentially) stable if all poles are in the open left half plane $\mathbb{C}^- := \{z \in \mathbb{C} \mid \Re(z) < 0\}$.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or Hurwitz), i.e., the spectrum of $A - \lambda E$, denoted by $\Lambda(A, E)$, satisfies $\Lambda(A, E) \subset \mathbb{C}^-$.

Note that by abuse of notation, often *stable system* is used for asymptotically stable systems.

Mathematical Basics MOR by Projection RatInt Balanced Truncation Matrix Equations

Systems and Control Theory

Properties of linear systems

Further properties to be discussed:

- Controllability/reachability
- Observability
- Stabilizability
- Detectability

See handout "Mathematical Basics".

Realizations of Linear Systems (with $E = I_n$ for simplicity)

Definition

For a linear (time-invariant) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & \text{with transfer function} \\ y(t) = Cx(t) + Du(t), & G(s) = C(sI - A)^{-1}B + D, \end{cases}$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ .

Realizations of Linear Systems (with $E = I_n$ for simplicity)

Definition

For a linear (time-invariant) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & \text{with transfer function} \\ y(t) = Cx(t) + Du(t), & G(s) = C(sI - A)^{-1}B + D, \end{cases}$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ .

Realizations are not unique!

Transfer function is invariant under state-space transformations,

$$\mathcal{T}: \left\{ \begin{array}{ccc} x & \rightarrow & Tx, \\ (A,B,C,D) & \rightarrow & (TAT^{-1},TB,CT^{-1},D), \end{array} \right.$$

Realizations of Linear Systems (with $E = I_n$ for simplicity)

Definition

For a linear (time-invariant) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & \text{with transfer function} \\ y(t) = Cx(t) + Du(t), & G(s) = C(sI - A)^{-1}B + D, \end{cases}$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ .

Realizations are not unique!

Transfer function is invariant under addition of uncontrollable/unobservable states:

$$\frac{d}{dt} \begin{bmatrix} x \\ x_1 \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_1 \end{bmatrix} \begin{bmatrix} x \\ x_1 \end{bmatrix} + \begin{bmatrix} B \\ B_1 \end{bmatrix} u(t), \quad y(t) = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ x_1 \end{bmatrix} + Du(t),$$

$$\frac{d}{dt} \begin{bmatrix} x \\ x_2 \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x \\ x_2 \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(t), \quad y(t) = \begin{bmatrix} C & C_2 \end{bmatrix} \begin{bmatrix} x \\ x_2 \end{bmatrix} + Du(t),$$

for arbitrary $A_i \in \mathbb{R}^{n_j \times n_j}$, j = 1, 2, $B_1 \in \mathbb{R}^{n_1 \times m}$, $C_2 \in \mathbb{R}^{q \times n_2}$ and any $n_1, n_2 \in \mathbb{N}$.

Realizations of Linear Systems (with $E = I_n$ for simplicity)

Definition

For a linear (time-invariant) system

$$\Sigma: \left\{ \begin{array}{lcl} \dot{x}(t) & = & Ax(t) + Bu(t), & \text{with transfer function} \\ y(t) & = & Cx(t) + Du(t), & G(s) = C(sI - A)^{-1}B + D, \end{array} \right.$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ .

Realizations are not unique!

Hence.

$$(A, B, C, D), \qquad \left(\begin{bmatrix} A & 0 \\ 0 & A_1 \end{bmatrix}, \begin{bmatrix} B \\ B_1 \end{bmatrix}, \begin{bmatrix} C & 0 \end{bmatrix}, D \right),$$

$$(TAT^{-1}, TB, CT^{-1}, D), \qquad \left(\begin{bmatrix} A & 0 \\ 0 & A_2 \end{bmatrix}, \begin{bmatrix} B \\ 0 \end{bmatrix}, \begin{bmatrix} C & C_2 \end{bmatrix}, D \right),$$

are all realizations of Σ !

Realizations of Linear Systems (with $E = I_n$ for simplicity)

Definition

For a linear (time-invariant) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & \text{with transfer function} \\ y(t) = Cx(t) + Du(t), & G(s) = C(sI - A)^{-1}B + D, \end{cases}$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ .

Definition

The McMillan degree of Σ is the unique minimal number $\hat{n} \geq 0$ of states necessary to describe the input-output behavior completely.

A minimal realization is a realization $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ of Σ with order \hat{n} .

Realizations of Linear Systems (with $E = I_n$ for simplicity)

Definition

For a linear (time-invariant) system

$$\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), & \text{with transfer function} \\ y(t) = Cx(t) + Du(t), & G(s) = C(sI - A)^{-1}B + D, \end{cases}$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ .

Definition

The McMillan degree of Σ is the unique minimal number $\hat{n} \geq 0$ of states necessary to describe the input-output behavior completely.

A minimal realization is a realization $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ of Σ with order \hat{n} .

Theorem

A realization (A, B, C, D) of a linear system is minimal \iff (A, B) is controllable and (A, C) is observable.

Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

When does a balanced realization exist?

Systems and Control Theory Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, j = 1, \dots, n-1$).

When does a balanced realization exist? Assume A to be Hurwitz, i.e. $\Lambda(A) \subset \mathbb{C}^-$. Then:

Theorem

Given a stable minimal linear system $\Sigma : (A, B, C, D)$, a balanced realization is obtained by the state-space transformation with

$$T_b := \Sigma^{-\frac{1}{2}} V^T R,$$

where $P = S^T S$, $Q = R^T R$ (e.g., Cholesky decompositions) and $SR^T = U\Sigma V^T$ is the SVD of SR^T .

Proof. Exercise!

Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

 $\sigma_1, \ldots, \sigma_n$ are the Hankel singular values of Σ .

Note: $\sigma_1, \ldots, \sigma_n \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_1, \ldots, \sigma_n > 0$ in case of minimality!

Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

 $\sigma_1, \ldots, \sigma_n$ are the Hankel singular values of Σ .

Note: $\sigma_1, \ldots, \sigma_n \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_1, \ldots, \sigma_n > 0$ in case of minimality!

Theorem

The infinite controllability/observability Gramians P/Q satisfy the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0$$
, $A^{T}Q + QA + C^{T}C = 0$.

Systems and Control Theory Balanced Realizations

Theorem

The infinite controllability/observability Gramians P/Q satisfy the Lyapunov equations

$$AP + PA^T + BB^T = 0$$
, $A^TQ + QA + C^TC = 0$.

Proof. (For controllability Gramian only, observability case is analogous!)

$$AP + PA^{T} + BB^{T} = A \int_{0}^{\infty} e^{At}BB^{T}e^{A^{T}t}dt + \int_{0}^{\infty} e^{At}BB^{T}e^{A^{T}t}dt A^{T} + BB^{T}$$

$$= \int_{0}^{\infty} \underbrace{Ae^{At}BB^{T}e^{A^{T}t} + e^{At}BB^{T}e^{A^{T}t}A^{T}}_{=\frac{d}{dt}e^{At}BB^{T}e^{A^{T}t}} dt + BB^{T}$$

$$= \underbrace{\lim_{t \to \infty} e^{At}BB^{T}e^{A^{T}t}}_{=0} - \underbrace{e^{A\cdot 0}BB^{T}e^{A^{T}\cdot 0}}_{=I_{n}} + BB^{T}$$

$$= 0.$$

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

 $\sigma_1, \ldots, \sigma_n$ are the Hankel singular values of Σ .

Note: $\sigma_1, \ldots, \sigma_n \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_1, \ldots, \sigma_n > 0$ in case of minimality!

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system invariants, i.e. they are unaltered by state-space transformations!

Systems and Control Theory Balanced Realizations

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are $\Lambda(PQ)^{\frac{1}{2}}$. Now let

$$(\hat{A}, \hat{B}, \hat{C}, D) = (TAT^{-1}, TB, CT^{-1}, D)$$

be any transformed realization with associated controllability Lyapunov equation

$$0 = \hat{A}\hat{P} + \hat{P}\hat{A}^{T} + \hat{B}\hat{B}^{T} = TAT^{-1}\hat{P} + \hat{P}T^{-T}A^{T}T^{T} + TBB^{T}T^{T}.$$

This is equivalent to

$$0 = A(T^{-1}\hat{P}T^{-T}) + (T^{-1}\hat{P}T^{-T})A^{T} + BB^{T}.$$

The uniqueness of the solution of the Lyapunov equation implies that $\hat{P} = TPT^T$ and, analogously, $\hat{Q} = T^{-T}QT^{-1}$. Therefore,

$$\hat{P}\hat{Q} = TPQT^{-1},$$

showing that $\Lambda(\hat{P}\hat{Q}) = \Lambda(PQ) = \{\sigma_1^2, \dots, \sigma_n^2\}.$

Systems and Control Theory

Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P/Q satisfy

$$P = Q = \operatorname{diag} \{\sigma_1, \dots, \sigma_n\}$$
 (w.l.o.g. $\sigma_j \ge \sigma_{j+1}, \ j = 1, \dots, n-1$).

 $\sigma_1, \ldots, \sigma_n$ are the Hankel singular values of Σ .

Note: $\sigma_1, \ldots, \sigma_n \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_1, \ldots, \sigma_n > 0$ in case of minimality!

Remark

For non-minimal systems, the Gramians can also be transformed into diagonal matrices with the leading $\hat{n} \times \hat{n}$ submatrices equal to $\operatorname{diag}(\sigma_1, \dots, \sigma_{\hat{n}})$, and

$$\hat{P}\hat{Q} = \operatorname{diag}(\sigma_1^2, \ldots, \sigma_{\hat{n}}^2, 0, \ldots, 0).$$

see [Laub/Heath/Paige/Ward 1987, Tombs/Postlethwaite 1987].

Consider transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathcal{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \operatorname{re} z < 0\}.$

Consider transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathcal{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asymptotically) stable: $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \text{re } z < 0\}$. Then for all $s \in \mathbb{C}^+ \cup \jmath \mathbb{R}$, $\|G(s)\| \leq M < \infty \Rightarrow$

$$\int_{-\infty}^{\infty} y(\jmath\omega)^{H} y(\jmath\omega) d\omega = \int_{-\infty}^{\infty} u(\jmath\omega)^{H} G(\jmath\omega)^{H} G(\jmath\omega) u(\jmath\omega) d\omega$$

(Here, ||.|| denotes the Euclidian vector or spectral matrix norm.)

Consider transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathcal{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asymptotically) stable: $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \text{re } z < 0\}$. Then for all $s \in \mathbb{C}^+ \cup \jmath \mathbb{R}$, $\|G(s)\| \leq M < \infty \Rightarrow$

$$\int_{-\infty}^{\infty} y(\jmath\omega)^{H} y(\jmath\omega) d\omega = \int_{-\infty}^{\infty} u(\jmath\omega)^{H} G(\jmath\omega)^{H} G(\jmath\omega) u(\jmath\omega) d\omega$$
$$= \int_{-\infty}^{\infty} \|G(\jmath\omega) u(\jmath\omega)\|^{2} d\omega \leq \int_{-\infty}^{\infty} M^{2} \|u(\jmath\omega)\|^{2} d\omega$$

(Here, ||.|| denotes the Euclidian vector or spectral matrix norm.)

Consider transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathcal{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asymptotically) stable: $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \text{re } z < 0\}$. Then for all $s \in \mathbb{C}^+ \cup \jmath \mathbb{R}$, $\|G(s)\| \leq M < \infty \Rightarrow$

$$\int_{-\infty}^{\infty} y(\jmath\omega)^{H} y(\jmath\omega) d\omega = \int_{-\infty}^{\infty} u(\jmath\omega)^{H} G(\jmath\omega)^{H} G(\jmath\omega) u(\jmath\omega) d\omega$$

$$= \int_{-\infty}^{\infty} \|G(\jmath\omega) u(\jmath\omega)\|^{2} d\omega \le \int_{-\infty}^{\infty} M^{2} \|u(\jmath\omega)\|^{2} d\omega$$

$$= M^{2} \int_{-\infty}^{\infty} u(\jmath\omega)^{H} u(\jmath\omega) d\omega < \infty.$$

(Here, ||.|| denotes the Euclidian vector or spectral matrix norm.)

Consider transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathcal{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asymptotically) stable: $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \text{re } z < 0\}$. Then for all $s \in \mathbb{C}^+ \cup \jmath \mathbb{R}$, $\|G(s)\| \leq M < \infty \Rightarrow$

$$\int_{-\infty}^{\infty} y(\jmath\omega)^{H} y(\jmath\omega) d\omega = \int_{-\infty}^{\infty} u(\jmath\omega)^{H} G(\jmath\omega)^{H} G(\jmath\omega) u(\jmath\omega) d\omega$$

$$= \int_{-\infty}^{\infty} \|G(\jmath\omega) u(\jmath\omega)\|^{2} d\omega \leq \int_{-\infty}^{\infty} M^{2} \|u(\jmath\omega)\|^{2} d\omega$$

$$= M^{2} \int_{-\infty}^{\infty} u(\jmath\omega)^{H} u(\jmath\omega) d\omega < \infty.$$

$$\implies y \in \mathcal{L}_2^q \cong \mathcal{L}_2^q(-\infty,\infty).$$

Consider transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathcal{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \text{re } z < 0\}$. Consequently, the 2-induced operator norm

$$\|G\|_{\infty} := \sup_{\|u\|_2 \neq 0} \frac{\|Gu\|_2}{\|u\|_2}$$

is well defined. It can be shown that

$$\|G\|_{\infty} = \sup_{\omega \in \mathbb{R}} \|G(\jmath \omega)\| = \sup_{\omega \in \mathbb{R}} \sigma_{max} (G(\jmath \omega)).$$

Consider transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

and input functions $u \in \mathcal{L}_2^m \cong L_2^m(-\infty,\infty)$, with the L_2 -norm

$$||u||_2^2 := \frac{1}{2\pi} \int_{-\infty}^{\infty} u(j\omega)^H u(j\omega) d\omega.$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^- := \{z \in \mathbb{C} : \text{re } z < 0\}$. Consequently, the 2-induced operator norm

$$||G||_{\infty} := \sup_{\|u\|_2 \neq 0} \frac{||Gu||_2}{\|u\|_2}$$

is well defined. It can be shown that

$$\|G\|_{\infty} = \sup_{\omega \in \mathbb{R}} \|G(\jmath \omega)\| = \sup_{\omega \in \mathbb{R}} \sigma_{ extit{max}} \left(G(\jmath \omega)\right).$$

Sketch of proof:

$$||G(\jmath\omega)u(\jmath\omega)|| \le ||G(\jmath\omega)||||u(\jmath\omega)|| \Rightarrow "\le ".$$

Construct u with $||Gu||_2 = \sup_{\omega \in \mathbb{R}} ||G(\jmath\omega)|||u||_2.$

Consider transfer function

$$G(s) = C(sI - A)^{-1}B + D.$$

Hardy space \mathcal{H}_{∞}

Function space of matrix-/scalar-valued functions that are analytic and bounded in \mathbb{C}^+ .

The \mathcal{H}_{∞} -norm is

$$\|F\|_{\infty} := \sup_{\mathsf{re}\,\mathsf{s}>0} \sigma_{\mathsf{max}}\left(F(\mathsf{s})\right) = \sup_{\omega\in\mathbb{R}} \sigma_{\mathsf{max}}\left(F(\jmath\omega)\right).$$

Stable transfer functions are in the Hardy spaces

- ullet \mathcal{H}_{∞} in the SISO case (single-input, single-output, m=q=1);
- $\mathcal{H}_{\infty}^{q \times m}$ in the MIMO case (multi-input, multi-output, m > 1, q > 1).

Consider transfer function

$$G(s) = C(sI - A)^{-1}B + D.$$

Paley-Wiener Theorem (Parseval's equation/Plancherel Theorem)

$$L_2(-\infty,\infty)\cong \mathcal{L}_2, \quad L_2(0,\infty)\cong \mathcal{H}_2$$

Consequently, 2-norms in time and frequency domains coincide!

Consider transfer function

$$G(s) = C(sI - A)^{-1}B + D.$$

Paley-Wiener Theorem (Parseval's equation/Plancherel Theorem)

$$L_2(-\infty,\infty)\cong \mathcal{L}_2, \quad L_2(0,\infty)\cong \mathcal{H}_2$$

Consequently, 2-norms in time and frequency domains coincide!

\mathcal{H}_{∞} approximation error

Reduced-order model \Rightarrow transfer function $\hat{G}(s) = \hat{C}(sl_r - \hat{A})^{-1}\hat{B} + \hat{D}$.

$$||y - \hat{y}||_2 = ||Gu - \hat{G}u||_2 \le ||G - \hat{G}||_{\infty} ||u||_2.$$

 \implies compute reduced-order model such that $\|G - \hat{G}\|_{\infty} < tol!$

Note: error bound holds in time- and frequency domain due to Paley-Wiener!

Consider stable transfer function

$$G(s) = C(sI - A)^{-1}B$$
, i.e. $D = 0$.

Hardy space \mathcal{H}_2

Function space of matrix-/scalar-valued functions that are analytic \mathbb{C}^+ and bounded w.r.t. the \mathcal{H}_2 -norm

$$||F||_2 := \frac{1}{2\pi} \left(\sup_{\mathsf{re}\,\sigma > 0} \int_{-\infty}^{\infty} ||F(\sigma + \jmath\omega)||_F^2 d\omega \right)^{\frac{1}{2}}$$
$$= \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} ||F(\jmath\omega)||_F^2 d\omega \right)^{\frac{1}{2}}.$$

Stable transfer functions are in the Hardy spaces

- \mathcal{H}_2 in the SISO case (single-input, single-output, m=q=1);
- $\mathcal{H}_{2}^{q \times m}$ in the MIMO case (multi-input, multi-output, m > 1, q > 1).

Consider stable transfer function

$$G(s) = C(sI - A)^{-1}B$$
, i.e. $D = 0$.

Hardy space \mathcal{H}_2

Function space of matrix-/scalar-valued functions that are analytic \mathbb{C}^+ and bounded w.r.t. the \mathcal{H}_2 -norm

$$\|F\|_2 = \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} \|F(j\omega)\|_F^2 d\omega \right)^{\frac{1}{2}}.$$

\mathcal{H}_2 approximation error for impulse response $(u(t)=u_0\delta(t))$

Reduced-order model \Rightarrow transfer function $\hat{G}(s) = \hat{C}(sI_r - \hat{A})^{-1}\hat{B}$.

$$||y - \hat{y}||_2 = ||Gu_0\delta - \hat{G}u_0\delta||_2 \le ||G - \hat{G}||_2||u_0||.$$

 \implies compute reduced-order model such that $\|G - \hat{G}\|_2 < to!$!

Consider stable transfer function

$$G(s) = C(sI - A)^{-1}B$$
, i.e. $D = 0$.

Hardy space \mathcal{H}_2

Function space of matrix-/scalar-valued functions that are analytic \mathbb{C}^+ and bounded w.r.t. the \mathcal{H}_2 -norm

$$||F||_2 = \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} ||F(j\omega)||_F^2 d\omega \right)^{\frac{1}{2}}.$$

Theorem (Practical Computation of the \mathcal{H}_2 -norm)

$$||F||_2^2 = \operatorname{tr}\left(B^T Q B\right) = \operatorname{tr}\left(C P C^T\right),$$

where P,Q are the controllability and observability Gramians of the corresponding LTI system.

Qualitative and Quantitative Study of the Approximation Error Approximation Problems

Output errors in time-domain

$$||y - \hat{y}||_2 \le ||G - \hat{G}||_{\infty} ||u||_2 \Longrightarrow ||G - \hat{G}||_{\infty} < \text{tol}$$
$$||y - \hat{y}||_{\infty} \le ||G - \hat{G}||_2 ||u||_2 \Longrightarrow ||G - \hat{G}||_2 < \text{tol}$$

Qualitative and Quantitative Study of the Approximation Error Approximation Problems

Output errors in time-domain

$$\begin{aligned} \|y - \hat{y}\|_2 & \leq \|G - \hat{G}\|_{\infty} \|u\|_2 & \Longrightarrow \|G - \hat{G}\|_{\infty} < \text{tol} \\ \|y - \hat{y}\|_{\infty} & \leq \|G - \hat{G}\|_2 \|u\|_2 & \Longrightarrow \|G - \hat{G}\|_2 < \text{tol} \end{aligned}$$

\mathcal{H}_{∞} -norm	best approximation problem for given reduced order r in general open; balanced truncation yields suboptimal solution with computable \mathcal{H}_{∞} -norm bound.
\mathcal{H}_2 -norm	necessary conditions for best approximation known; (local) optimizer computable with iterative rational Krylov algorithm (IRKA)
Hankel-norm	optimal Hankel norm approximation (AAK theory).
$\ G\ _H := \sigma_{max}$	

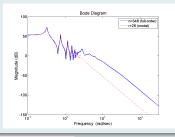
Qualitative and Quantitative Study of the Approximation Error Computable error measures

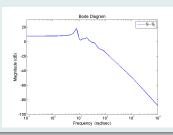
Evaluating system norms is computationally very (sometimes too) expensive.

Other measures

- absolute errors $\|G(\jmath\omega_j) \hat{G}(\jmath\omega_j)\|_2$, $\|G(\jmath\omega_j) \hat{G}(\jmath\omega_j)\|_\infty$ $(j=1,\ldots,N_\omega)$;
- relative errors $\frac{\|G(\jmath\omega_j) \hat{G}(\jmath\omega_j)\|_2}{\|G(\jmath\omega_i)\|_2}$, $\frac{\|G(\jmath\omega_j) \hat{G}(\jmath\omega_j)\|_{\infty}}{\|G(\jmath\omega_i)\|_{\infty}}$;
- "eyeball norm", i.e. look at frequency response/Bode (magnitude) plot: for SISO system, log-log plot frequency vs. $|G(\jmath\omega)|$ (or $|G(\jmath\omega)-\hat{G}(\jmath\omega)|$) in decibels, 1 dB $\simeq 20\log_{10}(\text{value})$.

For MIMO systems, $q \times m$ array of plots G_{ij} .





Outline

- Introduction
- 2 Mathematical Basics
- Model Reduction by Projection
 - Projection and Interpolation
 - Modal Truncation
- 4 Interpolatory Model Reduction
- Balanced Truncation
- 6 Solving Large-Scale Matrix Equations
- Final Remarks

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e.,

$$||y - \hat{y}|| < \text{tolerance} \cdot ||u|| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

- ⇒ Need computable error bound/estimate!
- Preserve physical properties:

$$\int_{-\infty}^{t} u(\tau)^{T} y(\tau) d\tau \ge 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_{2}(\mathbb{R}, \mathbb{R}^{m})$$

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$||y - \hat{y}|| < \text{tolerance} \cdot ||u|| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

- ⇒ Need computable error bound/estimate!
- Preserve physical properties:

$$\int_{-\infty}^{t} u(\tau)^{T} y(\tau) d\tau \ge 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_{2}(\mathbb{R}, \mathbb{R}^{m}).$$

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

- ⇒ Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-
 - minimum phase (zeroes of G in \mathbb{C}^{-1}
 - passivity

$$\int_{-\infty}^t u(\tau)^T y(\tau) d\tau \ge 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

("system does not generate energy")

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

- ⇒ Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),

$$\int_{-\infty}^{t} u(\tau)^{T} y(\tau) d\tau \geq 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_{2}(\mathbb{R}, \mathbb{R}^{m}).$$

("system does not generate energy").

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

- ⇒ Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),

$$\int_{-\infty}^{t} u(\tau)^{T} y(\tau) d\tau \geq 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_{2}(\mathbb{R}, \mathbb{R}^{m}).$$

("system does not generate energy").

Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$||y - \hat{y}|| < \text{tolerance} \cdot ||u|| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

- ⇒ Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity

$$\int_{-\infty}^{t} u(\tau)^{T} y(\tau) d\tau \geq 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_{2}(\mathbb{R}, \mathbb{R}^{m}).$$

("system does not generate energy").

Projection Basics

Definition 3.1 (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$. Let $\mathcal{V} = \operatorname{range}(P)$, then P is projector onto \mathcal{V} . On the other hand, if $\{v_1, \ldots, v_r\}$ is a basis of \mathcal{V} and $V = [v_1, \ldots, v_r]$, then $P = V(V^TV)^{-1}V^T$ is a projector onto \mathcal{V} .

Projection Basics

Definition 3.1 (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$. Let $\mathcal{V} = \operatorname{range}(P)$, then P is projector onto \mathcal{V} . On the other hand, if $\{v_1, \ldots, v_r\}$ is a basis of \mathcal{V} and $V = [v_1, \ldots, v_r]$, then $P = V(V^TV)^{-1}V^T$ is a projector onto \mathcal{V} .

- If $P = P^T$, then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- P is the identity operator on \mathcal{V} , i.e., $Pv = v \ \forall v \in \mathcal{V}$.
- \bullet I-P is the complementary projector onto ker P.
- If $\mathcal V$ is an A-invariant subspace corresponding to a subset of A's spectrum, then we call P a spectral projector.
- Let $W \subset \mathbb{R}^n$ be another r-dimensional subspace and $W = [w_1, \ldots, w_r]$ be a basis matrix for W, then $P = V(W^T V)^{-1} W^T$ is an oblique projector onto V along W.

Projection Basics

Definition 3.1 (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$. Let $\mathcal{V} = \operatorname{range}(P)$, then P is projector onto \mathcal{V} . On the other hand, if $\{v_1, \ldots, v_r\}$ is a basis of \mathcal{V} and $V = [v_1, \ldots, v_r]$, then $P = V(V^TV)^{-1}V^T$ is a projector onto \mathcal{V} .

- If $P = P^T$, then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- P is the identity operator on V, i.e., $Pv = v \ \forall v \in V$.
- I P is the complementary projector onto ker P.
- If V is an A-invariant subspace corresponding to a subset of A's spectrum, then we call P a spectral projector.
- Let $W \subset \mathbb{R}^n$ be another r-dimensional subspace and $W = [w_1, \ldots, w_r]$ be a basis matrix for W, then $P = V(W^T V)^{-1} W^T$ is an oblique projector onto V along W.

Projection Basics

Definition 3.1 (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$. Let $\mathcal{V} = \operatorname{range}(P)$, then P is projector onto \mathcal{V} . On the other hand, if $\{v_1, \ldots, v_r\}$ is a basis of \mathcal{V} and $V = [v_1, \ldots, v_r]$, then $P = V(V^TV)^{-1}V^T$ is a projector onto \mathcal{V} .

- If $P = P^T$, then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- P is the identity operator on V, i.e., $Pv = v \ \forall v \in V$.
- I P is the complementary projector onto ker P.
- If V is an A-invariant subspace corresponding to a subset of A's spectrum, then we call P a spectral projector.
- Let $W \subset \mathbb{R}^n$ be another r-dimensional subspace and $W = [w_1, \dots, w_r]$ be a basis matrix for W, then $P = V(W^T V)^{-1} W^T$ is an oblique projector onto V along W.

Projection Basics

Definition 3.1 (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$. Let $\mathcal{V} = \operatorname{range}(P)$, then P is projector onto \mathcal{V} . On the other hand, if $\{v_1, \ldots, v_r\}$ is a basis of \mathcal{V} and $V = [v_1, \ldots, v_r]$, then $P = V(V^TV)^{-1}V^T$ is a projector onto \mathcal{V} .

- If $P = P^T$, then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- P is the identity operator on V, i.e., $Pv = v \ \forall v \in V$.
- I P is the complementary projector onto ker P.
- If $\mathcal V$ is an A-invariant subspace corresponding to a subset of A's spectrum, then we call P a spectral projector.
- Let $W \subset \mathbb{R}^n$ be another r-dimensional subspace and $W = [w_1, \ldots, w_r]$ be a basis matrix for W, then $P = V(W^T V)^{-1} W^T$ is an oblique projector onto V along W.

Projection Basics

Definition 3.1 (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$. Let $\mathcal{V} = \operatorname{range}(P)$, then P is projector onto \mathcal{V} . On the other hand, if $\{v_1, \ldots, v_r\}$ is a basis of \mathcal{V} and $V = [v_1, \ldots, v_r]$, then $P = V(V^TV)^{-1}V^T$ is a projector onto \mathcal{V} .

- If $P = P^T$, then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- P is the identity operator on V, i.e., $Pv = v \ \forall v \in V$.
- I P is the complementary projector onto ker P.
- If $\mathcal V$ is an A-invariant subspace corresponding to a subset of A's spectrum, then we call P a spectral projector.
- Let $W \subset \mathbb{R}^n$ be another r-dimensional subspace and $W = [w_1, \dots, w_r]$ be a basis matrix for W, then $P = V(W^T V)^{-1} W^T$ is an oblique projector onto V along W.

Methods:

- Modal Truncation
- Rational Interpolation (Padé-Approximation and (rational) Krylov Subspace Methods)
- Balanced Truncation
- many more...

Joint feature of these methods: computation of reduced-order model (ROM) by projection!

Projection and Interpolation

Joint feature of these methods: computation of reduced-order model (ROM) by projection!

Assume trajectory x(t;u) is contained in low-dimensional subspace $\mathcal V$. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto $\mathcal V$ along complementary subspace $\mathcal W\colon x\approx VW^Tx=:\tilde x$, where

range
$$(V) = V$$
, range $(W) = W$, $W^T V = I_r$.

Then, with $\hat{x} = W^T x$, we obtain $x \approx V \hat{x}$ so that

$$||x - \tilde{x}|| = ||x - V\hat{x}||,$$

and the reduced-order model is

$$\hat{A} := W^T A V$$
, $\hat{B} := W^T B$, $\hat{C} := C V$, $(\hat{D} := D)$.

Projection and Interpolation

Joint feature of these methods: computation of reduced-order model (ROM) by projection! Assume trajectory x(t;u) is contained in low-dimensional subspace $\mathcal V$. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto $\mathcal V$ along complementary subspace $\mathcal W\colon x\approx VW^Tx=:\tilde x$, and the reduced-order model is $\hat x=W^Tx$

$$\hat{A} := W^T A V, \quad \hat{B} := W^T B, \quad \hat{C} := C V, \quad (\hat{D} := D).$$

Important observation:

• The state equation residual satisfies $\dot{\tilde{x}} - A\tilde{x} - Bu \perp \mathcal{W}$, since

$$W^{T} \left(\dot{\tilde{x}} - A\tilde{x} - Bu \right) = W^{T} \left(VW^{T} \dot{x} - AVW^{T} x - Bu \right)$$

Joint feature of these methods: computation of reduced-order model (ROM) by projection! Assume trajectory x(t;u) is contained in low-dimensional subspace $\mathcal V$. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto $\mathcal V$ along complementary subspace $\mathcal W\colon x\approx VW^Tx=:\tilde x$, and the reduced-order model is $\hat x=W^Tx$

$$\hat{A} := W^{T}AV, \quad \hat{B} := W^{T}B, \quad \hat{C} := CV, \quad (\hat{D} := D).$$

Important observation:

• The state equation residual satisfies $\dot{\tilde{x}} - A\tilde{x} - Bu \perp \mathcal{W}$, since

$$W^{T} \left(\dot{\tilde{x}} - A\tilde{x} - Bu \right) = W^{T} \left(VW^{T} \dot{x} - AVW^{T} x - Bu \right)$$
$$= \underbrace{W^{T} \dot{x}}_{\dot{\hat{x}}} - \underbrace{W^{T} AV}_{=\hat{A}} \underbrace{W^{T} x}_{=\hat{x}} - \underbrace{W^{T} B}_{=\hat{B}} u$$

Model Reduction by Projection **Projection and Interpolation**

Joint feature of these methods:

computation of reduced-order model (ROM) by projection! Assume trajectory x(t; u) is contained in low-dimensional subspace \mathcal{V} . Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto $\mathcal V$ along complementary subspace $W: x \approx VW^Tx =: \tilde{x}$, and the reduced-order model is $\hat{x} = W^T x$

$$\hat{A} := W^T A V, \quad \hat{B} := W^T B, \quad \hat{C} := C V, \quad (\hat{D} := D).$$

Important observation:

• The state equation residual satisfies $\dot{\tilde{x}} - A\tilde{x} - Bu \perp \mathcal{W}$, since

$$W^{T} \left(\dot{\tilde{x}} - A\tilde{x} - Bu \right) = W^{T} \left(VW^{T} \dot{x} - AVW^{T} x - Bu \right)$$

$$= \underbrace{W^{T} \dot{x}}_{\dot{\hat{x}}} - \underbrace{W^{T} AV}_{=\hat{A}} \underbrace{W^{T} x}_{=\hat{x}} - \underbrace{W^{T} B}_{=\hat{B}} u$$

$$= \dot{\hat{x}} - \hat{A}\hat{x} - \hat{B}u = 0.$$

Projection and Interpolation

Projection → Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V$$
, $\hat{B} = W^T B$, $\hat{C} = C V$, $(\hat{D} = D)$,

the error transfer function can be written as

$$G(s) - \hat{G}(s) = (C(sI_n - A)^{-1}B + D) - (\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D})$$

Projection and Interpolation

Projection → Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V, \quad (\hat{D} = D),$$

the error transfer function can be written as

$$G(s) - \hat{G}(s) = \left(C(sI_n - A)^{-1}B + D \right) - \left(\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D} \right)$$
$$= C\left((sI_n - A)^{-1} - V(sI_r - \hat{A})^{-1}W^T \right) B$$

Projection and Interpolation

Projection → Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V$$
, $\hat{B} = W^T B$, $\hat{C} = C V$, $(\hat{D} = D)$,

the error transfer function can be written as

$$G(s) - \hat{G}(s) = \left(C(sI_n - A)^{-1}B + D\right) - \left(\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D}\right)$$

$$= C\left((sI_n - A)^{-1} - V(sI_r - \hat{A})^{-1}W^T\right)B$$

$$= C\left(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^T(sI_n - A)}_{=:P(s)}\right)(sI_n - A)^{-1}B.$$

Projection and Interpolation

Projection → Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V$$
, $\hat{B} = W^T B$, $\hat{C} = C V$, $(\hat{D} = D)$,

the error transfer function can be written as

$$G(s) - \hat{G}(s) = \left(C(sI_n - A)^{-1}B + D\right) - \left(\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D}\right)$$

= $C(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^T(sI_n - A)}_{=:P(s)})(sI_n - A)^{-1}B.$

If $s_* \in \mathbb{C} \setminus (\Lambda(A) \cup \Lambda(\hat{A}))$, then $P(s_*)$ is a projector onto \mathcal{V} :

range $(P(s_*)) \subset \text{range}(V)$, all matrices have full rank \Rightarrow "=",

$$P(s_*)^2 = V(s_*I_r - \hat{A})^{-1}W^T(s_*I_n - A)V(s_*I_r - \hat{A})^{-1}W^T(s_*I_n - A)$$

Projection and Interpolation

Projection → Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V$$
, $\hat{B} = W^T B$, $\hat{C} = C V$, $(\hat{D} = D)$,

the error transfer function can be written as

$$G(s) - \hat{G}(s) = \left(C(sI_n - A)^{-1}B + D\right) - \left(\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D}\right)$$

$$= C\left(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^T(sI_n - A)}_{=:P(s)}\right)(sI_n - A)^{-1}B.$$

If $s_* \in \mathbb{C} \setminus (\Lambda(A) \cup \Lambda(\hat{A}))$, then $P(s_*)$ is a projector onto \mathcal{V} :

 $\operatorname{range}(P(s_*)) \subset \operatorname{range}(V)$, all matrices have full rank \Rightarrow "=",

$$P(s_*)^2 = V(s_*I_r - \hat{A})^{-1}W^T(s_*I_n - A)V(s_*I_r - \hat{A})^{-1}W^T(s_*I_n - A)$$

$$= V(s_*I_r - \hat{A})^{-1}\underbrace{(s_*I_r - \hat{A})(s_*I_r - \hat{A})^{-1}}_{-I_*}W^T(s_*I_n - A) = P(s_*).$$

Model Reduction by Projection Projection and Interpolation

Projection → Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V$$
, $\hat{B} = W^T B$, $\hat{C} = C V$, $(\hat{D} = D)$,

the error transfer function can be written as

$$G(s) - \hat{G}(s) = \left(C(sI_n - A)^{-1}B + D\right) - \left(\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D}\right)$$

= $C(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^T(sI_n - A)}_{=:P(s)})(sI_n - A)^{-1}B.$

If $s_* \in \mathbb{C} \setminus (\Lambda(A) \cup \Lambda(\hat{A}))$, then $P(s_*)$ is a projector onto $\mathcal{V} \Longrightarrow$

if
$$(s_*I_n - A)^{-1}B \in \mathcal{V}$$
, then $(I_n - P(s_*))(s_*I_n - A)^{-1}B = 0$.

hence

$$G(s_*) - \hat{G}(s_*) = 0 \implies G(s_*) = \hat{G}(s_*)$$
, i.e., \hat{G} interpolates G in s_* !

Projection and Interpolation

Projection → Rational Interpolation

Given the ROM

$$\hat{A} = W^T A V$$
, $\hat{B} = W^T B$, $\hat{C} = C V$, $(\hat{D} = D)$,

the error transfer function can be written as

$$G(s) - \hat{G}(s) = \left(C(sI_n - A)^{-1}B + D\right) - \left(\hat{C}(sI_r - \hat{A})^{-1}\hat{B} + \hat{D}\right)$$

$$= C\left(I_n - \underbrace{V(sI_r - \hat{A})^{-1}W^T(sI_n - A)}_{=:P(s)}\right)(sI_n - A)^{-1}B.$$

Analogously, =
$$C(sI_n - A)^{-1}(I_n - \underbrace{(sI_n - A)V(sI_r - \hat{A})^{-1}W^T})B$$
.

If $s_* \in \mathbb{C} \setminus (\Lambda(A) \cup \Lambda(\hat{A}))$, then $Q(s)^H$ is a projector onto $\mathcal{W} \Longrightarrow$

if
$$(s_*I_n - A)^{-*}C^T \in \mathcal{W}$$
, then $C(s_*I_n - A)^{-1}(I_n - Q(s_*)) = 0$,

hence

$$G(s_*) - \hat{G}(s_*) = 0 \implies G(s_*) = \hat{G}(s_*)$$
, i.e., \hat{G} interpolates G in $s_*!$

Model Reduction by Projection Projection and Interpolation

Theorem 3.3

[Grimme '97, Villemagne/Skelton '87]

Given the ROM

$$\hat{A} = W^T A V$$
, $\hat{B} = W^T B$, $\hat{C} = C V$, $(\hat{D} = D)$,

and $s_* \in \mathbb{C} \setminus (\Lambda(A) \cup \Lambda(\hat{A}))$, if either

•
$$(s_* I_n - A)^{-1} B \in \text{range}(V)$$
, or

•
$$(s_*I_n - A)^{-*}C^T \in \text{range}(W)$$
,

then the interpolation condition

$$G(s_*) = \hat{G}(s_*).$$

in s* holds.

Note: extension to Hermite interpolation conditions later!

Basic method:

Assume A is diagonalizable, $T^{-1}AT = D_A$, project state-space onto A-invariant subspace $\mathcal{V} = \operatorname{span}(t_1, \ldots, t_r)$, $t_k = \operatorname{eigenvectors}$ corresp. to "dominant" modes / eigenvalues of A. Then with

$$V = T(:,1:r) = [t_1,\ldots,t_r], \quad \tilde{W}^H = T^{-1}(1:r,:), \quad W = \tilde{W}(V^H\tilde{W})^{-1},$$

reduced-order model is

$$\hat{A} := W^H A V = \operatorname{diag} \{\lambda_1, \dots, \lambda_r\}, \quad \hat{B} := W^H B, \quad \hat{C} = C V$$

Also computable by truncation:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

Basic method:

Assume A is diagonalizable, $T^{-1}AT = D_A$, project state-space onto A-invariant subspace $\mathcal{V} = \operatorname{span}(t_1, \ldots, t_r)$, $t_k =$ eigenvectors corresp. to "dominant" modes / eigenvalues of A. Then with

$$V = T(:, 1:r) = [t_1, ..., t_r], \quad \tilde{W}^H = T^{-1}(1:r,:), \quad W = \tilde{W}(V^H \tilde{W})^{-1},$$

reduced-order model is

$$\hat{A} := W^H A V = \operatorname{diag} \{\lambda_1, \dots, \lambda_r\}, \quad \hat{B} := W^H B, \quad \hat{C} = C V$$

Also computable by truncation:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

Properties:

Simple computation for large-scale systems, using, e.g., Krylov subspace methods (Lanczos, Arnoldi), Jacobi-Davidson method.

Basic method:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

Properties:

Error bound:

$$\|G - \hat{G}\|_{\infty} \le \|C_2\| \|B_2\| \frac{1}{\min_{\lambda \in \Lambda(A_2)} |\operatorname{Re}(\lambda)|}.$$

Proof.

$$G(s) = C(sI - A)^{-1}B + D = CTT^{-1}(sI - A)^{-1}TT^{-1}B + D$$

$$= CT(sI - T^{-1}AT)^{-1}T^{-1}B + D$$

$$= [\hat{C}, C_2] \begin{bmatrix} (sI_r - \hat{A})^{-1} \\ (sI_{n-r} - A_2)^{-1} \end{bmatrix} \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix} + D$$

$$= \hat{G}(s) + C_2(sI_{n-r} - A_2)^{-1}B_2,$$

Basic method:

$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

Properties:

Error bound:

$$\|G-\hat{G}\|_{\infty} \leq \|C_2\|\|B_2\|\frac{1}{\min_{\lambda \in \Lambda(A_2)}|\operatorname{Re}(\lambda)|}.$$

Proof:

$$G(s) = \hat{G}(s) + C_2(sI_{n-r} - A_2)^{-1}B_2$$

observing that $||G - \hat{G}||_{\infty} = \sup_{\omega \in \mathbb{R}} \sigma_{\max}(C_2(\gamma \omega I_{n-r} - A_2)^{-1}B_2)$, and

$$C_2(\jmath\omega I_{n-r}-A_2)^{-1}B_2=C_2\mathrm{diag}\left(\frac{1}{\jmath\omega-\lambda_{r+1}},\ldots,\frac{1}{\jmath\omega-\lambda_n}\right)B_2.$$

Basic method:

Assume A is diagonalizable, $T^{-1}AT = D_A$, project state-space onto A-invariant subspace $\mathcal{V} = \operatorname{span}(t_1, \ldots, t_r)$, $t_k =$ eigenvectors corresp. to "dominant" modes / eigenvalues of A. Then reduced-order model is

$$\hat{A} := W^H A V = \operatorname{diag} \{\lambda_1, \dots, \lambda_r\}, \quad \hat{B} := W^H B, \quad \hat{C} = C V$$

Also computable by truncation:

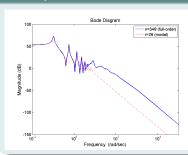
$$T^{-1}AT = \begin{bmatrix} \hat{A} \\ A_2 \end{bmatrix}, \quad T^{-1}B = \begin{bmatrix} \hat{B} \\ B_2 \end{bmatrix}, \quad CT = [\hat{C}, C_2], \quad \hat{D} = D.$$

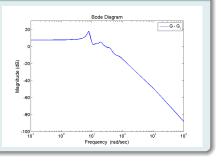
Difficulties:

- Eigenvalues contain only limited system information.
- Dominance measures are difficult to compute.
 ([Litz '79] use Jordan canoncial form; otherwise merely heuristic criteria,
 e.g., [Varga '95]. Recent improvement: dominant pole algorithm.)
- Error bound not computable for really large-scale problems.

Example

BEAM, SISO system from SLICOT Benchmark Collection for Model Reduction, n = 348, m = q = 1, reduced using 13 dominant complex conjugate eigenpairs, error bound yields $\|G - \hat{G}\|_{\infty} \le 1.21 \cdot 10^3$

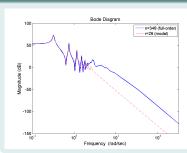


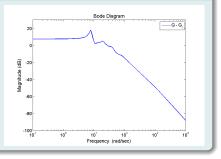


MATLAB® demo

Example

BEAM, SISO system from SLICOT Benchmark Collection for Model Reduction, n = 348, m = q = 1, reduced using 13 dominant complex conjugate eigenpairs, error bound yields $||G - \hat{G}||_{\infty} \le 1.21 \cdot 10^3$





MATLAB® demo.

Extensions

Base enrichment

Static modes are defined by setting $\dot{x}=0$ and assuming unit loads, i.e., $u(t)\equiv e_{j},\,j=1,\ldots,m$:

$$0 = Ax(t) + Be_j \implies x(t) \equiv -A^{-1}b_j.$$

Projection subspace V is then augmented by $A^{-1}[b_1,\ldots,b_m]=A^{-1}B$.

Interpolation-projection framework $\implies G(0) = \hat{G}(0)!$

If two sided projection is used, complimentary subspace can be augmented by $A^{-T}C^T \Longrightarrow G'(0) = \hat{G}'(0)!$ (If $m \neq q$, add random vectors or delete some of the columns in $A^{-T}C^T$).

Extensions

Guyan reduction (static condensation)

Partition states in masters $x_1 \in \mathbb{R}^r$ and slaves $x_2 \in \mathbb{R}^{n-r}$ (FEM terminology) Assume stationarity, i.e., $\dot{x} = 0$ and solve for x_2 in

$$0 = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u$$

$$\Rightarrow x_2 = -A_{22}^{-1}A_{21}x_1 - A_{22}^{-1}B_2u.$$

Inserting this into the first part of the dynamic system

$$\dot{x}_1 = A_{11}x_1 + A_{12}x_2 + B_1u, \quad y = C_1x_1 + C_2x_2$$

then yields the reduced-order model

$$\dot{x}_1 = (A_{11} - A_{12}A_{22}^{-1}A_{21})x_1 + (B_1 - A_{12}A_{22}^{-1}B_2)u
y = (C_1 - C_2A_{22}^{-1}A_{21})x_1 - C_2A_{22}^{-1}B_2u.$$

Dominant Poles

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with D=0:

$$G(s) = \sum_{k=1}^{n} \frac{R_k}{s - \lambda_k}$$

with the residues $R_k := (Cx_k)(y_k^H B) \in \mathbb{C}^{q \times m}$.

Dominant Poles

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with D=0:

$$G(s) = \sum_{k=1}^{n} \frac{R_k}{s - \lambda_k}$$

with the residues $R_k := (Cx_k)(y_k^H B) \in \mathbb{C}^{q \times m}$.

Note: this follows using the spectral decomposition $A = XDX^{-1}$, with

 $X = [x_1, \dots, x_n]$ the right and $X^{-1} =: Y = [y_1, \dots, y_n]^H$ the left eigenvector matrices:

$$G(s) = C(sI - XDX^{-1})^{-1}B = CX(sI - \operatorname{diag}\{\lambda_1, \dots, \lambda_n\})^{-1}YB$$

$$= [Cx_1, \dots, Cx_n] \begin{bmatrix} \frac{1}{s - \lambda_1} & & \\ & \ddots & \\ & & \frac{1}{s - \lambda_n} \end{bmatrix} \begin{bmatrix} y_1^H B \\ \vdots \\ y_n^H B \end{bmatrix}$$

$$= \sum_{k=1}^n \frac{(Cx_k)(y_k^H B)}{s - \lambda_k}.$$

Dominant Poles

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with D=0:

$$G(s) = \sum_{k=1}^{n} \frac{R_k}{s - \lambda_k}$$

with the residues $R_k := (Cx_k)(y_k^H B) \in \mathbb{C}^{q \times m}$.

Note: $R_k = (Cx_k)(y_k^H B)$ are the residues of G in the sense of the residue theorem of complex analysis:

$$\operatorname{res} (G, \lambda_{\ell}) = \lim_{s \to \lambda_{\ell}} (s - \lambda_{\ell}) G(s) = \sum_{k=1}^{n} \underbrace{\lim_{s \to \lambda_{\ell}} \frac{s - \lambda_{\ell}}{s - \lambda_{k}}}_{= \begin{cases} 0 \text{ for } k \neq \ell \\ 1 \text{ for } k = \ell \end{cases}}_{= \begin{cases} R_{\ell} = R_{\ell}.$$

Dominant Poles

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with D=0:

$$G(s) = \sum_{k=1}^{n} \frac{R_k}{s - \lambda_k}$$

with the residues $R_k := (Cx_k)(y_k^H B) \in \mathbb{C}^{q \times m}$.

As projection basis use spaces spanned by right/left eigenvectors corresponding to dominant poles, i.e., (λ_i, x_i, y_i) with largest

$$||R_k||/|\operatorname{re}(\lambda_k)|$$
.

Dominant Poles

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with D=0:

$$G(s) = \sum_{k=1}^{n} \frac{R_k}{s - \lambda_k}$$

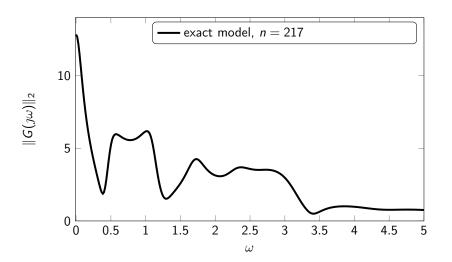
with the residues $R_k := (Cx_k)(y_k^H B) \in \mathbb{C}^{q \times m}$.

As projection basis use spaces spanned by right/left eigenvectors corresponding to dominant poles, i.e., (λ_i, x_i, y_i) with largest

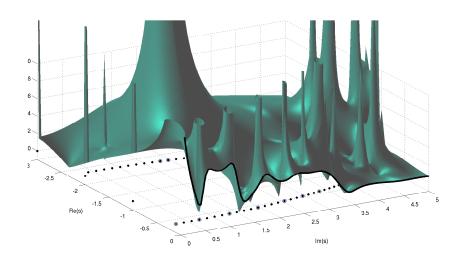
$$||R_k||/|\operatorname{re}(\lambda_k)|$$
.

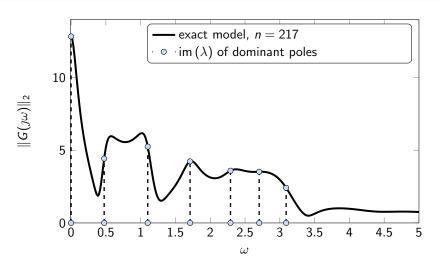
Remark

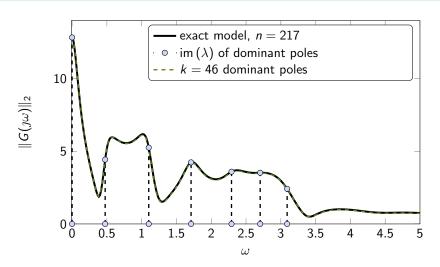
The dominant modes have most important influence on the input-output behavior of the system and are responsible for the "peaks" in the frequency response.

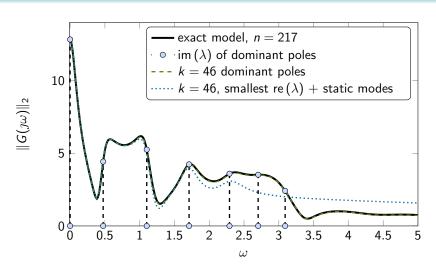


Dominant PolesRandom SISO Example $(B, C^T \in \mathbb{R}^n)$





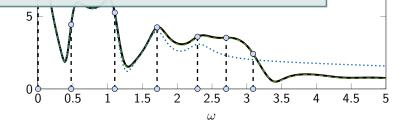




Random SISO Example ($B, C^T \in \mathbb{R}^n$)

Algorithms for computing dominant poles and eigenvectors:

- Subspace Accelerated Dominante Pole Algorithm (SADPA),
- Rayleigh-Quotient-Iteration (RQI),
- Jacobi-Davidson-Method.



modes

Basics MOR by Projection RatInt Balanced Truncation Matrix Equations

Outline

- Introduction
- 2 Mathematical Basics
- Model Reduction by Projection
- 4 Interpolatory Model Reduction
 - Padé Approximation
 - A Change of Perspective: Rational Interpolation
 - H2-Optimal Model Reduction
- Balanced Truncation
- 6 Solving Large-Scale Matrix Equations
- Final Remarks

Padé Approximation

Idea:

• Consider (even for possibly singular E if $\lambda E - A$ regular):

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function $G(s) = C(sE - A)^{-1}B$.

Padé Approximation

Idea:

• Consider (even for possibly singular E if $\lambda E - A$ regular):

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function $G(s) = C(sE - A)^{-1}B$.

• For $s_0 \notin \Lambda(A, E)$:

$$G(s) = C((s_0E - A) + (s - s_0)E)^{-1}B$$

Idea:

• Consider (even for possibly singular E if $\lambda E - A$ regular):

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function $G(s) = C(sE - A)^{-1}B$.

• For $s_0 \notin \Lambda(A, E)$:

$$G(s) = C((s_0E - A) + (s - s_0)E)^{-1}B$$

$$= C(I + (s - s_0)\underbrace{(s_0E - A)^{-1}E})^{-1}\underbrace{(s_0E - A)^{-1}B}_{:=\tilde{B}}$$

Idea:

• Consider (even for possibly singular E if $\lambda E - A$ regular):

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function $G(s) = C(sE - A)^{-1}B$.

• For $s_0 \notin \Lambda(A, E)$:

$$G(s) = C((s_0E - A) + (s - s_0)E)^{-1}B$$

$$= C(I + (s - s_0)\underbrace{(s_0E - A)^{-1}E})^{-1}\underbrace{(s_0E - A)^{-1}B}_{:=\tilde{B}}$$

$$= C(I + (s - s_0)\tilde{A})^{-1}\tilde{B}$$

Idea:

• Consider (even for possibly singular E if $\lambda E - A$ regular):

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function $G(s) = C(sE - A)^{-1}B$.

• For $s_0 \notin \Lambda(A, E)$:

$$G(s) = C((s_0E - A) + (s - s_0)E)^{-1}B$$

$$= C(I + (s - s_0)\underbrace{(s_0E - A)^{-1}E}_{:=\tilde{A}})^{-1}\underbrace{(s_0E - A)^{-1}B}_{:=\tilde{B}}$$

$$= C(I + (s - s_0)\tilde{A})^{-1}\tilde{B}$$

Neumann Lemma. $||F|| < 1 \implies I - F$ invertible, $(I - F)^{-1} = \sum_{k=0}^{\infty} F^k$.

Idea:

• Consider (even for possibly singular E if $\lambda E - A$ regular):

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function $G(s) = C(sE - A)^{-1}B$.

• For $s_0 \notin \Lambda(A, E)$:

$$G(s) = C((s_0E - A) + (s - s_0)E)^{-1}B$$

$$= C(I + (s - s_0)\underbrace{(s_0E - A)^{-1}E})^{-1}\underbrace{(s_0E - A)^{-1}B}_{:=\tilde{B}}$$

$$= C(I + (s - s_0)\tilde{A})^{-1}\tilde{B} = C(I - \underbrace{(-(s - s_0)\tilde{A})}_{=E})^{-1}\tilde{B}$$

Neumann Lemma. $||F|| < 1 \implies I - F$ invertible, $(I - F)^{-1} = \sum_{k=0}^{\infty} F^k$.

Idea:

• Consider (even for possibly singular E if $\lambda E - A$ regular):

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function $G(s) = C(sE - A)^{-1}B$.

• For $s_0 \notin \Lambda(A, E)$, and $\tilde{A} = (s_0 E - A)^{-1} E$, $\tilde{B} = (s_0 E - A)^{-1} B$:

$$G(s) = C\left(I + (s - s_0)\tilde{A}\right)^{-1}\tilde{B} = C\left(I - \underbrace{\left(-(s - s_0)\tilde{A}\right)}_{=F}\right)^{-1}\tilde{B}$$
$$= C\left(\sum_{k=0}^{\infty} (-1)^k (s - s_0)^k \tilde{A}^k\right) \tilde{B}$$

Neumann Lemma. $||F|| < 1 \implies I - F$ invertible, $(I - F)^{-1} = \sum_{k=0}^{\infty} F^k$.

Idea:

• Consider (even for possibly singular E if $\lambda E - A$ regular):

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function $G(s) = C(sE - A)^{-1}B$.

• For $s_0 \notin \Lambda(A, E)$, and $\tilde{A} = (s_0 E - A)^{-1} E$, $\tilde{B} = (s_0 E - A)^{-1} B$:

$$G(s) = C\left(I + (s - s_0)\tilde{A}\right)^{-1}\tilde{B} = C\left(I - \underbrace{\left(-(s - s_0)\tilde{A}\right)}_{=F}\right)^{-1}\tilde{B}$$

$$= C\left(\sum_{k=0}^{\infty} (-1)^k (s - s_0)^k \tilde{A}^k\right) \tilde{B}$$

$$= \sum_{k=0}^{\infty} \underbrace{\left(-1\right)^k C\tilde{A}^k \tilde{B}}_{=:m_k} (s - s_0)^k$$

Idea:

• Consider (even for possibly singular E if $\lambda E - A$ regular):

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function $G(s) = C(sE - A)^{-1}B$.

• For $s_0 \notin \Lambda(A, E)$, and $\tilde{A} = (s_0 E - A)^{-1} E$, $\tilde{B} = (s_0 E - A)^{-1} B$:

$$G(s) = C \left(I + (s - s_0)\tilde{A} \right)^{-1} \tilde{B} = C \left(I - \underbrace{\left(- (s - s_0)\tilde{A} \right)}_{=F} \right)^{-1} \tilde{B}$$

$$= C \left(\sum_{k=0}^{\infty} (-1)^k (s - s_0)^k \tilde{A}^k \right) \tilde{B}$$

$$= \sum_{k=0}^{\infty} \underbrace{\left(-1 \right)^k C\tilde{A}^k \tilde{B}}_{=: m_k} (s - s_0)^k$$

$$= m_0 + m_1 (s - s_0) + m_2 (s - s_0)^2 + \dots$$

Idea:

• Consider (even for possibly singular E if $\lambda E - A$ regular):

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function $G(s) = C(sE - A)^{-1}B$.

• For $s_0 \notin \Lambda(A, E)$, and $\tilde{A} = (s_0 E - A)^{-1} E$, $\tilde{B} = (s_0 E - A)^{-1} B$:

$$G(s) = m_0 + m_1(s - s_0) + m_2(s - s_0)^2 + \dots$$

with $m_k = (-1)^k C\tilde{A}^k \tilde{B}$.

Idea:

• Consider (even for possibly singular E if $\lambda E - A$ regular):

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function $G(s) = C(sE - A)^{-1}B$.

• For $s_0 \notin \Lambda(A, E)$, and $\tilde{A} = (s_0 E - A)^{-1} E$, $\tilde{B} = (s_0 E - A)^{-1} B$:

$$G(s) = m_0 + m_1(s - s_0) + m_2(s - s_0)^2 + \dots$$

with $m_k = (-1)^k C \tilde{A}^k \tilde{B}$.

- For $s_0 = 0$: $m_k := -C(A^{-1}E)^k A^{-1}B \implies \text{moments}$. $(m_k = -CA^{-(k+1)}B \text{ for } E = I_n)$
- For $s_0 = \infty$ and $E = I_n$: $m_0 = 0$, $m_k := CA^{k-1}B$ for $k > 1 \rightsquigarrow$ Markov parameters.

Idea:

• Consider (even for possibly singular E if $\lambda E - A$ regular):

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with transfer function $G(s) = C(sE - A)^{-1}B$.

• For $s_0 \notin \Lambda(A, E)$, and $\tilde{A} = (s_0 E - A)^{-1} E$, $\tilde{B} = (s_0 E - A)^{-1} B$:

$$G(s) = m_0 + m_1(s - s_0) + m_2(s - s_0)^2 + \dots$$

with $m_k = (-1)^k C\tilde{A}^k \tilde{B}$.

• As reduced-order model use rth Padé approximant \hat{G} to G:

$$G(s) = \hat{G}(s) + \mathcal{O}((s-s_0)^{2r}),$$

i.e., $m_k = \hat{m}_k$ for k = 0, ..., 2r - 1

 \rightsquigarrow moment matching if $s_0 < \infty$,

 \rightsquigarrow partial realization if $s_0 = \infty$.

Asymptotic Waveform Evaluation (AWE) [PILLAGE/ROHRER 1990]

Consider SISO case (m = q = 1) and $s_0 = 0$ for simplicity. With

$$\hat{G}(s) = \frac{\alpha_{r-1}s^{r-1} + \alpha_{r-2}s^{r-2} + \ldots + \alpha_{1}s + \alpha_{0}}{\beta_{r}s^{r} + \beta_{r-1}s^{r-1} + \ldots + \beta_{1}s + 1},$$

the solution of the Padé approximation problem is obtained via solving

$$M\begin{bmatrix} \beta_r \\ \vdots \\ \beta_1 \end{bmatrix} = \begin{bmatrix} -m_r \\ \vdots \\ -m_{2r-1} \end{bmatrix},$$

with the Hankel matrix
$$M=\left[\begin{array}{ccccc} m_0 & m_1 & m_2 & \dots & m_{r-1} \\ m_1 & m_2 & & \ddots & m_r \\ \\ m_2 & & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ m_{r-1} & m_r & \dots & m_{2r-2} \end{array}\right].$$

Then, with $\beta_0 := 1$: $\alpha_j = \sum_{k=0}^j m_k \beta_{j-k}$.

The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Theorem [Grimme '97, VILLEMAGNE/SKELTON '87]

Let $s_* \not\in \Lambda(A, E)$ and

$$\tilde{A} := (s_*E - A)^{-1}E, \qquad \tilde{B} := (s_*E - A)^{-1}B,
\tilde{A}^* := (s_*E - A)^{-T}E^T, \qquad \tilde{C} := (s_*E - A)^{-T}C^T.$$

If the reduced-order model is obtained by oblique projection onto $\mathcal{V}\subset\mathbb{R}^n$ along $\mathcal{W}\subset\mathbb{R}^n$, and

$$\begin{split} \operatorname{span}\left\{\tilde{B},\tilde{A}\tilde{B},\dots,\tilde{A}^{K-1}\tilde{B}\right\} &\subset & \mathcal{V}, \\ \operatorname{span}\left\{\tilde{C},\tilde{A}^*\tilde{C},\dots,(\tilde{A}^*)^{K-1}\tilde{C}\right\} &\subset & \mathcal{W}, \end{split}$$

then
$$G(s_*) = \hat{G}(s_*)$$
, $\frac{d^k}{ds^k}G(s_*) = \frac{d^k}{ds^k}\hat{G}(s_*)$ for $k = 1, \dots, \ell - 1$, where
$$\ell \begin{cases} = 2K & \text{if } m = q = 1; \\ \geq \lfloor \frac{K}{m} \rfloor + \lfloor \frac{K}{d} \rfloor & \text{if } m \neq 1 \text{ or } q \neq 1. \end{cases}$$

The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

• Padé approximation/moment matching yield:

$$m_k = \frac{1}{k!} G^{(k)}(s_0) = \frac{1}{k!} \hat{G}^{(k)}(s_0) = \hat{m}_k, \quad k = 0, \dots, 2K - 1,$$

i.e., Hermite interpolation in s_0 .

 Recall interpolation via projection result ⇒ moments need not be computed explicitly; moment matching is equivalent to projecting state-space onto

$$\mathcal{V} = \operatorname{span}(\tilde{B}, \tilde{A}\tilde{B}, \dots, \tilde{A}^{K-1}\tilde{B}) =: \mathcal{K}_K(\tilde{A}, \tilde{B})$$
 (where $\tilde{A} = (s_0E - A)^{-1}E$, $\tilde{B} = (s_0E - A)^{-1}B$) along
$$\mathcal{W} = \operatorname{span}(\tilde{C}, \tilde{A}^*\tilde{C}^T, \dots, (\tilde{A}^*)^{K-1}\tilde{C}) =: \mathcal{K}_K(\tilde{A}^*, \tilde{C}).$$
 (where $\tilde{A}^* = (s_*E - A)^{-T}E^T$, $\tilde{C} = (s_*E - A)^{-T}C^T$).

• Computation via unsymmetric Lanczos method.

The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

• Padé approximation/moment matching yield:

$$m_k = rac{1}{k!} G^{(k)}(s_0) = rac{1}{k!} \hat{G}^{(k)}(s_0) = \hat{m}_k, \quad k = 0, \dots, 2K-1,$$

i.e., Hermite interpolation in s_0 .

 Recall interpolation via projection result ⇒ moments need not be computed explicitly; moment matching is equivalent to projecting state-space onto

$$\mathcal{V} = \operatorname{span}(\tilde{B}, \tilde{A}\tilde{B}, \dots, \tilde{A}^{K-1}\tilde{B}) =: \mathcal{K}_K(\tilde{A}, \tilde{B})$$
 (where $\tilde{A} = (s_0 E - A)^{-1} E$, $\tilde{B} = (s_0 E - A)^{-1} B$) along

$$\mathcal{W} = \operatorname{span}(\tilde{C}, \tilde{A}^* \tilde{C}^T, \dots, (\tilde{A}^*)^{K-1} \tilde{C}) =: \mathcal{K}_K(\tilde{A}^*, \tilde{C}).$$

(where
$$\tilde{A}^* = (s_*E - A)^{-T}E^T$$
, $\tilde{C} = (s_*E - A)^{-T}C^T$).

• Computation via unsymmetric Lanczos method.

The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

• Padé approximation/moment matching yield:

$$m_k = rac{1}{k!} G^{(k)}(s_0) = rac{1}{k!} \hat{G}^{(k)}(s_0) = \hat{m}_k, \quad k = 0, \dots, 2K-1,$$

i.e., Hermite interpolation in s_0 .

 Recall interpolation via projection result ⇒ moments need not be computed explicitly; moment matching is equivalent to projecting state-space onto

$$\mathcal{V} = \operatorname{span}(\tilde{B}, \tilde{A}\tilde{B}, \dots, \tilde{A}^{K-1}\tilde{B}) =: \mathcal{K}_K(\tilde{A}, \tilde{B})$$
 (where $\tilde{A} = (s_0E - A)^{-1}E$, $\tilde{B} = (s_0E - A)^{-1}B$) along
$$\mathcal{W} = \operatorname{span}(\tilde{C}, \tilde{A}^*\tilde{C}^T, \dots, (\tilde{A}^*)^{K-1}\tilde{C}) =: \mathcal{K}_K(\tilde{A}^*, \tilde{C}).$$
 (where $\tilde{A}^* = (s_*E - A)^{-T}E^T$, $\tilde{C} = (s_*E - A)^{-T}C^T$).

• Computation via unsymmetric Lanczos method.

The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

• Padé approximation/moment matching yield:

$$m_k = \frac{1}{k!} \textit{G}^{(k)}(s_0) = \frac{1}{k!} \hat{\textit{G}}^{(k)}(s_0) = \hat{m}_k, \quad k = 0, \dots, 2K-1,$$

i.e., Hermite interpolation in s_0 .

 Recall interpolation via projection result ⇒ moments need not be computed explicitly; moment matching is equivalent to projecting state-space onto

$$\mathcal{V} = \operatorname{span}(\tilde{B}, \tilde{A}\tilde{B}, \dots, \tilde{A}^{K-1}\tilde{B}) =: \mathcal{K}_K(\tilde{A}, \tilde{B})$$
(where $\tilde{A} = (s_0 E - A)^{-1} E$, $\tilde{B} = (s_0 E - A)^{-1} B$) along
$$\mathcal{W} = \operatorname{span}(\tilde{C}, \tilde{A}^* \tilde{C}^T, \dots, (\tilde{A}^*)^{K-1} \tilde{C}) =: \mathcal{K}_K(\tilde{A}^*, \tilde{C}).$$
(where $\tilde{A}^* = (s_* E - A)^{-T} E^T$, $\tilde{C} = (s_* E - A)^{-T} C^T$).

Computation via unsymmetric Lanczos method.

Remark: Arnoldi (PRIMA) yields only $G(s) = \hat{G}(s) + \mathcal{O}((s - s_0)^r)$.

The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

- Computable error estimates/bounds for $||y \hat{y}||_2$ often very pessimistic or expensive to evaluate.
- Mostly heuristic criteria for choice of expansion points.
 Optimal choice for second-order systems with proportional/Rayleigh damping (Beattie/Gugergin '05).
- Good approximation quality only locally.
- Preservation of physical properties only in special cases (e.g. PRIMA/Arnoldi: V^TAV is stable if A is negative definite or dissipative exercises); usually requires post processing which (partially) destroys moment matching properties.

The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

- Computable error estimates/bounds for $||y \hat{y}||_2$ often very pessimistic or expensive to evaluate.
- Mostly heuristic criteria for choice of expansion points.
 Optimal choice for second-order systems with proportional/Rayleigh damping (Beatte/Gugercin '05).
- Good approximation quality only locally.
- Preservation of physical properties only in special cases (e.g. PRIMA/Arnoldi: V^TAV is stable if A is negative definite or dissipative exercises); usually requires post processing which (partially) destroys moment matching properties.

The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

- Computable error estimates/bounds for $\|y-\hat{y}\|_2$ often very pessimistic or expensive to evaluate.
- Mostly heuristic criteria for choice of expansion points.
 Optimal choice for second-order systems with proportional/Rayleigh damping (Beattie/Gugeroin '05).
- Good approximation quality only locally.
- Preservation of physical properties only in special cases (e.g. PRIMA/Arnoldi: V^TAV is stable if A is negative definite or dissipative exercises); usually requires post processing which (partially) destroys moment matching properties.

The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

- Computable error estimates/bounds for $\|y-\hat{y}\|_2$ often very pessimistic or expensive to evaluate.
- Mostly heuristic criteria for choice of expansion points.
 Optimal choice for second-order systems with proportional/Rayleigh damping (Beattie/Gugeroin '05).
- Good approximation quality only locally.
- Preservation of physical properties only in special cases (e.g. PRIMA/Arnoldi: V^TAV is stable if A is negative definite or dissipative exercises); usually requires post processing which (partially) destroys moment matching properties.

A Change of Perspective: Rational Interpolation

Computation of reduced-order model by projection

Given an LTI system $\dot{x} = Ax + Bu$, y = Cx with transfer function $G(s) = C(sI_n - A)^{-1}B$, a reduced-order model is obtained using projection approach with $V, W \in \mathbb{R}^{n \times r}$ and $W^T V = I_r$ by computing

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V.$$

Petrov-Galerkin-type (two-sided) projection: $W \neq V$,

Galerkin-type (one-sided) projection: W = V.

A Change of Perspective: Rational Interpolation

Computation of reduced-order model by projection

Given an LTI system $\dot{x} = Ax + Bu$, y = Cx with transfer function $G(s) = C(sI_n - A)^{-1}B$, a reduced-order model is obtained using projection approach with $V, W \in \mathbb{R}^{n \times r}$ and $W^T V = I_r$ by computing

$$\hat{A} = W^T A V, \quad \hat{B} = W^T B, \quad \hat{C} = C V.$$

Petrov-Galerkin-type (two-sided) projection: $W \neq V$,

Galerkin-type (one-sided) projection: W = V.

Rational Interpolation/Moment-Matching

Choose V, W such that

$$G(s_i) = \hat{G}(s_i), \quad j = 1, \ldots, k,$$

and

$$\frac{d^i}{ds^i}G(s_j) = \frac{d^i}{ds^i}\hat{G}(s_j), \quad i = 1, \dots, K_j, \quad j = 1, \dots, k.$$

A Change of Perspective: Rational Interpolation

Theorem (simplified) [GRIMME '97, VILLEMAGNE/SKELTON '87]

lf

$$\operatorname{span} \left\{ (s_1 I_n - A)^{-1} B, \dots, (s_k I_n - A)^{-1} B \right\} \subset \operatorname{Ran}(V),$$

$$\operatorname{span} \left\{ (s_1 I_n - A)^{-T} C^T, \dots, (s_k I_n - A)^{-T} C^T \right\} \subset \operatorname{Ran}(W),$$

then

$$G(s_j) = \hat{G}(s_j), \quad \frac{d}{ds}G(s_j) = \frac{d}{ds}\hat{G}(s_j), \quad \text{for } j = 1, \dots, k.$$

A Change of Perspective: Rational Interpolation

Theorem (simplified) [GRIMME '97, VILLEMAGNE/SKELTON '87]

lf

$$\operatorname{span} \left\{ (s_1 I_n - A)^{-1} B, \dots, (s_k I_n - A)^{-1} B \right\} \subset \operatorname{Ran}(V),$$

$$\operatorname{span} \left\{ (s_1 I_n - A)^{-T} C^T, \dots, (s_k I_n - A)^{-T} C^T \right\} \subset \operatorname{Ran}(W),$$

then

$$G(s_j) = \hat{G}(s_j), \quad \frac{d}{ds}G(s_j) = \frac{d}{ds}\hat{G}(s_j), \quad \text{for } j = 1, \dots, k.$$

Remarks:

using Galerkin/one-sided projection yields $G(s_i) = \hat{G}(s_i)$, but in general

$$\frac{d}{ds}G(s_j)\neq \frac{d}{ds}\hat{G}(s_j).$$

A Change of Perspective: Rational Interpolation

Theorem (simplified) [GRIMME '97, VILLEMAGNE/SKELTON '87]

lf

$$\operatorname{span} \left\{ (s_1 I_n - A)^{-1} B, \dots, (s_k I_n - A)^{-1} B \right\} \subset \operatorname{Ran}(V),$$

$$\operatorname{span} \left\{ (s_1 I_n - A)^{-T} C^T, \dots, (s_k I_n - A)^{-T} C^T \right\} \subset \operatorname{Ran}(W),$$

then

$$G(s_j) = \hat{G}(s_j), \quad \frac{d}{ds}G(s_j) = \frac{d}{ds}\hat{G}(s_j), \quad \text{for } j = 1, \dots, k.$$

Remarks:

k = 1, standard Krylov subspace(s) of dimension $K \leadsto$ moment-matching methods/Padé approximation,

$$\frac{d^i}{ds^i}G(s_1)=\frac{d^i}{ds^i}\hat{G}(s_1), \quad i=0,\ldots,K-1(+K).$$

A Change of Perspective: Rational Interpolation

Theorem (simplified) [GRIMME '97, VILLEMAGNE/SKELTON '87]

lf

$$\operatorname{span} \left\{ (s_1 I_n - A)^{-1} B, \dots, (s_k I_n - A)^{-1} B \right\} \subset \operatorname{Ran}(V),$$

$$\operatorname{span} \left\{ (s_1 I_n - A)^{-T} C^T, \dots, (s_k I_n - A)^{-T} C^T \right\} \subset \operatorname{Ran}(W),$$

then

$$G(s_j) = \hat{G}(s_j), \quad \frac{d}{ds}G(s_j) = \frac{d}{ds}\hat{G}(s_j), \quad \text{for } j = 1, \dots, k.$$

Remarks:

computation of V, W from rational Krylov subspaces, e.g.,

- dual rational Arnoldi/Lanczos [GRIMME '97],
- Iterative Rational Krylov-Algo. [Antoulas/Beattle/Gugercin '07].

Best \mathcal{H}_2 -norm approximation problem

 $\operatorname{\mathsf{arg\,min}}_{\hat{G} \in \mathcal{H}_2 \ \operatorname{\mathsf{of\,order}} \ \leq r} \| \mathcal{G} - \hat{\mathcal{G}} \|_2.$ Find

\mathcal{H}_2 -Optimal Model Reduction

Best \mathcal{H}_2 -norm approximation problem

Find
$$\arg \min_{\hat{G} \in \mathcal{H}_2 \text{ of order } \leq r} ||G - \hat{G}||_2$$
.

 \rightsquigarrow First-order necessary \mathcal{H}_2 -optimality conditions:

For SISO systems

$$G(-\mu_i) = \hat{G}(-\mu_i),$$

$$G'(-\mu_i) = \hat{G}'(-\mu_i),$$

where μ_i are the poles of the reduced transfer function \hat{G} .

\mathcal{H}_2 -Optimal Model Reduction

Best \mathcal{H}_2 -norm approximation problem

Find
$$\arg \min_{\hat{G} \in \mathcal{H}_2 \text{ of order } \leq r} ||G - \hat{G}||_2$$
.

 \rightsquigarrow First-order necessary \mathcal{H}_2 -optimality conditions:

For MIMO systems

$$G(-\mu_i)\tilde{B}_i = \hat{G}(-\mu_i)\tilde{B}_i, \qquad \text{for } i = 1, \dots, r,$$

$$\tilde{C}_i^T G(-\mu_i) = \tilde{C}_i^T \hat{G}(-\mu_i), \qquad \text{for } i = 1, \dots, r,$$

$$\tilde{C}_i^T G'(-\mu_i)\tilde{B}_i = \tilde{C}_i^T \hat{G}'(-\mu_i)\tilde{B}_i, \qquad \text{for } i = 1, \dots, r,$$

where $T^{-1}\hat{A}T = \mathrm{diag}\left\{\mu_1,\ldots,\mu_r\right\} = \mathrm{spectral}$ decomposition and

$$\tilde{B} = \hat{B}^T T^{-T}, \quad \tilde{C} = \hat{C}T.$$

→ tangential interpolation conditions.

Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection $\mathcal{P} = VW^T$, i.e.

$$\hat{G}(s) = CV (sI - W^T AV)^{-1} W^T B,$$

where V and W are given as the rational Krylov subspaces

$$V = [(-\mu_1 I - A)^{-1} B, \dots, (-\mu_r I - A)^{-1} B],$$

$$W = [(-\mu_1 I - A^T)^{-1} C^T, \dots, (-\mu_r I - A^T)^{-1} C^T].$$

Then

$$G(-\mu_i) = \hat{G}(-\mu_i)$$
 and $G'(-\mu_i) = \hat{G}'(-\mu_i)$,

for $i = 1, \ldots, r$ as desired.

 \rightsquigarrow iterative algorithms (IRKA/MIRIAm) that yield \mathcal{H}_2 -optimal models.

[Gugercin et al. '06], [Bunse-Gerstner et al. '07], [Van Dooren et al. '08]

Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection $\mathcal{P} = VW^T$, i.e.

$$\hat{G}(s) = CV (sI - W^T AV)^{-1} W^T B,$$

where V and W are given as the rational Krylov subspaces

$$V = [(-\mu_1 I - A)^{-1} B, \dots, (-\mu_r I - A)^{-1} B],$$

$$W = [(-\mu_1 I - A^T)^{-1} C^T, \dots, (-\mu_r I - A^T)^{-1} C^T].$$

Then

$$G(-\mu_i) = \hat{G}(-\mu_i)$$
 and $G'(-\mu_i) = \hat{G}'(-\mu_i)$,

for i = 1, ..., r as desired.

 \rightsquigarrow iterative algorithms (IRKA/MIRIAm) that yield \mathcal{H}_2 -optimal models.

[Gugercin et al. '06], [Bunse-Gerstner et al. '07], [Van Dooren et al. '08]

Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection $\mathcal{P} = VW^T$, i.e.

$$\hat{G}(s) = CV (sI - W^T AV)^{-1} W^T B,$$

where V and W are given as the rational Krylov subspaces

$$V = [(-\mu_1 I - A)^{-1} B, \dots, (-\mu_r I - A)^{-1} B],$$

$$W = [(-\mu_1 I - A^T)^{-1} C^T, \dots, (-\mu_r I - A^T)^{-1} C^T].$$

Then

$$G(-\mu_i) = \hat{G}(-\mu_i)$$
 and $G'(-\mu_i) = \hat{G}'(-\mu_i)$,

for $i = 1, \ldots, r$ as desired.

 \rightsquigarrow iterative algorithms (IRKA/MIRIAm) that yield \mathcal{H}_2 -optimal models.

[Gugercin et al. '06], [Bunse-Gerstner et al. '07], [Van Dooren et al. '08]

Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection $\mathcal{P} = VW^T$, i.e.

$$\hat{G}(s) = CV (sI - W^T AV)^{-1} W^T B,$$

where V and W are given as the rational Krylov subspaces

$$V = [(-\mu_1 I - A)^{-1} B, \dots, (-\mu_r I - A)^{-1} B],$$

$$W = [(-\mu_1 I - A^T)^{-1} C^T, \dots, (-\mu_r I - A^T)^{-1} C^T].$$

Then

$$G(-\mu_i) = \hat{G}(-\mu_i)$$
 and $G'(-\mu_i) = \hat{G}'(-\mu_i)$,

for i = 1, ..., r as desired.

 \rightsquigarrow iterative algorithms (IRKA/MIRIAm) that yield \mathcal{H}_2 -optimal models.

[GUGERCIN ET AL. '06], [BUNSE-GERSTNER ET AL. '07], [VAN DOOREN ET AL. '08]

H₂-Optimal Model Reduction

The Basic IRKA Algorithm

Algorithm 1 IRKA (MIMO version/MIRIAm)

Input: A stable, B, C, \hat{A} stable, \hat{B} , \hat{C} , $\delta > 0$.

Output: Aopt, Bopt, Copt

1: while
$$(\max_{j=1,...,r}\left\{rac{|\mu_j-\mu_j^{
m old}|}{|\mu_j|}
ight\}>\delta)$$
 do

2: diag $\{\mu_1, \dots, \mu_r\} := T^{-1}\hat{A}T$ = spectral decomposition, $\tilde{B} = \hat{B}^H T^{-T}$, $\tilde{C} = \hat{C}T$.

3:
$$V = \left[(-\mu_1 I - A)^{-1} B \tilde{B}_1, \dots, (-\mu_r I - A)^{-1} B \tilde{B}_r \right]$$

4:
$$W = \left[(-\mu_1 I - A^T)^{-1} C^T \tilde{C}_1, \dots, (-\mu_r I - A^T)^{-1} C^T \tilde{C}_r \right]$$

5:
$$V = \operatorname{orth}(V), W = \operatorname{orth}(W), W = W(V^H W)^{-1}$$

6:
$$\hat{A} = W^H A V$$
, $\hat{B} = W^H B$, $\hat{C} = C V$

7: end while

8:
$$A^{opt} = \hat{A}$$
, $B^{opt} = \hat{B}$, $C^{opt} = \hat{C}$

Outline

- Introduction
- 2 Mathematical Basics
- Model Reduction by Projection
- 4 Interpolatory Model Reduction
- 5 Balanced Truncation
 - The basic method
 - Theoretical Background
 - Singular Perturbation Approximation
 - Balancing-Related Methods
- 6 Solving Large-Scale Matrix Equations
- Final Remarks

Basic principle:

• Recall: a stable system Σ , realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy:
$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 with $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0$.

• $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .

Basic principle:

• Recall: a stable system Σ , realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, A^{T}Q + QA + C^{T}C = 0,$$

satisfy:
$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 with $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0$.

• $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .

Balanced Truncation

Basic principle:

• Recall: a stable system Σ , realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy:
$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 with $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0$.

- $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- Compute balanced realization of the system via state-space transformation

$$\mathcal{T}: (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$

$$= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right)$$

• Truncation \rightsquigarrow $(\hat{A}, \hat{B}, \hat{C}, \hat{D}) := (A_{11}, B_1, C_1, D).$

manceu Truncation

Basic principle:

• Recall: a stable system Σ , realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy:
$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 with $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0$.

- $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- Compute balanced realization of the system via state-space transformation

$$\mathcal{T}: (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$

$$= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right)$$

• Truncation \rightsquigarrow $(\hat{A}, \hat{B}, \hat{C}, \hat{D}) := (A_{11}, B_1, C_1, D).$

Motivation:

The HSVs $\Lambda(PQ)^{\frac{1}{2}}=\{\sigma_1,\ldots,\sigma_n\}$ are system invariants: they are preserved under

$$\mathcal{T}: (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$

Motivation:

The HSVs $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are system invariants: they are preserved under

$$\mathcal{T}: (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$

in transformed coordinates, the Gramians satisfy

$$(TAT^{-1})(TPT^{T}) + (TPT^{T})(TAT^{-1})^{T} + (TB)(TB)^{T} = 0,$$

$$(TAT^{-1})^{T}(T^{-T}QT^{-1}) + (T^{-T}QT^{-1})(TAT^{-1}) + (CT^{-1})^{T}(CT^{-1}) = 0$$

$$\Rightarrow (TPT^{T})(T^{-T}QT^{-1}) = TPQT^{-1},$$

hence $\Lambda(PQ) = \Lambda((TPT^T)(T^{-T}QT^{-1})).$

Implementation: SR Method

- Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- \odot ROM is (W^TAV, W^TB, CV, D) , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

Implementation: SR Method

- ① Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- \bigcirc ROM is (W^TAV, W^TB, CV, D) , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

- ① Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- **3** ROM is (W^TAV, W^TB, CV, D) , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

- Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- **3** ROM is (W^TAV, W^TB, CV, D) , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

Note:

$$V^T W = (\Sigma_1^{-\frac{1}{2}} U_1^T S) (R^T V_1 \Sigma_1^{-\frac{1}{2}})$$

- ① Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- **3** ROM is (W^TAV, W^TB, CV, D) , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

Note:

$$V^T W = (\Sigma_1^{-\frac{1}{2}} U_1^T S) (R^T V_1 \Sigma_1^{-\frac{1}{2}}) = \Sigma_1^{-\frac{1}{2}} U_1^T U \Sigma V^T V_1 \Sigma_1^{-\frac{1}{2}}$$

- ① Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- **3** ROM is (W^TAV, W^TB, CV, D) , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

Note:

$$V^{T}W = (\Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}S)(R^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}) = \Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}U\Sigma V^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}$$
$$= \Sigma_{1}^{-\frac{1}{2}}[I_{r}, 0] \begin{bmatrix} \Sigma_{1} \\ \Sigma_{2} \end{bmatrix} \begin{bmatrix} I_{r} \\ 0 \end{bmatrix} \Sigma_{1}^{-\frac{1}{2}}$$

Implementation: SR Method

- Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
- **3** ROM is (W^TAV, W^TB, CV, D) , where

$$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \qquad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

Note:

$$V^{T}W = (\Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}S)(R^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}) = \Sigma_{1}^{-\frac{1}{2}}U_{1}^{T}U\Sigma V^{T}V_{1}\Sigma_{1}^{-\frac{1}{2}}$$

$$= \Sigma_{1}^{-\frac{1}{2}}[I_{r}, 0] \begin{bmatrix} \Sigma_{1} \\ \Sigma_{2} \end{bmatrix} \begin{bmatrix} I_{r} \\ 0 \end{bmatrix} \Sigma_{1}^{-\frac{1}{2}} = \Sigma_{1}^{-\frac{1}{2}}\Sigma_{1}\Sigma_{1}^{-\frac{1}{2}} = I_{r}$$

 $\implies VW^T$ is an oblique projector, hence balanced truncation is a Petrov-Galerkin projection method.

Properties:

- Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.
- Adaptive choice of *r* via computable error bound:

$$||y - \hat{y}||_2 \le \left(2\sum_{k=r+1}^n \sigma_k\right) ||u||_2.$$

Properties:

- Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.
- Adaptive choice of r via computable error bound:

$$||y - \hat{y}||_2 \le \left(2\sum_{k=r+1}^n \sigma_k\right) ||u||_2.$$

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y & = & Cx + Du, & C \in \mathbb{R}^{q \times n}, & D \in \mathbb{R}^{q \times m}. \end{array}$$

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m},$$

$$y = Cx + Du, \quad C \in \mathbb{R}^{q \times n}, \quad D \in \mathbb{R}^{q \times m}.$$

Assumptions (for now): $t_0 = 0$, $x_0 = x(0) = 0$, D = 0.

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m},$$

 $y = Cx + Du, \qquad C \in \mathbb{R}^{q \times n}, \quad D \in \mathbb{R}^{q \times m}.$

State-Space Description for I/O-Relation

Variation-of-constants ⇒

$$\mathcal{S}: u\mapsto y, \quad y(t)=\int_{-\infty}^t C\mathrm{e}^{A(t- au)}Bu(au)\,d au \quad ext{for all } t\in\mathbb{R}.$$

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y & = & Cx + Du, & C \in \mathbb{R}^{q \times n}, & D \in \mathbb{R}^{q \times m}. \end{array}$$

State-Space Description for I/O-Relation

 $Variation-of-constants \Longrightarrow$

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^t C e^{A(t-\tau)} Bu(\tau) \, d au \quad \text{for all } t \in \mathbb{R}.$$

- $S: \mathcal{U} \to \mathcal{Y}$ is a linear operator between (function) spaces.
- Recall: $A \in \mathbb{R}^{n \times m}$ is a linear operator, $A : \mathbb{R}^m \to \mathbb{R}^n$!
- Basic Idea: use SVD approximation as for matrix A!
- Problem: in general, S does not have a discrete SVD and can therefore not be approximated as in the matrix case!

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y & = & Cx + Du, & C \in \mathbb{R}^{q \times n}, & D \in \mathbb{R}^{q \times m}. \end{array}$$

State-Space Description for I/O-Relation

 $Variation-of-constants \Longrightarrow$

$$\mathcal{S}: u\mapsto y, \quad y(t)=\int_{-\infty}^t C\mathrm{e}^{A(t- au)}Bu(au)\,d au \quad ext{for all } t\in\mathbb{R}.$$

- $\mathcal{S}: \mathcal{U} \to \mathcal{Y}$ is a linear operator between (function) spaces.
- Recall: $A \in \mathbb{R}^{n \times m}$ is a linear operator, $A : \mathbb{R}^m \to \mathbb{R}^n$!
- Basic Idea: use SVD approximation as for matrix A!
- ullet Problem: in general, $\mathcal S$ does not have a discrete SVD and can therefore not be approximated as in the matrix case!

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y & = & Cx + Du, & C \in \mathbb{R}^{q \times n}, & D \in \mathbb{R}^{q \times m}. \end{array}$$

State-Space Description for I/O-Relation

 $Variation-of-constants \Longrightarrow$

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^t C \mathrm{e}^{A(t-\tau)} B u(\tau) \, d au \quad ext{for all } t \in \mathbb{R}.$$

- $S: \mathcal{U} \to \mathcal{Y}$ is a linear operator between (function) spaces.
- Recall: $A \in \mathbb{R}^{n \times m}$ is a linear operator, $A : \mathbb{R}^m \to \mathbb{R}^n$!
- Basic Idea: use SVD approximation as for matrix A!
- Problem: in general, S does not have a discrete SVD and can therefore not be approximated as in the matrix case!

<u>Linear, T</u>ime-Invariant (LTI) Systems

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y & = & Cx + Du, & C \in \mathbb{R}^{q \times n}, & D \in \mathbb{R}^{q \times m}. \end{array}$$

State-Space Description for I/O-Relation

Variation-of-constants ⇒

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^t C \mathrm{e}^{A(t-\tau)} B u(\tau) \, d au \quad ext{for all } t \in \mathbb{R}.$$

- $S: \mathcal{U} \to \mathcal{Y}$ is a linear operator between (function) spaces.
- Recall: $A \in \mathbb{R}^{n \times m}$ is a linear operator, $A : \mathbb{R}^m \to \mathbb{R}^n$!
- Basic Idea: use SVD approximation as for matrix A!
- \bullet Problem: in general, S does not have a discrete SVD and can therefore not be approximated as in the matrix case!

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y & = & Cx, & C \in \mathbb{R}^{q \times n}. \end{array}$$

Alternative to State-Space Operator: Hankel Operator

Instead of

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^t C e^{A(t-\tau)} Bu(\tau) \, d au \quad ext{for all } t \in \mathbb{R}.$$

use Hankel operator

$$\mathcal{H}: u_-\mapsto y_+, \quad y_+(t)=\int_{-\infty}^0 C e^{A(t-\tau)} B u(\tau) \, d au \quad ext{for all } t>0.$$

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, & & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y & = & Cx, & & C \in \mathbb{R}^{q \times n}. \end{array}$$

Alternative to State-Space Operator: Hankel Operator

Instead of

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^t C e^{A(t-\tau)} Bu(\tau) \, d au \quad ext{for all } t \in \mathbb{R}.$$

use Hankel operator

$$\mathcal{H}: u_-\mapsto y_+, \quad y_+(t)=\int_{-\infty}^0 Ce^{A(t-\tau)}Bu(\tau)\,d\tau \quad \text{for all } t>0.$$

 \mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD

$$\rightsquigarrow$$
 Hankel singular values $\{\sigma_j\}_{j=1}^{\infty}: \sigma_1 \geq \sigma_2 \geq \ldots \geq 0.$

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y & = & Cx, & C \in \mathbb{R}^{q \times n}. \end{array}$$

Alternative to State-Space Operator: Hankel Operator

Instead of

Theoretical Background

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^t C e^{A(t-\tau)} Bu(\tau) \, d au \quad \text{for all } t \in \mathbb{R}.$$

use Hankel operator

$$\mathcal{H}: u_-\mapsto y_+, \quad y_+(t)=\int_{-\infty}^0 Ce^{A(t-\tau)}Bu(\tau)\,d\tau \quad \text{for all } t>0.$$

 ${\cal H}$ compact $\Rightarrow {\cal H}$ has discrete SVD

- \rightsquigarrow Hankel singular values $\{\sigma_j\}_{j=1}^{\infty}: \sigma_1 \geq \sigma_2 \geq \ldots \geq 0.$
- \implies SVD-type approximation of \mathcal{H} possible!

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = Ax + Bu$$
,

$$\dot{x} = Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m},$$

$$y = Cx, \qquad C \in \mathbb{R}^{q \times n}.$$

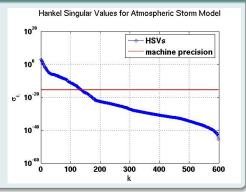
$$C \in \mathbb{R}^{q \times n}$$

Alternative to State-Space Operator: Hankel Operator

 \mathcal{H} compact

 \mathcal{H} has discrete SVD

Hankel singular values



Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m},$$

 $y = Cx, \qquad C \in \mathbb{R}^{q \times n}.$

Alternative to State-Space Operator: Hankel Operator

$$\mathcal{H}: u_-\mapsto y_+, \quad y_+(t)=\int_{-\infty}^0 Ce^{A(t-\tau)}Bu(\tau)\,d\tau \quad ext{for all } t>0.$$

 \mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD

- ⇒ Best approximation problem w.r.t. 2-induced operator norm well-posed
- ⇒ solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally unfeasible for large-scale systems.

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lll} \dot{x} & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y & = & Cx, & C \in \mathbb{R}^{q \times n}. \end{array}$$

Alternative to State-Space Operator: Hankel Operator

$$\mathcal{H}: u_-\mapsto y_+, \quad y_+(t)=\int_{-\infty}^0 Ce^{A(t-\tau)}Bu(\tau)\,d\tau \quad ext{for all } t>0.$$

 \mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD

- \Rightarrow Best approximation problem w.r.t. 2-induced operator norm well-posed
- ⇒ solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally unfeasible for large-scale systems.

Linear, Time-Invariant (LTI) Systems

$$\dot{x} = Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m},$$

 $y = Cx, \qquad C \in \mathbb{R}^{q \times n}.$

Alternative to State-Space Operator: Hankel Operator

$$\mathcal{H}: u_-\mapsto y_+, \quad y_+(t)=\int_{-\infty}^0 Ce^{A(t-\tau)}Bu(\tau)\,d\tau \quad ext{for all } t>0.$$

 \mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD

- ⇒ Best approximation problem w.r.t. 2-induced operator norm well-posed
- ⇒ solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally unfeasible for large-scale systems.

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

Proof: Hankel operator

$$y_+(t) = \mathcal{H}u_-(t) = \int_{-\infty}^0 Ce^{A(t-\tau)}Bu_-(\tau) d\tau$$

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

Proof: Hankel operator

$$y_{+}(t) = \mathcal{H}u_{-}(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)}Bu_{-}(\tau) d\tau =: Ce^{At} \underbrace{\int_{-\infty}^{0} e^{-A\tau}Bu_{-}(\tau) d\tau}_{=: T}$$

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

Hankel operator Proof:

$$y_{+}(t) = \mathcal{H}u_{-}(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)}Bu_{-}(\tau) d\tau =: Ce^{At} \underbrace{\int_{-\infty}^{0} e^{-A\tau}Bu_{-}(\tau) d\tau}_{=: Ce^{At}z.$$

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

Proof: Hankel operator

$$y_+(t) = \mathcal{H}u_-(t) = \int_{-\infty}^0 C \mathrm{e}^{A(t-\tau)} B u_-(\tau) \, d\tau = C \mathrm{e}^{At} z.$$

Singular values of $\mathcal{H} = \text{square roots of eigenvalues of } \mathcal{H}^*\mathcal{H}$.

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

Proof: Hankel operator

$$y_+(t) = \mathcal{H}u_-(t) = \int_{-\infty}^0 C \mathrm{e}^{A(t-\tau)} B u_-(\tau) \, d\tau = C \mathrm{e}^{At} z.$$

Singular values of $\mathcal{H} = \text{square roots of eigenvalues of } \mathcal{H}^*\mathcal{H}$,

$$\mathcal{H}^* y_+(t) = \int_0^\infty B^T e^{A^T(\tau - t)} C^T y_+(\tau) d\tau$$

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

Hankel operator Proof:

$$y_{+}(t) = \mathcal{H}u_{-}(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)}Bu_{-}(\tau) d\tau = Ce^{At}z.$$

Singular values of $\mathcal{H} =$ square roots of eigenvalues of $\mathcal{H}^*\mathcal{H}$,

$$\mathcal{H}^* y_+(t) = \int_0^\infty B^T e^{A^T (\tau - t)} C^T y_+(\tau) d\tau = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y_+(\tau) d\tau.$$

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

Hankel operator Proof:

$$y_{+}(t) = \mathcal{H}u_{-}(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)}Bu_{-}(\tau) d\tau = Ce^{At}z.$$

Singular values of $\mathcal{H} = \text{square roots of eigenvalues of } \mathcal{H}^* \mathcal{H}$,

$$\mathcal{H}^* y_+(t) = = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y_+(\tau) d\tau.$$

$$\mathcal{H}^*\mathcal{H}u_-(t) \quad = \quad B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} \, C^T \, C e^{A\tau} \, z \, d\tau$$

Theorem

Let P,Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda\left(PQ\right)^{\frac{1}{2}}=\{\sigma_1,\ldots,\sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

Proof: Hankel operator

$$y_{+}(t) = \mathcal{H}u_{-}(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)}Bu_{-}(\tau) d\tau = Ce^{At}z.$$

Singular values of $\mathcal{H} = \text{square roots of eigenvalues of } \mathcal{H}^*\mathcal{H}$,

$$\mathcal{H}^* y_+(t) = = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y_+(\tau) d\tau.$$

Hence,

$$\mathcal{H}^* \mathcal{H} u_-(t) = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T C e^{A\tau} z d\tau$$
$$= B^T e^{-A^T t} \underbrace{\int_0^\infty e^{A^T \tau} C^T C e^{A\tau} d\tau}_{=0} z$$

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

Hankel operator Proof:

$$y_+(t) = \mathcal{H}u_-(t) = \int_{-\infty}^0 C \mathrm{e}^{A(t-\tau)} B u_-(\tau) \, d\tau = C \mathrm{e}^{At} z.$$

Singular values of $\mathcal{H} = \text{square roots of eigenvalues of } \mathcal{H}^* \mathcal{H}$,

$$\mathcal{H}^* y_+(t) = = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y_+(\tau) d\tau.$$

Hence,

$$\mathcal{H}^* \mathcal{H} u_-(t) = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T C e^{A \tau} z \, d\tau$$
$$= B^T e^{-A^T t} Q z$$

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

Proof: Hankel operator

$$y_{+}(t) = \mathcal{H}u_{-}(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)}Bu_{-}(\tau) d\tau = Ce^{At}z.$$

Singular values of $\mathcal{H} = \text{square roots of eigenvalues of } \mathcal{H}^* \mathcal{H}$,

$$\mathcal{H}^* y_+(t) = = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y_+(\tau) d\tau.$$

Hence,

$$\mathcal{H}^*\mathcal{H}u_-(t) = B^T e^{-A^T t} Q z$$

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

Proof: Hankel operator

$$y_{+}(t) = \mathcal{H}u_{-}(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)}Bu_{-}(\tau) d\tau = Ce^{At}z.$$

Singular values of $\mathcal{H} = \text{square roots of eigenvalues of } \mathcal{H}^* \mathcal{H}$,

$$\mathcal{H}^* y_+(t) = = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y_+(\tau) d\tau.$$

Hence,

$$\mathcal{H}^*\mathcal{H}u_-(t) = B^T e^{-A^T t} Qz \doteq \sigma^2 u_-(t).$$

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

$$\mathcal{H}^*\mathcal{H}u_-(t) = B^T e^{-A^T t} Qz \doteq \sigma^2 u_-(t).$$

$$\Longrightarrow u_{-}(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Q z$$

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

$$\mathcal{H}^*\mathcal{H}u_-(t) = B^T e^{-A^T t} Qz \doteq \sigma^2 u_-(t).$$

$$\Longrightarrow u_-(t) = rac{1}{\sigma^2} B^T e^{-A^T t} Qz \Longrightarrow (\text{recalling } z = \int_{-\infty}^0 e^{-A \tau} B u_-(\tau) \, d au)$$

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

$$\mathcal{H}^* \mathcal{H} u_-(t) = B^T e^{-A^T t} Qz \doteq \sigma^2 u_-(t).$$

$$\Longrightarrow u_-(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \Longrightarrow (\text{recalling } z = \int_{-\infty}^0 e^{-A\tau} B u_-(\tau) d\tau)$$

$$z = \int_{-\infty}^0 e^{-A\tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Qz d\tau$$

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

$$\mathcal{H}^* \mathcal{H} u_-(t) = B^T e^{-A^T t} Qz \stackrel{:}{=} \sigma^2 u_-(t).$$

$$\implies u_-(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \implies (\text{recalling } z = \int_{-\infty}^0 e^{-A\tau} B u_-(\tau) d\tau)$$

$$z = \int_{-\infty}^0 e^{-A\tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Qz d\tau$$

$$= \frac{1}{\sigma^2} \int_{-\infty}^0 e^{-A\tau} B B^T e^{-A^T \tau} d\tau Qz$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

$$\mathcal{H}^* \mathcal{H} u_-(t) = B^T e^{-A^T t} Qz \stackrel{\dot{=}}{=} \sigma^2 u_-(t).$$

$$\implies u_-(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \implies (\text{recalling } z = \int_{-\infty}^0 e^{-A\tau} B u_-(\tau) d\tau)$$

$$z = \int_{-\infty}^0 e^{-A\tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Qz d\tau$$

$$= \frac{1}{\sigma^2} \int_{-\infty}^0 e^{-A\tau} B B^T e^{-A^T \tau} d\tau Qz$$

$$= \frac{1}{\sigma^2} \int_{-\infty}^\infty e^{At} B B^T e^{A^T t} dt Qz$$

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

$$\mathcal{H}^* \mathcal{H} u_-(t) = B^T e^{-A^T t} Qz \stackrel{\dot{=}}{=} \sigma^2 u_-(t).$$

$$\implies u_-(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \implies (\text{recalling } z = \int_{-\infty}^0 e^{-A\tau} B u_-(\tau) d\tau)$$

$$z = \int_{-\infty}^0 e^{-A\tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Qz d\tau$$

$$= \frac{1}{\sigma^2} \int_0^\infty e^{At} B B^T e^{A^T t} dt Qz$$

$$= \frac{1}{\sigma^2} P Q z$$

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

$$\mathcal{H}^* \mathcal{H} u_-(t) = B^T e^{-A^T t} Qz \stackrel{.}{=} \sigma^2 u_-(t).$$

$$\implies u_-(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \implies (\text{recalling } z = \int_{-\infty}^0 e^{-A\tau} B u_-(\tau) d\tau)$$

$$z = \int_{-\infty}^0 e^{-A\tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Qz d\tau$$

$$= \frac{1}{\sigma^2} \int_0^\infty e^{At} B B^T e^{A^T t} dt Qz$$

$$= \frac{1}{\sigma^2} PQz$$

$$PQz = \sigma^2 z$$
.

The Hankel Singular Values are Singular Values!

$\mathsf{Theorem}$

Let P, Q be the controllability and observability Gramians of an LTI system Σ . Then the Hankel singular values $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \dots, \sigma_n\}$ are the singular values of the Hankel operator associated to Σ .

$\mathsf{Theorem}$

Let the reduced-order system $\hat{\Sigma}: (\hat{A}, \hat{B}, \hat{C}, \hat{D})$ with $r < \hat{n}$ be computed by balanced truncation. Then the reduced-order model $\hat{\Sigma}$ is balanced, stable, minimal, and its HSVs are $\sigma_1, \ldots, \sigma_r$.

The Hankel Singular Values are Singular Values!

Theorem

Let the reduced-order system $\hat{\Sigma}: (\hat{A}, \hat{B}, \hat{C}, \hat{D})$ with $r < \hat{n}$ be computed by balanced truncation. Then the reduced-order model $\hat{\Sigma}$ is balanced, stable, minimal, and its HSVs are $\sigma_1, \ldots, \sigma_r$.

Proof: Note that in balanced coordinates, the Gramians are diagonal and equal to

$$\operatorname{diag}(\Sigma_1, \Sigma_2) = \operatorname{diag}(\sigma_1, \dots, \sigma_r, \sigma_{r+1}, \dots, \sigma_n).$$

Hence, the Gramian satisfies

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} + \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^T + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}^T = 0,$$

whence we obtain the "controllability Lyapunov equation" of the reduced-order system,

$$A_{11}\Sigma_1 + \Sigma_1 A_{11}^T + B_1 B_1^T = 0.$$

The result follows from $\hat{A} = A_{11}, \hat{B} = B_1, \Sigma_1 > 0$, the solution theory of Lyapunov equations and the analogous considerations for the observability Gramian. (Minimality is a simple consequence of $\hat{P} = \Sigma_1 = \hat{Q} > 0$.)

Assume the system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u, \quad y = \begin{bmatrix} C_1, C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + Du$$

is in balanced coordinates.

Assume the system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u, \quad y = \begin{bmatrix} C_1, C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + Du$$

is in balanced coordinates.

Balanced truncation would set $x_2 = 0$ and use (A_{11}, B_1, C_1, D) as reduced-order model, thereby the information present in the remaining model is ignored!

Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u, \quad y = \begin{bmatrix} C_1, C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + Du$$

is in balanced coordinates.

Balanced truncation would set $x_2 = 0$ and use (A_{11}, B_1, C_1, D) as reduced-order model, thereby the information present in the remaining model is ignored!

Particularly, if $G(0) = \hat{G}(0)$ ("zero steady-state error") is required, one can apply the same condensation technique as in Guyan reduction: instead of $x_2 = 0$, set $\dot{x}_2 = 0$. This yields the reduced-order model

$$\dot{x}_1 = (A_{11} - A_{12}A_{22}^{-1}A_{21})x_1 + (B_1 - A_{12}A_{22}^{-1}B_2)u,
y = (C_1 - C_2A_{22}^{-1}A_{21})x_1 + (D - C_2A_{22}^{-1}B_2)u,$$

with

- the same properties as the reduced-order model w.r.t. stability, minimality, error bound, but $\hat{D} \neq D$;
- zero steady-state error, $G(0) = \hat{G}(0)$ as desired.

Singular Perturbation Approximation (aka Balanced Residualization)

Particularly, if $G(0) = \hat{G}(0)$ ("zero steady-state error") is required, one can apply the same condensation technique as in Guyan reduction: instead of $x_2 = 0$, set $\dot{x}_2 = 0$. This yields the reduced-order model

$$\dot{x}_1 = (A_{11} - A_{12}A_{22}^{-1}A_{21})x_1 + (B_1 - A_{12}A_{22}^{-1}B_2)u,
y = (C_1 - C_2A_{22}^{-1}A_{21})x_1 + (D - C_2A_{22}^{-1}B_2)u,$$

with

- the same properties as the reduced-order model w.r.t. stability, minimality, error bound, but $\hat{D} \neq D$;
- zero steady-state error, $G(0) = \hat{G}(0)$ as desired.

Note:

- A_{22} invertible as in balanced coordinates, $A_{22}\Sigma_2 + \Sigma_2 A_{22}^T + B_2 B_2^T = 0$ and (A_{22}, B_2) controllable, $\Sigma_2 > 0 \Rightarrow A_{22}$ stable.
- If the original system is not balanced, first compute a minimal realization by applying balanced truncation with $r = \hat{n}$.

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n > 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n > 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Classical Balanced Truncation (BT)

[Mullis/Roberts '76, Moore '81]

- P = controllability Gramian of system given by (A, B, C, D).
- Q = observability Gramian of system given by (A, B, C, D).
- P, Q solve dual Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0.$$

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n > 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

LQG Balanced Truncation (LQGBT) [Jonckheere/Silverman '83]

- P/Q = controllability/observability Gramian of closed-loop system based on LQG compensator.
- P, Q solve dual algebraic Riccati equations (AREs)

$$0 = AP + PA^{T} - PC^{T}CP + B^{T}B,$$

$$0 = A^T Q + QA - QBB^T Q + C^T C.$$

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n > 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Balanced Stochastic Truncation (BST) [Desai/Pal '84, Green '88]

- P = controllability Gramian of system given by (A, B, C, D), i.e., solution of Lyapunov equation $AP + PA^T + BB^T = 0$.
- Q = observability Gramian of right spectral factor of power spectrum of system given by (A, B, C, D), i.e., solution of ARE

$$\hat{A}^T Q + Q \hat{A} + Q B_W (DD^T)^{-1} B_W^T Q + C^T (DD^T)^{-1} C = 0,$$

where $\hat{A} := A - B_W(DD^T)^{-1}C$, $B_W := BD^T + PC^T$.

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n > 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Positive-Real Balanced Truncation (PRBT)

- Based on positive-real equations, related to positive real (Kalman-Yakubovich-Popov-Anderson) lemma.
- P, Q solve dual AREs

$$0 = \bar{A}P + P\bar{A}^{T} + PC^{T}\bar{R}^{-1}CP + B\bar{R}^{-1}B^{T},$$

$$0 = \bar{A}^{T}Q + Q\bar{A} + QB\bar{R}^{-1}B^{T}Q + C^{T}\bar{R}^{-1}C,$$

where $\bar{R} = D + D^T$. $\bar{A} = A - B\bar{R}^{-1}C$.

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n > 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Other Balancing-Based Methods

- Bounded-real balanced truncation (BRBT) based on bounded real lemma [Opdenacker/Jonckheere '88];
- H_{∞} balanced truncation (HinfBT) closed-loop balancing based on H_{∞} compensator [Mustafa/Glover '91].

Both approaches require solution of dual AREs.

Frequency-weighted versions of the above approaches.

Balancing-Related Methods

Properties

- Guaranteed preservation of physical properties like
 - stability (all).
 - passivity (PRBT),
 - minimum phase (BST).
- Computable error bounds, e.g.,

$$\begin{split} \text{BT:} \quad & \|G - G_r\|_{\infty} \quad \leq 2 \; \sum_{j=r+1}^n \sigma_j^{BT}, \\ \text{LQGBT:} \quad & \|G - G_r\|_{\infty} \quad \leq \; 2 \sum_{j=r+1}^n \frac{\sigma_j^{LQG}}{\sqrt{1 + (\sigma_j^{LQG})^2}} \\ \text{BST:} \quad & \|G - G_r\|_{\infty} \quad \leq \left(\prod_{j=r+1}^n \frac{1 + \sigma_j^{BST}}{1 - \sigma_j^{BST}} - 1 \right) \|G\|_{\infty}, \end{split}$$

- Can be combined with singular perturbation approximation for steady-state performance.
- Computations can be modularized.

- Solving Large-Scale Matrix Equations
 - Linear Matrix Equations
 - Numerical Methods for Solving Lyapunov Equations
 - Solving Large-Scale Algebraic Riccati Equations
 - Software

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$$

 $G = 0 \Longrightarrow$ Lyapunov equation

$$0 = \mathcal{L}(X) := A^T X + XA + W.$$

- $n = 10^3 10^6 \ (\Longrightarrow 10^6 10^{12} \ \text{unknowns!})$
- A has sparse representation $(A = -M^{-1}S)$ for FEM,
- G, W low-rank with $G, W \in \{BB^T, C^TC\}$, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}(n^3)$ methods are not applicable!

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$$

 $G = 0 \Longrightarrow$ Lyapunov equation:

$$0 = \mathcal{L}(X) := A^T X + XA + W.$$

- $n = 10^3 10^6 \ (\Longrightarrow 10^6 10^{12} \ \text{unknowns!})$
- A has sparse representation $(A = -M^{-1}S)$ for FEM),
- G, W low-rank with $G, W \in \{BB^T, C^TC\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, C \in \mathbb{R}^{p \times n}, p \ll n.$
- Standard (eigenproblem-based) $\mathcal{O}(n^3)$ methods are not applicable!

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$$

 $G = 0 \Longrightarrow$ Lyapunov equation:

$$0 = \mathcal{L}(X) := A^T X + XA + W.$$

- $n = 10^3 10^6 \implies 10^6 10^{12} \text{ unknowns!}$
- A has sparse representation $(A = -M^{-1}S \text{ for FEM})$,
- G, W low-rank with $G, W \in \{BB^T, C^TC\}$, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}(n^3)$ methods are not applicable!

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$$

 $G = 0 \Longrightarrow$ Lyapunov equation:

$$0 = \mathcal{L}(X) := A^T X + XA + W.$$

- $n = 10^3 10^6 \implies 10^6 10^{12} \text{ unknowns!}$
- A has sparse representation ($A = -M^{-1}S$ for FEM),
- G, W low-rank with $G, W \in \{BB^T, C^TC\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, C \in \mathbb{R}^{p \times n}, p \ll n.$
- Standard (eigenproblem-based) $\mathcal{O}(n^3)$ methods are not applicable!

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$$

 $G = 0 \Longrightarrow$ Lyapunov equation:

$$0 = \mathcal{L}(X) := A^T X + XA + W.$$

- $n = 10^3 10^6 \implies 10^6 10^{12} \text{ unknowns!}$),
- A has sparse representation ($A = -M^{-1}S$ for FEM),
- G, W low-rank with $G, W \in \{BB^T, C^TC\}$, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}(n^3)$ methods are not applicable!

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{R}(X) := A^T X + XA - XGX + W.$$

 $G = 0 \Longrightarrow$ Lyapunov equation:

$$0 = \mathcal{L}(X) := A^T X + XA + W.$$

- $n = 10^3 10^6 \implies 10^6 10^{12} \text{ unknowns!}$
- A has sparse representation ($A = -M^{-1}S$ for FEM),
- G, W low-rank with $G, W \in \{BB^T, C^TC\}$, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}(n^3)$ methods are not applicable!

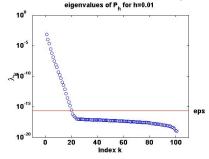
Low-Rank Approximation

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- $\Omega = [0, 1],$
- FEM discretization using linear B-splines,
- $h = 1/100 \implies n = 101$.

Idea:
$$X = X^T > 0 \implies$$



$$X = ZZ^{T} = \sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)} (Z^{(r)})^{T} = \sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T}.$$

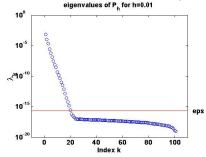
 \implies Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X!

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- $\Omega = [0, 1],$
- FEM discretization using linear B-splines,
- $h = 1/100 \implies n = 101$.

Idea:
$$X = X^T > 0 \implies$$



$$X = ZZ^T = \sum_{k=1}^n \lambda_k z_k z_k^T \approx Z^{(r)} (Z^{(r)})^T = \sum_{k=1}^r \lambda_k z_k z_k^T.$$

 \implies Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X!

Linear Matrix Equations

Equations without symmetry

Sylvester equation

discrete Sylvester equation

$$AX + XB = W$$

$$AXB - X = W$$

with data $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{m \times m}$, $W \in \mathbb{R}^{n \times m}$ and unknown $X \in \mathbb{R}^{n \times m}$.

Equations with symmetry

Lyapunov equation

Stein equation (discrete Lyapunov equation)

$$AX + XA^T = W$$

$$AXA^T - X = W$$

with data $A \in \mathbb{R}^{n \times n}$, $W = W^T \in \mathbb{R}^{n \times n}$ and unknown $X \in \mathbb{R}^{n \times n}$.

Here: focus on (Sylvester and) Lyapunov equations; analogous results and methods for discrete versions exist.

Linear Matrix Equations

Equations without symmetry

Sylvester equation

discrete Sylvester equation

$$AX + XB = W$$

$$AXB - X = W$$

with data $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{m \times m}$, $W \in \mathbb{R}^{n \times m}$ and unknown $X \in \mathbb{R}^{n \times m}$.

Equations with symmetry

Lyapunov equation

Stein equation (discrete Lyapunov equation)

$$AX + XA^T = W$$

$$AXA^T - X = W$$

with data $A \in \mathbb{R}^{n \times n}$, $W = W^T \in \mathbb{R}^{n \times n}$ and unknown $X \in \mathbb{R}^{n \times n}$.

Here: focus on (Sylvester and) Lyapunov equations; analogous results and methods for discrete versions exist.

Linear Matrix Equations

Solvability

Using the Kronecker (tensor) product, AX + XB = W is equivalent to

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec}(X) = \operatorname{vec}(W).$$

Hence,

Sylvester equation has a unique solution

$$M := (I_m \otimes A) + (B^T \otimes I_n)$$
 is invertible.

$$\iff$$

$$0 \not\in \Lambda(M) = \Lambda((I_m \otimes A) + (B^T \otimes I_n)) = \{\lambda_j + \mu_k, \mid \lambda_j \in \Lambda(A), \mu_k \in \Lambda(B)\}.$$

$$\leftarrow$$

$$\Lambda(A) \cap \Lambda(-B) = \emptyset$$

Solvability

Using the Kronecker (tensor) product, AX + XB = W is equivalent to

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec}(X) = \operatorname{vec}(W).$$

Hence,

Sylvester equation has a unique solution

$$\iff$$

$$M := (I_m \otimes A) + (B^T \otimes I_n)$$
 is invertible.

$$\iff$$

$$0 \not\in \Lambda(M) = \Lambda((I_m \otimes A) + (B^T \otimes I_n)) = \{\lambda_j + \mu_k, \mid \lambda_j \in \Lambda(A), \mu_k \in \Lambda(B)\}.$$

$$\leftarrow$$

$$\Lambda(A) \cap \Lambda(-B) = \emptyset$$

Solvability

Using the Kronecker (tensor) product, AX + XB = W is equivalent to

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec}(X) = \operatorname{vec}(W).$$

Hence,

Sylvester equation has a unique solution

$$\iff$$

$$M := (I_m \otimes A) + (B^T \otimes I_n)$$
 is invertible.

$$\iff$$

$$0 \not\in \Lambda(M) = \Lambda((I_m \otimes A) + (B^T \otimes I_n)) = \{\lambda_j + \mu_k, \mid \lambda_j \in \Lambda(A), \mu_k \in \Lambda(B)\}.$$

$$\leftarrow$$

$$\Lambda(A) \cap \Lambda(-B) = \emptyset$$

Solvability

Using the Kronecker (tensor) product, AX + XB = W is equivalent to

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec}(X) = \operatorname{vec}(W).$$

Hence,

Sylvester equation has a unique solution

$$\Leftrightarrow$$

$$M := (I_m \otimes A) + (B^T \otimes I_n)$$
 is invertible.

$$\iff$$

$$0 \not\in \Lambda(M) = \Lambda((I_m \otimes A) + (B^T \otimes I_n)) = \{\lambda_j + \mu_k, \mid \lambda_j \in \Lambda(A), \ \mu_k \in \Lambda(B)\}.$$

$$\Leftrightarrow$$

$$\Lambda(A) \cap \Lambda(-B) = \emptyset$$

Linear Matrix Equations

Solvability

Using the Kronecker (tensor) product, AX + XB = W is equivalent to

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec}(X) = \operatorname{vec}(W).$$

Hence,

Sylvester equation has a unique solution

$$\iff$$

$$M := (I_m \otimes A) + (B^T \otimes I_n)$$
 is invertible.

$$\leftarrow$$

$$0 \not\in \Lambda(M) = \Lambda((I_m \otimes A) + (B^T \otimes I_n)) = \{\lambda_j + \mu_k, \mid \lambda_j \in \Lambda(A), \mu_k \in \Lambda(B)\}.$$

$$\iff$$

$$\Lambda(A) \cap \Lambda(-B) = \emptyset$$

Corollary

A, B Hurwitz \Longrightarrow Sylvester equation has unique solution.

Linear Matrix Equations

Complexity Issues

Solving the Sylvester equation

$$AX + XB = W$$

via the equivalent linear system of equations

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec}(X) = \operatorname{vec}(W)$$

requires

- LU factorization of $nm \times nm$ matrix; for $n \approx m$, complexity is $\frac{2}{3}n^6$;
- storing $n \cdot m$ unknowns: for $n \approx m$ we have n^4 data for X.

 $n = m = 1,000 \Rightarrow$ Gaussian elimination on an Intel core i7 (Westmere, 6) cores, 3.46 GHz \leftrightarrow 83.2 GFLOP peak) would take > 94 DAYS and 7.3

Linear Matrix Equations

Complexity Issues

Solving the Sylvester equation

$$AX + XB = W$$

via the equivalent linear system of equations

$$((I_m \otimes A) + (B^T \otimes I_n)) \operatorname{vec}(X) = \operatorname{vec}(W)$$

requires

- LU factorization of $nm \times nm$ matrix; for $n \approx m$, complexity is $\frac{2}{3}n^6$;
- storing $n \cdot m$ unknowns: for $n \approx m$ we have n^4 data for X.

Example

 $n = m = 1,000 \Rightarrow$ Gaussian elimination on an Intel core i7 (Westmere, 6) cores, 3.46 GHz \leftrightarrow 83.2 GFLOP peak) would take > 94 DAYS and 7.3 TB of memory!

Numerical Methods for Solving Lyapunov Equations Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (1yap); Hessenberg-Schur method for Sylvester equations (1yap); Hammarling's method for Lyapunov equations $AX + XA^T + GG^T = 0$ with A Hurwitz (1yapchol).

All based on the fact that if A, B^T are in Schur form, then

$$M = (I_m \otimes A) + (B^T \otimes I_n)$$

is block-upper triangular. Hence, solve Mx = b by back-substitution.

- Clever implementation of back-substitution process requires nm(n+m) flops.
- For Sylvester eqns., B in Hessenberg form is enough (~
 Hessenberg-Schur method).
- Hammarling's method computes Cholesky factor Y of X directly.
- All methods require Schur decomposition of A and Schur or Hessenberg decomposition of $B \Rightarrow$ need QR algorithm which requires $25 n^3$ flops for Schur decomposition.

Not feasible for large-scale problems (n > 10,000).

Bartels-Stewart method for Sylvester and Lyapunov equation (1yap);

Hessenberg-Schur method for Sylvester equations (1yap);

Hammarling's method for Lyapunov equations $AX + XA^T + GG^T = 0$ with A Hurwitz (lyapchol).

All based on the fact that if A, B^T are in Schur form, then

$$M = (I_m \otimes A) + (B^T \otimes I_n)$$

is block-upper triangular. Hence, solve Mx = b by back-substitution.

- Clever implementation of back-substitution process requires nm(n+m) flops.
- For Sylvester eqns., B in Hessenberg form is enough (→ Hessenberg-Schur method).
- Hammarling's method computes Cholesky factor Y of X directly.
- All methods require Schur decomposition of A and Schur or Hessenberg decomposition of $B \Rightarrow$ need QR algorithm which requires $25 n^3$ flops for Schur decomposition.

Not feasible for large-scale problems (n > 10,000).

Numerical Methods for Solving Lyapunov Equations Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (1yap); Hessenberg-Schur method for Sylvester equations (1yap);

Hammarling's method for Lyapunov equations $AX + XA^T + GG^T = 0$ with A Hurwitz (lyapchol).

All based on the fact that if A, B^T are in Schur form, then

$$M = (I_m \otimes A) + (B^T \otimes I_n)$$

is block-upper triangular. Hence, solve Mx = b by back-substitution.

- Clever implementation of back-substitution process requires nm(n+m) flops.
- For Sylvester eqns., B in Hessenberg form is enough (→ Hessenberg-Schur method).
- Hammarling's method computes Cholesky factor Y of X directly.
- All methods require Schur decomposition of A and Schur or Hessenberg decomposition of $B \Rightarrow$ need QR algorithm which requires $25n^3$ flops for Schur decomposition.

Not feasible for large-scale problems (n > 10,000).

The Sign Function Method

Definition

For $Z \in \mathbb{R}^{n \times n}$ with $\Lambda(Z) \cap i\mathbb{R} = \emptyset$ and Jordan canonical form

$$Z = S \begin{bmatrix} J^+ & 0 \\ 0 & J^- \end{bmatrix} S^{-1}$$

the matrix sign function is

$$\operatorname{sign}(Z) := S \left[\begin{array}{cc} I_k & 0 \\ 0 & -I_{n-k} \end{array} \right] S^{-1}.$$

The Sign Function Method

Definition

For $Z \in \mathbb{R}^{n \times n}$ with $\Lambda(Z) \cap i\mathbb{R} = \emptyset$ and Jordan canonical form

$$Z = S \begin{bmatrix} J^+ & 0 \\ 0 & J^- \end{bmatrix} S^{-1}$$

the matrix sign function is

$$\operatorname{sign}(Z) := S \left[\begin{array}{cc} I_k & 0 \\ 0 & -I_{n-k} \end{array} \right] S^{-1}.$$

Lemma

Let $T \in \mathbb{R}^{n \times n}$ be nonsingular and Z as before, then

$$\operatorname{sign}(TZT^{-1}) = T\operatorname{sign}(Z)T^{-1}$$

The Sign Function Method

Computation of sign (Z)

 $\operatorname{sign}(Z)$ is root of $I_n \Longrightarrow$ use Newton's method to compute it:

$$Z_0 \leftarrow Z, \qquad Z_{j+1} \leftarrow \frac{1}{2} \left(c_j Z_j + \frac{1}{c_j} Z_j^{-1} \right), \qquad j = 1, 2, \dots$$

$$\implies \operatorname{sign}(Z) = \lim_{j \to \infty} Z_j.$$

 $c_i > 0$ is scaling parameter for convergence acceleration and rounding error minimization, e.g.

$$c_j = \sqrt{\frac{\|Z_j^{-1}\|_F}{\|Z_j\|_F}},$$

based on "equilibrating" the norms of the two summands [Higham '86].

Solving Lyapunov Equations with the Matrix Sign Function Method

Key observation:

If $X \in \mathbb{R}^{n \times n}$ is a solution of $AX + XA^T + W = 0$, then

$$\underbrace{\begin{bmatrix} I_n & -X \\ 0 & I_n \end{bmatrix}}_{=T^{-1}} \underbrace{\begin{bmatrix} A & W \\ 0 & -A^T \end{bmatrix}}_{=:H} \underbrace{\begin{bmatrix} I_n & X \\ 0 & I_n \end{bmatrix}}_{=:T} = \begin{bmatrix} A & 0 \\ 0 & -A^T \end{bmatrix}.$$

Hence, if A is Hurwitz (i.e., asymptotically stable), then

$$\begin{aligned} \operatorname{sign}\left(H\right) &= & \operatorname{sign}\left(T\begin{bmatrix}A & 0 \\ 0 & -A^T\end{bmatrix}T^{-1}\right) = T\operatorname{sign}\left(\begin{bmatrix}A & 0 \\ 0 & -A^T\end{bmatrix}\right)T^{-1} \\ &= \begin{bmatrix}-I_n & 2X \\ 0 & I_n\end{bmatrix}. \end{aligned}$$

Solving Lyapunov Equations with the Matrix Sign Function Method

Key observation:

If $X \in \mathbb{R}^{n \times n}$ is a solution of $AX + XA^T + W = 0$, then

$$\underbrace{\begin{bmatrix} I_n & -X \\ 0 & I_n \end{bmatrix}}_{=T^{-1}} \underbrace{\begin{bmatrix} A & W \\ 0 & -A^T \end{bmatrix}}_{=:H} \underbrace{\begin{bmatrix} I_n & X \\ 0 & I_n \end{bmatrix}}_{=:T} = \begin{bmatrix} A & 0 \\ 0 & -A^T \end{bmatrix}.$$

Hence, if A is Hurwitz (i.e., asymptotically stable), then

$$sign(H) = sign\left(T\begin{bmatrix} A & 0 \\ 0 & -A^T \end{bmatrix}T^{-1}\right) = T sign\left(\begin{bmatrix} A & 0 \\ 0 & -A^T \end{bmatrix}\right)T^{-1}$$

$$= \begin{bmatrix} -I_n & 2X \\ 0 & I_n \end{bmatrix}.$$

Apply sign function iteration
$$Z \leftarrow \frac{1}{2}(Z + Z^{-1})$$
 to $H = \begin{bmatrix} A & W \\ 0 & -A^T \end{bmatrix}$:

$$H + H^{-1} = \begin{bmatrix} A & W \\ 0 & -A^T \end{bmatrix} + \begin{bmatrix} A^{-1} & A^{-1}WA^{-T} \\ 0 & -A^{-T} \end{bmatrix}$$

⇒ Sign function iteration for Lyapunov equation:

$$A_0 \leftarrow A, \quad A_{j+1} \leftarrow \frac{1}{2} \left(A_j + A_j^{-1} \right),$$

 $W_0 \leftarrow G, \quad W_{j+1} \leftarrow \frac{1}{2} \left(W_j + A_j^{-1} W_j A_j^{-T} \right),$ $j = 0, 1, 2, \dots$

Define
$$A_{\infty} := \lim_{j \to \infty} A_j$$
, $W_{\infty} := \lim_{j \to \infty} W_j$.

Theorem

If A is Hurwitz, then

$$A_{\infty} = -I_n$$
 and $X = \frac{1}{2}W_{\infty}$.

Recall sign function iteration for $AX + XA^T + W = 0$:

$$A_0 \leftarrow A, \quad A_{j+1} \leftarrow \frac{1}{2} (A_j + A_j^{-1}), W_0 \leftarrow G, \quad W_{j+1} \leftarrow \frac{1}{2} (W_j + A_i^{-1} W_j A_i^{-T}),$$
 $j = 0, 1, 2, \dots$

Now consider the second iteration for $W = BB^T$, starting with $W_0 = BB^T =: B_0B_0^T$:

$$\begin{split} \frac{1}{2} \left(W_j + A_j^{-1} W_j A_j^{-T} \right) &= \frac{1}{2} \left(B_j B_j^T + A_j^{-1} B_j B_j^T A_j^{-T} \right) \\ &= \frac{1}{2} \left[B_j \quad A_j^{-1} B_j \right] \left[B_j \quad A_j^{-1} B_j \right]^T. \end{split}$$

Hence, obtain factored iteration

$$B_{j+1} \leftarrow \frac{1}{\sqrt{2}} \begin{bmatrix} B_j & A_j^{-1} B_j \end{bmatrix}$$

Recall sign function iteration for $AX + XA^T + W = 0$:

$$A_0 \leftarrow A, \quad A_{j+1} \leftarrow \frac{1}{2} (A_j + A_j^{-1}), \\ W_0 \leftarrow G, \quad W_{j+1} \leftarrow \frac{1}{2} (W_j + A_i^{-1} W_j A_i^{-T}), \qquad j = 0, 1, 2, \dots.$$

Now consider the second iteration for $W = BB^T$, starting with $W_0 = BB^T =: B_0B_0^T$:

$$\frac{1}{2} \left(W_j + A_j^{-1} W_j A_j^{-T} \right) = \frac{1}{2} \left(B_j B_j^T + A_j^{-1} B_j B_j^T A_j^{-T} \right)
= \frac{1}{2} \left[B_j \quad A_j^{-1} B_j \right] \left[B_j \quad A_j^{-1} B_j \right]^T.$$

Hence, obtain factored iteration

$$B_{j+1} \leftarrow \frac{1}{\sqrt{2}} \begin{bmatrix} B_j & A_j^{-1} B_j \end{bmatrix}$$

Recall sign function iteration for $AX + XA^T + W = 0$:

Now consider the second iteration for $W = BB^T$, starting with $W_0 = BB^T =: B_0B_0^T$:

$$\begin{split} \frac{1}{2} \left(W_j + A_j^{-1} W_j A_j^{-T} \right) &= \frac{1}{2} \left(B_j B_j^T + A_j^{-1} B_j B_j^T A_j^{-T} \right) \\ &= \frac{1}{2} \left[B_j \quad A_j^{-1} B_j \right] \left[B_j \quad A_j^{-1} B_j \right]^T. \end{split}$$

Hence, obtain factored iteration

$$B_{j+1} \leftarrow \frac{1}{\sqrt{2}} \begin{bmatrix} B_j & A_j^{-1} B_j \end{bmatrix}$$

Recall sign function iteration for $AX + XA^T + W = 0$:

Now consider the second iteration for $W = BB^T$, starting with $W_0 = BB^T =: B_0B_0^T$:

$$\frac{1}{2} \left(W_j + A_j^{-1} W_j A_j^{-T} \right) = \frac{1}{2} \left(B_j B_j^T + A_j^{-1} B_j B_j^T A_j^{-T} \right) \\
= \frac{1}{2} \left[B_j \quad A_j^{-1} B_j \right] \left[B_j \quad A_j^{-1} B_j \right]^T.$$

Hence, obtain factored iteration

$$B_{j+1} \leftarrow \frac{1}{\sqrt{2}} \begin{bmatrix} B_j & A_j^{-1}B_j \end{bmatrix}$$

Factored sign function iteration for $A(SS^T) + (SS^T)A^T + BB^T = 0$

$$A_0 \leftarrow A, \quad A_{j+1} \leftarrow \frac{1}{2} \left(A_j + A_j^{-1} \right), B_0 \leftarrow B, \quad B_{j+1} \leftarrow \frac{1}{\sqrt{2}} \left[B_j \quad A_j^{-1} B_j \right], \qquad j = 0, 1, 2, \dots.$$

Remarks:

• To get both Gramians, run in parallel

$$C_{j+1} \leftarrow \frac{1}{\sqrt{2}} \begin{bmatrix} C_j \\ C_j A_i^{-1} \end{bmatrix}.$$

- To avoid growth in numbers of columns of B_j (or rows of C_j): column compression by RRLQ or truncated SVD.
- Several options to incorporate scaling, e.g., scale "A"-iteration only.
- Simple stopping cirterion: $||A_j + I_n||_F \le tol$.

Numerical Methods for Solving Lyapunov Equations The ADI Method

Recall Peaceman Rachford ADI:

Consider Au = s where $A \in \mathbb{R}^{n \times n}$ spd, $s \in \mathbb{R}^n$. ADI Iteration Idea:

Decompose A = H + V with $H, V \in \mathbb{R}^{n \times n}$ such that

$$(H+pI)v = r$$
$$(V+pI)w = t$$

can be solved easily/efficiently.

ADI Iteration

If $H, V \text{ spd} \Rightarrow \exists p_k, k = 1, 2, \dots \text{ such that}$

$$u_{0} = 0$$

$$(H + p_{k}I)u_{k-\frac{1}{2}} = (p_{k}I - V)u_{k-1} + s$$

$$(V + p_{k}I)u_{k} = (p_{k}I - H)u_{k-\frac{1}{2}} + s$$

converges to $u \in \mathbb{R}^n$ solving Au = s.

Numerical Methods for Solving Lyapunov Equations The ADI Method

Recall Peaceman Rachford ADI:

Consider Au = s where $A \in \mathbb{R}^{n \times n}$ spd, $s \in \mathbb{R}^n$. ADI Iteration Idea:

Decompose A = H + V with $H, V \in \mathbb{R}^{n \times n}$ such that

$$(H+pI)v = r$$
$$(V+pI)w = t$$

can be solved easily/efficiently.

ADI Iteration

If $H, V \text{ spd} \Rightarrow \exists p_k, k = 1, 2, \dots \text{ such that}$

$$\begin{array}{rcl} u_0 & = & 0 \\ (H+p_k I)u_{k-\frac{1}{2}} & = & (p_k I-V)u_{k-1}+s \\ (V+p_k I)u_k & = & (p_k I-H)u_{k-\frac{1}{2}}+s \end{array}$$

converges to $u \in \mathbb{R}^n$ solving Au = s.

The Lyapunov operator

$$\mathcal{L}: P \mapsto AX + XA^T$$

can be decomposed into the linear operators

$$\mathcal{L}_H: X \mapsto AX, \qquad \mathcal{L}_V: X \mapsto XA^T.$$

In analogy to the standard ADI method we find the

ADI iteration for the Lyapunov equation

$$\begin{array}{rcl} X_0 & = & 0 \\ (A+p_kI)X_{k-\frac{1}{2}} & = & -W-X_{k-1}(A^T-p_kI) \\ (A+p_kI)X_k^T & = & -W-X_{k-\frac{1}{2}}^T(A^T-p_kI). \end{array}$$

Numerical Methods for Solving Lyapunov Equations Low-Rank ADI

Consider $AX + XA^T = -BB^T$ for stable A; $B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

ADI iteration for the Lyapunov equation

[Wachspress '95]

For $k = 1, \ldots, k_{\text{max}}$

$$\begin{array}{rcl} X_0 & = & 0 \\ (A+p_kI)X_{k-\frac{1}{2}} & = & -BB^T - X_{k-1}(A^T - p_kI) \\ (A+p_kI)X_k^T & = & -BB^T - X_{k-\frac{1}{2}}^T(A^T - p_kI) \end{array}$$

Rewrite as one step iteration and factorize $X_k = Z_k Z_k^T$, $k = 0, \dots, k_{\text{max}}$

$$Z_{0}Z_{0}^{T} = 0$$

$$Z_{k}Z_{k}^{T} = -2p_{k}(A + p_{k}I)^{-1}BB^{T}(A + p_{k}I)^{-T} + (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}^{T}Z_{k-1}^{T}(A - p_{k}I)^{T}(A + p_{k}I)^{-T}$$

 $\ldots \leadsto$ low-rank Cholesky factor ADI

[PENZL '97/'00, LI/WHITE '99/'02, B./LI/PENZL '99/'08, GUGERCIN/SORENSEN/ANTOULAS '03

Numerical Methods for Solving Lyapunov Equations Low-Rank ADI

Consider $AX + XA^T = -BB^T$ for stable A; $B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

ADI iteration for the Lyapunov equation

[Wachspress '95]

For $k = 1, \ldots, k_{\text{max}}$

$$\begin{array}{rcl} X_0 & = & 0 \\ (A+p_kI)X_{k-\frac{1}{2}} & = & -BB^T - X_{k-1}(A^T - p_kI) \\ (A+p_kI)X_k^T & = & -BB^T - X_{k-\frac{1}{2}}^T(A^T - p_kI) \end{array}$$

Rewrite as one step iteration and factorize $X_k = Z_k Z_k^T$, $k = 0, \dots, k_{\sf max}$

$$Z_{0}Z_{0}^{T} = 0$$

$$Z_{k}Z_{k}^{T} = -2p_{k}(A + p_{k}I)^{-1}BB^{T}(A + p_{k}I)^{-T} + (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}^{T}Z_{k-1}^{T}(A - p_{k}I)^{T}(A + p_{k}I)^{-T}$$

... ~> low-rank Cholesky factor ADI

ze 50, 60, Geodelich, Southwell, Hillochie 60]

Numerical Methods for Solving Lyapunov Equations Low-Rank ADI

Consider $AX + XA^T = -BB^T$ for stable A; $B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

ADI iteration for the Lyapunov equation

[Wachspress '95]

For $k = 1, \ldots, k_{\text{max}}$

$$\begin{array}{rcl} X_0 & = & 0 \\ (A+p_kI)X_{k-\frac{1}{2}} & = & -BB^T - X_{k-1}(A^T-p_kI) \\ (A+p_kI)X_k^T & = & -BB^T - X_{k-\frac{1}{2}}^T(A^T-p_kI) \end{array}$$

Rewrite as one step iteration and factorize $X_k = Z_k Z_k^T$, $k = 0, \dots, k_{\sf max}$

$$Z_{0}Z_{0}^{T} = 0$$

$$Z_{k}Z_{k}^{T} = -2p_{k}(A + p_{k}I)^{-1}BB^{T}(A + p_{k}I)^{-T} + (A + p_{k}I)^{-1}(A - p_{k}I)Z_{k-1}Z_{k-1}^{T}(A - p_{k}I)^{T}(A + p_{k}I)^{-T}$$

... --> low-rank Cholesky factor ADI

[Penzl '97/'00, Li/White '99/'02, B./Li/Penzl '99/'08, Gugercin/Sorensen/Antoulas '03]

Solving Large-Scale Matrix Equations

Numerical Methods for Solving Lyapunov Equations

$$Z_k = [\sqrt{-2p_k}(A + p_k I)^{-1}B, (A + p_k I)^{-1}(A - p_k I)Z_{k-1}]$$

[Penzl '00]

Observing that $(A - p_i I)$, $(A + p_k I)^{-1}$ commute, we rewrite $Z_{k_{\text{max}}}$ as

$$Z_{k_{\max}} = [z_{k_{\max}}, P_{k_{\max}-1}z_{k_{\max}}, P_{k_{\max}-2}(P_{k_{\max}-1}z_{k_{\max}}), \dots, P_1(P_2 \cdots P_{k_{\max}-1}z_{k_{\max}})],$$

[Li/White '02]

where

$$z_{k_{\text{max}}} = \sqrt{-2p_{k_{\text{max}}}}(A + p_{k_{\text{max}}}I)^{-1}B$$

and

$$P_i := \frac{\sqrt{-2p_i}}{\sqrt{-2p_{i+1}}} \left[I - (p_i + p_{i+1})(A + p_i I)^{-1} \right].$$

Solving Large-Scale Matrix Equations

Numerical Methods for Solving Lyapunov Equations

$$Z_k = [\sqrt{-2p_k}(A + p_k I)^{-1}B, (A + p_k I)^{-1}(A - p_k I)Z_{k-1}]$$

[Penzl '00]

Observing that $(A - p_i I)$, $(A + p_k I)^{-1}$ commute, we rewrite $Z_{k_{\text{max}}}$ as

$$Z_{k_{\text{max}}} = [z_{k_{\text{max}}}, \ P_{k_{\text{max}}-1}z_{k_{\text{max}}}, \ P_{k_{\text{max}}-2}(P_{k_{\text{max}}-1}z_{k_{\text{max}}}), \ \dots, \ P_1(P_2 \cdots P_{k_{\text{max}}-1}z_{k_{\text{max}}})],$$

[Li/White '02]

where

$$z_{k_{\text{max}}} = \sqrt{-2p_{k_{\text{max}}}} (A + p_{k_{\text{max}}} I)^{-1} B$$

and

$$P_i := \frac{\sqrt{-2p_i}}{\sqrt{-2p_{i+1}}} \left[I - (p_i + p_{i+1})(A + p_i I)^{-1} \right].$$

Algorithm [Penzl '97/'00, Li/White '99/'02, B. 04, B./Li/Penzl '99/'08]

$$V_1 \leftarrow \sqrt{-2\operatorname{re} p_1}(A+p_1I)^{-1}B, \quad Z_1 \leftarrow V_1$$

FOR $k=2,3,\ldots$

$$V_k \leftarrow \sqrt{\frac{\operatorname{re} p_k}{\operatorname{re} p_{k-1}}} \left(V_{k-1} - (p_k + \overline{p_{k-1}})(A+p_kI)^{-1}V_{k-1}\right)$$

$$Z_k \leftarrow \left[\begin{array}{cc} Z_{k-1} & V_k \end{array}\right]$$

$$Z_k \leftarrow \operatorname{rrlq}(Z_k,\tau) \quad \text{column compression}$$

At convergence, $Z_{k_{\text{max}}}Z_{k_{\text{max}}}^T \approx X$, where (without column compression)

$$Z_{k_{\max}} = \left[\begin{array}{ccc} V_1 & \dots & V_{k_{\max}} \end{array} \right], \quad V_k = \left[\begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \end{array} \right]$$

Note: Implementation in real arithmetic possible by combining two steps [B./Li/Penzl '99/'08] or using new idea employing the relation of 2 consecutive complex factors [B./Kürschner/Saak '11].

Lyapunov equation $0 = AX + XA^T + BB^T$.

Algorithm [Penzl '97/'00, Li/White '99/'02, B. 04, B./Li/Penzl '99/'08]

$$V_1 \leftarrow \sqrt{-2\operatorname{re} p_1}(A+p_1I)^{-1}B, \quad Z_1 \leftarrow V_1$$

FOR $k=2,3,\ldots$

$$V_k \leftarrow \sqrt{\frac{\operatorname{re} p_k}{\operatorname{re} p_{k-1}}} \left(V_{k-1} - (p_k + \overline{p_{k-1}})(A+p_kI)^{-1}V_{k-1}\right)$$

$$Z_k \leftarrow \left[\begin{array}{cc} Z_{k-1} & V_k \end{array}\right]$$

$$Z_k \leftarrow \operatorname{rrlq}(Z_k,\tau) \quad \text{column compression}$$

At convergence, $Z_{k_{\text{max}}} Z_{k_{\text{max}}}^T \approx X$, where (without column compression)

$$Z_{k_{\max}} = \begin{bmatrix} V_1 & \dots & V_{k_{\max}} \end{bmatrix}, \quad V_k = \begin{bmatrix} \in \mathbb{C}^{n \times m}. \end{bmatrix}$$

Note: Implementation in real arithmetic possible by combining two steps [B./Li/Penzl '99/'08] or using new idea employing the relation of 2 consecutive complex factors [B./Kürschner/Saak '11].

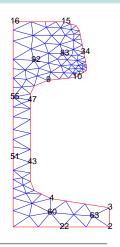
Optimal Cooling of Steel Profiles

 Mathematical model: boundary control for linearized 2D heat equation.

$$c \cdot \rho \frac{\partial}{\partial t} x = \lambda \Delta x, \quad \xi \in \Omega$$
$$\lambda \frac{\partial}{\partial n} x = \kappa (u_k - x), \quad \xi \in \Gamma_k, \ 1 \le k \le 7,$$
$$\frac{\partial}{\partial n} x = 0, \quad \xi \in \Gamma_7.$$

$$\implies m = 7, q = 6.$$

FEM Discretization, different models for initial mesh (n = 371),
 1, 2, 3, 4 steps of mesh refinement ⇒ n = 1357, 5177, 20209, 79841.



Source: Physical model: courtesy of Mannesmann/Demag.

Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, Saak 2003.

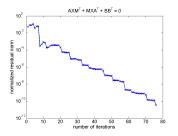
Numerical Results for ADI

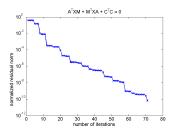
Optimal Cooling of Steel Profiles

Solve dual Lyapunov equations needed for balanced truncation, i.e.,

$$APM^{T} + MPA^{T} + BB^{T} = 0, \quad A^{T}QM + M^{T}QA + C^{T}C = 0,$$
 for $n = 79.841$.

- 25 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude, no column compression performed.
- No factorization of mass matrix required.
- Computations done on Core2Duo at 2.8GHz with 3GB RAM and 32Bit-MATLAB.





CPU times: 626 / 356 sec.

Scaling / Mesh Independence

Computations by Martin Köhler '10

- $A \in \mathbb{R}^{n \times n} \equiv \text{FDM}$ matrix for 2D heat equation on $[0, 1]^2$ (LYAPACK benchmark demo_11, m = 1).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

Scaling / Mesh Independence

Computations by Martin Köhler '10

- $A \in \mathbb{R}^{n \times n} \equiv \text{FDM}$ matrix for 2D heat equation on $[0, 1]^2$ (LYAPACK benchmark demo_11, m = 1).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

CPII Times

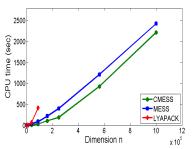
n	M.E.S.S. ¹ (C)	LyaPack	M.E.S.S. (MATLAB)
100	0.023	0.124	0.158
625	0.042	0.104	0.227
2,500	0.159	0.702	0.989
10,000	0.965	6.22	5.644
40,000	11.09	71.48	34.55
90,000	34.67	418.5	90.49
160,000	109.3	out of memory	219.9
250,000	193.7	out of memory	403.8
562,500	930.1	out of memory	1216.7
1,000,000	2220.0	out of memory	2428.6

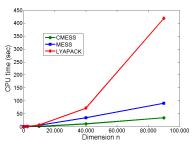
Numerical Results for ADI

Scaling / Mesh Independence

Computations by Martin Köhler '10

- $A \in \mathbb{R}^{n \times n} \equiv \text{FDM}$ matrix for 2D heat equation on $[0,1]^2$ (LYAPACK benchmark demo_11, m=1).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).





Note: for n=1,000,000, first sparse LU needs $\sim 1,100$ sec., using UMFPACK this reduces to 30 sec.

Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

- © Compute orthonormal basis range (Z), $Z \in \mathbb{R}^{n \times r}$, for subspace $Z \subset \mathbb{R}^n$, dim Z = r.
- Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^T + \hat{B}\hat{B}^T = 0$.
- ① Use $X \approx Z\hat{X}Z^T$.

Examples:

• Krylov subspace methods, i.e., for m = 1:

$$\mathcal{Z} = \mathcal{K}(A, B, r) = \operatorname{span}\{B, AB, A^2B, \dots, A^{r-1}B\}$$

[Saad '90, Jaimoukha/Kasenally '94, Jbilou '02-'08].

• K-PIK [SIMONCINI '07],

$$\mathcal{Z} = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).$$

• Rational Krylov [Druskin/Simoncini '11] (→ exercises).

Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

- © Compute orthonormal basis range (Z), $Z \in \mathbb{R}^{n \times r}$, for subspace $Z \subset \mathbb{R}^n$, dim Z = r.
- Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^T + \hat{B}\hat{B}^T = 0$.
- Use $X \approx Z\hat{X}Z^T$.

Examples:

• Krylov subspace methods, i.e., for m = 1:

$$\mathcal{Z} = \mathcal{K}(A, B, r) = \operatorname{span}\{B, AB, A^2B, \dots, A^{r-1}B\}$$

[Saad '90, Jaimoukha/Kasenally '94, Jbilou '02-'08].

• K-PIK [Simoncini '07],

$$\mathcal{Z} = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).$$

• Rational Krylov [Druskin/Simoncini '11] (→ exercises).

Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

- © Compute orthonormal basis range (Z), $Z \in \mathbb{R}^{n \times r}$, for subspace $Z \subset \mathbb{R}^n$, dim Z = r.
- Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^T + \hat{B}\hat{B}^T = 0$.
- ① Use $X \approx Z\hat{X}Z^T$.

Examples:

• Krylov subspace methods, i.e., for m = 1:

$$\mathcal{Z} = \mathcal{K}(A, B, r) = \operatorname{span}\{B, AB, A^2B, \dots, A^{r-1}B\}$$

[SAAD '90, JAIMOUKHA/KASENALLY '94, JBILOU '02-'08].

• K-PIK [SIMONCINI '07],

$$\mathcal{Z} = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).$$

• Rational Krylov [Druskin/Simoncini '11] (→ exercises).

Lyapunov equation $0 = AX + XA^T + BB^T$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

- © Compute orthonormal basis range (Z), $Z \in \mathbb{R}^{n \times r}$, for subspace $Z \subset \mathbb{R}^n$, dim Z = r.
- Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^T + \hat{B}\hat{B}^T = 0$.
- Use $X \approx Z\hat{X}Z^T$.

Examples:

• ADI subspace [B./R.-C. LI/TRUHAR '08]:

$$\mathcal{Z} = \operatorname{colspan} \left[\begin{array}{ccc} V_1, & \dots, & V_r \end{array} \right].$$

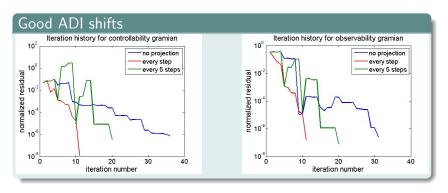
Note:

- ADI subspace is rational Krylov subspace [J.-R. LI/WHITE '02].
- Similar approach: ADI-preconditioned global Arnoldi method [JBILOU '08].

Numerical Methods for Solving Lyapunov Equations Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- n = 20,209, m = 7, q = 6.

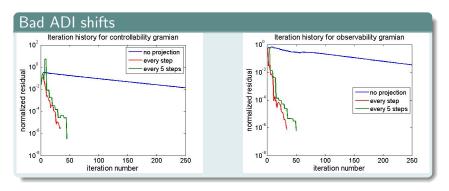


CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Numerical Methods for Solving Lyapunov Equations Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- n = 20,209, m = 7, q = 6.

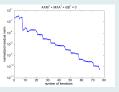


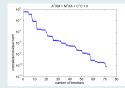
CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Numerical Methods for Solving Lyapunov Equations

Numerical examples for Galerkin-ADI: optimal cooling of rail profiles, n = 79,841.

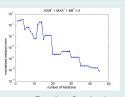
M.E.S.S. w/o Galerkin projection and column compression

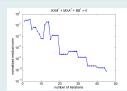




Rank of solution factors: 532 / 426

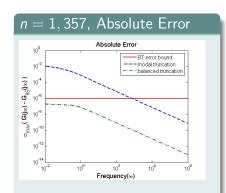
M.E.S.S. with Galerkin projection and column compression





Rank of solution factors: 269 / 205

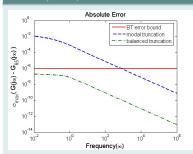
Numerical example for BT: Optimal Cooling of Steel Profiles



- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

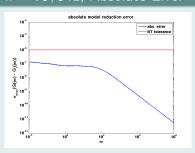
Numerical example for BT: Optimal Cooling of Steel Profiles

n = 1,357, Absolute Error



- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

n = 79,841, Absolute Error



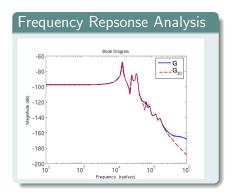
- BT model computed using M.E.S.S. in MATLAB,
- dualcore, computation time:<10 min.

Numerical example for BT: Microgyroscope (Butterfly Gyro)

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
 - \rightarrow n = 34,722, m = 1, q = 12.
- Reduced model computed using SPARED, r = 30.

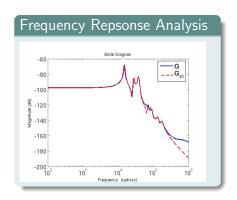
Numerical example for BT: Microgyroscope (Butterfly Gyro)

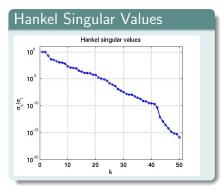
- Reduced model computed using SPARED, r = 30.



Numerical example for BT: Microgyroscope (Butterfly Gyro)

- Reduced model computed using SPARED, r = 30.





Theory [Lancaster/Rodman '95]

Theorem

Consider the (continuous-time) algebraic Riccati equation (ARE)

$$0 = \mathcal{R}(X) = C^T C + A^T X + XA - XBB^T X,$$

with $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{q \times n}$, (A, B) stabilizable, (A, C) detectable. Then:

- (a) There exists a unique stabilizing $X_* \in \{X \in \mathbb{R}^{n \times n} \mid \mathcal{R}(X) = 0\}$, i.e., $\Lambda(A BB^T X_*) \in \mathbb{C}^-$.
- (b) $X_* = X_*^T \ge 0$ and $X_* \ge X$ for all $X \in \{X \in \mathbb{R}^{n \times n} \mid \mathcal{R}(X) = 0\}$.
- (c) If (A, C) observable, then $X_* > 0$.
- (d) span $\left\{ \begin{bmatrix} I_n \\ -X_* \end{bmatrix} \right\}$ is the unique invariant subspace of the Hamiltonian matrix

$$H = \left[\begin{array}{cc} A & BB^T \\ C^T C & -A^T \end{array} \right]$$

corresponding to $\Lambda(H) \cap \mathbb{C}^-$.

Numerical Methods [Bini/lannazzo/Meini '12]

Numerical Methods (incomplete list)

- Invariant subspace methods (→ eigenproblem for Hamiltonian matrix):
 - Schur vector method (care) [LAUB '79]
 - Hamiltonian SR algorithm [Bunse-Gerstner/Mehrmann '86]
 - Symplectic URV-based method

[B./Mehrmann/Xu '97/'98, Chu/Liu/Mehrmann '07]

- Spectral projection methods
 - Sign function method [ROBERTS '71, BYERS '87]
 - Disk function method [Bai/Demmel/Gu '94, B. '97]
- (rational, global) Krylov subspace techniques
 [JAIMOUKHA/KASENALLY '94, JBILOU '03/'06, HEYOUNI/JBILOU '09]
- Newton's method
 - Kleinman iteration [Kleinman '68]
 - Line search acceleration [B./Byers '98]
 - Newton-ADI [B./J.-R. LI/PENZL '99/'08]
 - Inexact Newton [Feitzinger/Hylla/Sachs '09]

Newton's Method for AREs

[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

- Consider $0 = \mathcal{R}(X) = C^T C + A^T X + XA XBB^T X$.
- Frechét derivative of $\mathcal{R}(X)$ at X:

$$\mathcal{R}_{\mathbf{X}}^{'}: \mathbf{Z} \to (\mathbf{A} - \mathbf{B}\mathbf{B}^{\mathsf{T}}\mathbf{X})^{\mathsf{T}}\mathbf{Z} + \mathbf{Z}(\mathbf{A} - \mathbf{B}\mathbf{B}^{\mathsf{T}}\mathbf{X}).$$

Newton-Kantorovich method:

$$X_{j+1} = X_j - \left(\mathcal{R}'_{X_j}\right)^{-1} \mathcal{R}(X_j), \quad j = 0, 1, 2, \dots$$

Newton's method (with line search) for AREs

FOR j = 0, 1, ...

- ② Solve the Lyapunov equation $A_i^T N_j + N_j A_j = -\mathcal{R}(X_j)$.
- $3 X_{j+1} \leftarrow X_j + t_j N_j.$

FND FOR i

Newton's Method for AREs

[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

- Consider $0 = \mathcal{R}(X) = C^T C + A^T X + XA XBB^T X$.
- Frechét derivative of $\mathcal{R}(X)$ at X:

$$\mathcal{R}_{X}^{'}: Z \to (A - BB^{T}X)^{T}Z + Z(A - BB^{T}X).$$

Newton-Kantorovich method:

$$X_{j+1} = X_j - \left(\mathcal{R}'_{X_j}\right)^{-1} \mathcal{R}(X_j), \quad j = 0, 1, 2, \dots$$

Newton's method (with line search) for AREs

FOR j = 0, 1, ...

- ② Solve the Lyapunov equation $A_i^T N_j + N_j A_j = -\mathcal{R}(X_j)$.

END FOR i

Newton's Method for AREs

[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

- Consider $0 = \mathcal{R}(X) = C^T C + A^T X + XA XBB^T X$.
- Frechét derivative of $\mathcal{R}(X)$ at X:

$$\mathcal{R}_{\mathbf{X}}^{'}: Z \to (A - BB^{T}X)^{T}Z + Z(A - BB^{T}X).$$

Newton-Kantorovich method:

$$X_{j+1} = X_j - \left(\mathcal{R}'_{X_j}\right)^{-1} \mathcal{R}(X_j), \quad j = 0, 1, 2, \dots$$

Newton's method (with line search) for AREs

FOR j = 0, 1, ...

- ② Solve the Lyapunov equation $A_i^T N_j + N_j A_j = -\mathcal{R}(X_j)$.

END FOR i

Newton's Method for AREs

[Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

- Consider $0 = \mathcal{R}(X) = C^T C + A^T X + XA XBB^T X$.
- Frechét derivative of $\mathcal{R}(X)$ at X:

$$\mathcal{R}_{\mathbf{X}}^{'}: Z \to (A - BB^{T}X)^{T}Z + Z(A - BB^{T}X).$$

Newton-Kantorovich method:

$$X_{j+1} = X_j - \left(\mathcal{R}'_{X_j}\right)^{-1} \mathcal{R}(X_j), \quad j = 0, 1, 2, \dots$$

Newton's method (with line search) for AREs

FOR j = 0, 1, ...

- ② Solve the Lyapunov equation $A_i^T N_j + N_j A_j = -\mathcal{R}(X_j)$.

END FOR i

Newton's Method for AREs

Properties and Implementation

- Convergence for K_0 stabilizing:
 - $A_i = A BK_i = A BB^T X_i$ is stable $\forall j \geq 0$.
 - $\lim_{i\to\infty} \|\mathcal{R}(X_i)\|_F = 0$ (monotonically).
 - $\lim_{i\to\infty} X_i = X_* \ge 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_i:

$$A_j = A - B \cdot K_j$$
 $= \text{sparse} - m \cdot$

• $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$(A-BK_j+\rho_k^{(j)}I)^{-1}=(I_n+(A+\rho_k^{(j)}I)^{-1}B(I_m-K_j(A+\rho_k^{(j)}I)^{-1}B)^{-1}K_j)(A+\rho_k^{(j)}I)^{-1}.$$

Newton's Method for AREs

Properties and Implementation

- Convergence for K_0 stabilizing:
 - $A_i = A BK_i = A BB^T X_i$ is stable $\forall j \geq 0$.
 - $\lim_{i\to\infty} \|\mathcal{R}(X_i)\|_F = 0$ (monotonically).
 - $\lim_{j\to\infty} X_j = X_* \ge 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_i :

$$A_j = A - B \cdot K_j$$

$$= sparse - m \cdot sparse$$

• $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$(A-BK_j+\rho_k^{(j)}I)^{-1}=(I_n+(A+\rho_k^{(j)}I)^{-1}B(I_m-K_j(A+\rho_k^{(j)}I)^{-1}B)^{-1}K_j)(A+\rho_k^{(j)}I)^{-1}.$$

Newton's Method for AREs

Properties and Implementation

- Convergence for K_0 stabilizing:
 - $A_i = A BK_i = A BB^T X_i$ is stable $\forall j \geq 0$.
 - $\lim_{i\to\infty} \|\mathcal{R}(X_i)\|_F = 0$ (monotonically).
 - $\lim_{i\to\infty} X_i = X_* \ge 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_i:

$$A_j = A - B \cdot K_j$$

$$= sparse - m \cdot sparse$$

 m ≪ n ⇒ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$(A - BK_j + p_k^{(j)}I)^{-1} = (I_n + (A + p_k^{(j)}I)^{-1}B(I_m - K_j(A + p_k^{(j)}I)^{-1}B)^{-1}K_j)(A + p_k^{(j)}I)^{-1}.$$

Properties and Implementation

- Convergence for K_0 stabilizing:
 - $A_i = A BK_i = A BB^T X_i$ is stable $\forall i > 0$.
 - $\lim_{i\to\infty} \|\mathcal{R}(X_i)\|_F = 0$ (monotonically).
 - $\lim_{i\to\infty} X_i = X_* \ge 0$ (locally quadratic).
- Need large-scale Lyapunov solver; here, ADI iteration: linear systems with dense, but "sparse+low rank" coefficient matrix A_i :

$$A_j = A - B \cdot K_j$$

$$= \left[\text{sparse} \right] - \left[m \right] \cdot \left[\right]$$

• $m \ll n \Longrightarrow$ efficient "inversion" using Sherman-Morrison-Woodbury formula:

$$(A - BK_j + p_k^{(j)}I)^{-1} = (I_n + (A + p_k^{(j)}I)^{-1}B(I_m - K_j(A + p_k^{(j)}I)^{-1}B)^{-1}K_j)(A + p_k^{(j)}I)^{-1}.$$

Low-Rank Newton-ADI for AREs

Re-write Newton's method for AREs

$$A_{j}^{T} N_{j} + N_{j} A_{j} = -\mathcal{R}(X_{j})$$

$$\iff$$

$$A_{j}^{T} \underbrace{(X_{j} + N_{j})}_{=X_{j+1}} + \underbrace{(X_{j} + N_{j})}_{=X_{j+1}} A_{j} = \underbrace{-C^{T}C - X_{j}BB^{T}X_{j}}_{=:-W_{j}W_{j}^{T}}$$

$$\text{Set } X_{j} = Z_{j}Z_{j}^{T} \text{ for } \operatorname{rank}(Z_{j}) \ll n \Longrightarrow$$

$$A_{j}^{T} \underbrace{(Z_{j+1}Z_{j+1}^{T})}_{=:-W_{j}W_{j}^{T}} + \underbrace{(Z_{j+1}Z_{j+1}^{T})}_{=:-W_{j}W_{j}^{T}} A_{j} = -W_{j}W_{j}^{T}$$

Factored Newton Iteration [B./Li/Penzl 1999/2008]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_i .

Low-Rank Newton-ADI for AREs

Re-write Newton's method for AREs

$$A_{j}^{T} N_{j} + N_{j} A_{j} = -\mathcal{R}(X_{j})$$

$$\iff$$

$$A_{j}^{T} \underbrace{(X_{j} + N_{j})}_{=X_{j+1}} + \underbrace{(X_{j} + N_{j})}_{=X_{j+1}} A_{j} = \underbrace{-C^{T}C - X_{j}BB^{T}X_{j}}_{=:-W_{j}W_{j}^{T}}$$

$$\text{Set } X_{j} = Z_{j}Z_{j}^{T} \text{ for } \operatorname{rank}(Z_{j}) \ll n \Longrightarrow$$

$$A_{j}^{T} (Z_{j+1}Z_{j+1}^{T}) + (Z_{j+1}Z_{j+1}^{T}) A_{j} = -W_{j}W_{j}^{T}$$

Factored Newton Iteration [B./Li/Penzl 1999/2008]

Solve Lyapunov equations for Z_{i+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_i .

Feedback Iteration

Optimal feedback

$$K_* = B^T X_* = B^T Z_* Z_*^T$$

can be computed by direct feedback iteration:

• *j*th Newton iteration:

$$K_j = B^T Z_j Z_j^T = \sum_{k=1}^{k_{\mathsf{max}}} (B^T V_{j,k}) V_{j,k}^T \quad \xrightarrow{j \to \infty} \quad K_* = B^T Z_* Z_*^T$$

• K_j can be updated in ADI iteration, no need to even form Z_j , need only fixed workspace for $K_j \in \mathbb{R}^{m \times n}$!

Related to earlier work by [Banks/Ito 1991].

Galerkin-Newton-ADI

Basic ideas

- Hybrid method of Galerkin projection methods for AREs
 [Jaimoukha/Kasenally '94, Jbilou '06, Heyouni/Jbilou '09]
 and Newton-ADI, i.e., use column space of current Newton iterate
 for projection, solve projected ARE, and prolongate.

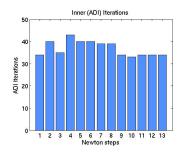
Galerkin-Newton-ADI

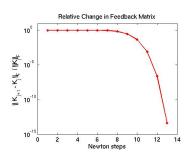
Basic ideas

- Hybrid method of Galerkin projection methods for AREs
 [JAIMOUKHA/KASENALLY '94, JBILOU '06, HEYOUNI/JBILOU '09]
 and Newton-ADI, i.e., use column space of current Newton iterate
 for projection, solve projected ARE, and prolongate.

LQR Problem for 2D Geometry

- Linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- FD discretization on uniform 150×150 grid.
- n = 22.500, m = p = 1, 10 shifts for ADI iterations.
- Convergence of large-scale matrix equation solvers:





Newton-ADI vs. Newton-ADI-Gelerkin

- FDM for 2D heat/convection-diffusion equations on $[0,1]^2$ (LYAPACK benchmarks, m=p=1) \leadsto symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, n=10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.

- FDM for 2D heat/convection-diffusion equations on $[0,1]^2$ (LYAPACK benchmarks, m=p=1) \leadsto symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, n=10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI

step)	rel. change	rel. residual	ADI
1		1	9.99e-01	200
2		9.99e-01	3.41e+01	23
3		5.25e-01	6.37e+00	20
4		5.37e-01	1.52e+00	20
5		7.03e-01	2.64e-01	23
6	,	5.57e-01	1.56e-02	23
7		6.59e-02	6.30e-05	23
8		4.02e-04	9.68e-10	23
9)	8.45e-09	1.09e-11	23
10)	1.52e–14	1.09e-11	23

Newton-ADI vs. Newton-ADI-Gelerkin

- FDM for 2D heat/convection-diffusion equations on $[0,1]^2$ (LYAPACK benchmarks, m=p=1) \leadsto symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, n=10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI

step	rel. change	rel. residual	ADI
1	1	9.99e-01	200
2	9.99e-01	3.41e+01	23
3	5.25e-01	6.37e+00	20
4	5.37e-01	1.52e+00	20
5	7.03e-01	2.64e-01	23
6	5.57e-01	1.56e-02	23
7	6.59e-02	6.30e-05	23
8	4.02e-04	9.68e-10	23
9	8.45e-09	1.09e-11	23
10	1.52e–14	1.09e-11	23

76.9 sec

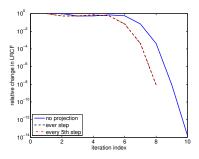
CPU time.

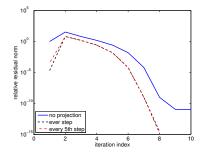
Newton-Galerkin-ADI

ste)	rel. change	rel. residual	ADI
	Ĺ	1	3.56e-04	20
- 2	2	5.25e-01	6.37e+00	10
3	3	5.37e-01	1.52e+00	6
4	1	7.03e-01	2.64e-01	10
į	5	5.57e-01	1.57e-02	10
(ŝ	6.59e-02	6.30e-05	10
	7	4.03e-04	9.79e-10	10
8	3	8.45e-09	1.43e-15	10

CPU time: 38.0 sec

- FDM for 2D heat/convection-diffusion equations on $[0,1]^2$ (LYAPACK benchmarks, m=p=1) \leadsto symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, n=10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.





Newton-ADI vs. Newton-ADI-Gelerkin

- FDM for 2D heat/convection-diffusion equations on $[0,1]^2$ (LYAPACK benchmarks, m=p=1) \leadsto symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, n=10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI			
step	rel. change	rel. residual	ADI
1	1	9.99e-01	200
2	9.99e-01	3.56e+01	60
3	3.11e-01	3.72e+00	39
4	2.88e-01	9.62e-01	40
5	3.41e-01	1.68e-01	45
6	1.22e-01	5.25e-03	42
7	3.88e-03	2.96e-06	47
8	2.30e-06	6.09e-13	47
	CPU time:	185.9 sec.	

- FDM for 2D heat/convection-diffusion equations on $[0,1]^2$ (LYAPACK benchmarks, m=p=1) \leadsto symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, n=10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.

Newton-ADI

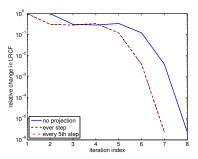
step	rel. change	rel. residual	ADI
1	1	9.99e-01	200
2	9.99e-01	3.56e+01	60
3	3.11e-01	3.72e+00	39
4	2.88e-01	9.62e-01	40
5	3.41e-01	1.68e-01	45
6	1.22e-01	5.25e-03	42
7	3.88e-03	2.96e-06	47
8	2.30e-06	6.09e-13	47
	CPU time:	185.9 sec.	

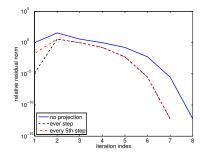
Newton-Galerkin-ADI

step	rel. change	rel. residual	ADI it.
1	1	1.78e-02	35
2	3.11e-01	3.72e+00	15
3	2.88e-01	9.62e-01	20
4	3.41e-01	1.68e-01	15
5	1.22e-01	5.25e-03	20
6	3.89e-03	2.96e-06	15
7	2.30e-06	6.14e-13	20
		ı	•

CPU time: 75.7 sec.

- FDM for 2D heat/convection-diffusion equations on $[0,1]^2$ (LYAPACK benchmarks, m=p=1) \leadsto symmetric/nonsymmetric $A \in \mathbb{R}^{n \times n}$, n=10,000.
- 15 shifts chosen by Penzl's heuristic from 50/25 Ritz/harmonic Ritz values of A.
- Computations using Intel Core 2 Quad CPU of type Q9400 at 2.66GHz with 4 GB RAM and 64Bit-MATLAB.





Example: LQR Problem for 3D Geometry

Control problem for 3d Convection-Diffusion Equation

- FDM for 3D convection-diffusion equation on [0, 1]³
- proposed in [Simoncini '07], q = p = 1
- non-symmetric $A \in \mathbb{R}^{n \times n}$, n = 10648

Test system:

INTEL Xeon 5160 3.00GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS; stopping tolerance: 10⁻¹⁰

Example: LQR Problem for 3D Geometry

Newton-ADI

NWT	rel. change	rel. residual	ADI
1	$1.0 \cdot 10^{0}$	$9.3 \cdot 10^{-01}$	100
2	$3.7 \cdot 10^{-02}$	$9.6 \cdot 10^{-02}$	94
3	$1.4 \cdot 10^{-02}$	$1.1 \cdot 10^{-03}$	98
4	$3.5 \cdot 10^{-04}$	$1.0 \cdot 10^{-07}$	97
5	$6.4 \cdot 10^{-08}$	$1.3 \cdot 10^{-10}$	97
6	$7.5 \cdot 10^{-16}$	$1.3 \cdot 10^{-10}$	97

CPU time: 4805.8 sec.

NG-ADI inner = 5, outer = 1

		rel. residual	
1	$1.0 \cdot 10^{0}$	$5.0 \cdot 10^{-11}$	80
		: 497.6 sec.	

NG-ADI inner = 1, outer = 1

NWT		rel. residual	ADI
1	$1.0 \cdot 10^{0}$	$7.4 \cdot 10^{-11}$	71
CPU time: 856.6 sec.			

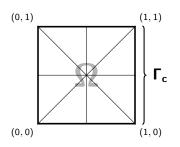
NG-ADI inner=0, outer=1

	NWT	rel. change	rel. residual	ADI
ĺ	1	$1.0 \cdot 10^{0}$	$6.5 \cdot 10^{-13}$	100
CPU time: 506.6 sec.				

Test system:

INTEL Xeon 5160 3.00GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS; stopping tolerance: 10⁻¹⁰

Scaling of CPU times / Mesh Independence



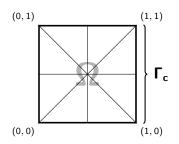
$$\begin{split} \partial_t x(\xi,t) &= \Delta x(\xi,t) &&\text{in } \Omega \\ \partial_\nu x &= b(\xi) \cdot u(t) - x &&\text{on } \Gamma_c \\ \partial_\nu x &= -x &&\text{on } \partial\Omega \setminus \Gamma_c \\ x(\xi,0) &= 1 \end{split}$$

Note:

Here $b(\xi) = 4(1-\xi_2)\xi_2$ for $\xi \in \Gamma_c$ and 0 otherwise, thus $\forall t \in \mathbb{R}_{>0}$, we have $u(t) \in \mathbb{R}$.

$$\Rightarrow B_h = M_{\Gamma,h} \cdot b.$$

Scaling of CPU times / Mesh Independence



$$\partial_t x(\xi, t) = \Delta x(\xi, t)$$
 in Ω

$$\partial_\nu x = b(\xi) \cdot u(t) - x$$
 on Γ_c

$$\partial_\nu x = -x$$
 on $\partial\Omega \setminus \Gamma_c$

$$x(\xi, 0) = 1$$

Consider: output equation y = Cx, where

$$\begin{array}{ccc} C: \mathcal{L}^2(\Omega) & \to \mathbb{R} \\ x(\xi,t) & \mapsto y(t) = \int_{\Omega} x(\xi,t) \, d\xi \end{array} \Rightarrow C_h = \underline{1} \cdot M_h.$$

RatInt Balanced Truncation Matrix Equations

Numerical Results

Scaling of CPU times / Mesh Independence

Simplified Low Rank Newton-Galerkin ADI

- generalized state space form implementation
- Penzl shifts (16/50/25) with respect to initial matrices
- projection acceleration in every outer iteration step
- projection acceleration in every 5-th inner iteration step

Test system:

INTEL Xeon 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS,

stopping criterion tolerances: 10^{-10}

Computation Times

discretization level	problem size	time in seconds
3	81	$4.87 \cdot 10^{-2}$
4	289	$2.81 \cdot 10^{-1}$
5	1 089	$5.87 \cdot 10^{-1}$
6	4 225	2.63
7	16 641	$2.03 \cdot 10^{+1}$
8	66 049	$1.22 \cdot 10^{+2}$
9	263 169	$1.05 \cdot 10^{+3}$
10	1 050 625	$1.65 \cdot 10^{+4}$
11	4 198 401	$1.35 \cdot 10^{+5}$

Test system:

INTEL Xeon 5160 @ 3.00 GHz; 16 GB RAM; 64Bit-MATLAB (R2010a) using threaded BLAS,

stopping criterion tolerances: 10^{-10}

Solving Large-Scale Matrix Equations

Software

Lyapack [Penzl 2000]

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

Software

Lyapack [Penzl 2000]

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. – Matrix Equations Sparse Solvers

[B./Köhler/Saak '08-]

- Extended and revised version of LYAPACK.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- C and MATLAB versions.

Software

Lyapack [Penzl 2000]

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. – Matrix Equations Sparse Solvers

[B./Köhler/Saak '08–]

- Extended and revised version of LYAPACK.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
 - new ADI parameter selection
 - column compression based on RRQR,
 - more efficient use of direct solvers
 - treatment of generalized systems without factorization of the mass matrix
 - new ADI versions avoiding complex arithmetic etc.
- C and MATLAB versions.

Software

Lyapack [Penzl 2000]

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. – Matrix Equations Sparse Solvers

[B./Köhler/Saak '08–]

- Extended and revised version of LYAPACK.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
 - new ADI parameter selection,
 - column compression based on RRQR,
 - more efficient use of direct solvers,
 - treatment of generalized systems without factorization of the mass matrix,
 - new ADI versions avoiding complex arithmetic etc.
- C and MATLAB versions.

- Extensions to bilinear and stochastic systems.
- Rational interpolation methods for nonlinear systems.
- Other MOR techniques like POD, RB.
- MOR methods for discrete-time systems.
- Extensions to descriptor systems $E\dot{x} = Ax + Bu$, E singular.
- Parametric model reduction:

$$\dot{x} = A(p)x + B(p)u, \quad y = C(p)x,$$

where $p \in \mathbb{R}^d$ is a free parameter vector; parameters should be preserved in the reduced-order model.

Further Reading — Model Order Reduction

- G. Obinata and B.D.O. Anderson. Model Reduction for Control System Design. Springer-Verlag, London, UK, 2001.
- Z. Bai.
 Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems.
 APPL. NUMER. MATH, 43(1–2):9–44, 2002.
 - R. Freund. Model reduction methods based on Krylov subspaces. ACTA NUMERICA, 12:267–319, 2003.
- P. Benner, E.S. Quintana-Ortí, and G. Quintana-Ortí. State-space truncation methods for parallel model reduction of large-scale systems. PARALLEL COMPUT., 29:1701–1722, 2003.
- P. Benner, V. Mehrmann, and D. Sorensen (editors).

 Dimension Reduction of Large-Scale Systems.

 LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING, Vol. 45,
- A.C. Antoulas. Lectures on the Approximation of Large-Scale Dynamical Systems. SIAM Publications, Philadelphia, PA, 2005.
- P. Benner, R. Freund, D. Sorensen, and A. Varga (editors). Special issue on Order Reduction of Large-Scale Systems.
- W.H.A. Schilders, H.A. van der Vorst, and J. Rommes (editors). Model Order Reduction: Theory, Research Aspects and Applications. MATHEMATICS IN INDUSTRY, Vol. 13, Springer-Verlag, Berlin/Heidelberg, 2008.
- P. Benner, J. ter Maten, and M. Hinze (editors). Model Reduction for Circuit Simulation. LECTURE NOTES IN ELECTRICAL ENGINEERING, Vol. 74, Springer-Verlag, Dordrecht, 2011.

96/96

Further Reading — Matrix Equations

V. Mehrmann.

The Autonomous Linear Quadratic Control Problem. Theory and Numerical Solution.

Number 163 in Lecture Notes in Control and Information Sciences. Springer-Verlag, Heidelberg, July 1991.

P. Lancaster and L. Rodman. The Algebraic Riccati Equation.

Oxford University Press, Oxford, 1995.

P. Benner.

Computational methods for linear-quadratic optimization

RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, Supplemento, Serie II, 58:21-56, 1999.

T. Penzl.

LYAPACK Users Guide.

Fechnical Report SFB393/00-33, Sonderforschungsbereich 393 *Numerische Simulation auf massiv parallelen Rechnern*, TU Chemnitz. 09107 Chemnitz. FRG. 2000.

Available from http://www.tu-chemnitz.de/sfb393/sfb00pr.html

6 H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank.

Matrix Riccati Equations in Control and Systems Theory.

rkhäuser, Basel, Switzerland, 2003

P. Benner.

Solving large-scale control problems.

IEEE Control Systems Magazine, 24(1):44-59, 2004.

D. Bini, B. Iannazzo, and B. Meini.

Numerical Solution of Algebraic Riccati Equations.

SIAM, Philadelphia, PA, 2012

P. Benner and J. Saak.

Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey.

GAMM-MITTEILUNGEN, 36(1):32-52, 2013.

V. Simoncini.

Computational methods for linear matrix equations (survey article).

March 2013.

http://www.dm.unibo.it/~simoncin/matrixeq.pdf.