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Chapter 2

Mathematical Basics

2.1 Numerical Linear Algebra

The Singular Value Decomposition

One essential tool from (numerical) linear algebra for data compression and dimension
reduction is the singular value decomposition (SVD) of a matrix. It is related to the four
fundamental subspaces of a matrix. These are the column space (or range), the row space,
the nullspace (or kernel), and the cokernel . The SVD exists for any matrix as the following
theorem shows.

Theorem 2.1 Let A ∈ Rm×n, then there exist orthogonal U ∈ Rm×m and V ∈ Rn×n, such
that

A = UΣV T , Σ =


[

Σ1

0

]
, m ≥ n[

Σ1 0
]
, m ≤ n

and Σ1 =

 σ1
. . .

σmin(m,n)

 (2.1)

with
σ1 ≥ . . . σs > σs+1 = . . . = σmin(m,n) = 0 for s = rank (A) .

Proof: Let x ∈ Rn, y ∈ Rm satisfy Ax = σ1y, σ1 = ‖A‖2 and ‖x‖2 = 1 = ‖y‖2 (∃,
since {‖x‖2 = 1} compact). Complete x and y to orthonormal bases (ONB) of Rn and
Rm, respectively, to obtain orthogonal U ∈ Rm×m with U(:, 1) = y and V ∈ Rn×n with
V (:, 1) = x. It follows

UTAV =

[
σ1 wT

0 B

]
=: A1, (V = [x.v2, . . . , vn], U = [y, u2, . . . , um]).

Now it holds that

‖A1

[
σ1
w

]
‖22 = ‖

[
σ2
1 + wTw
Bw

]
‖22 ≥ (σ2

1 + wTw)2.

3
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As ‖
[
σ1
w

]
‖22 = σ2

1 + wTw we get

‖A1‖22 ≥ σ2
1 + wTw = ‖A‖22 + wTw = ‖A1‖22 + wTw

and hence w = 0. The proof follows inductively by applying the same arguments to B.
(For the rank argument observe that “σ1 = 0 ⇔ A = 0” in the above argument and

‖B‖2 ≤ ‖A‖2 if B is a submatrix of A ⇒ σj ≥ σj+1 and σs+1 = 0.)

Definition 2.2 Let A ∈ Rm×n. The factorization (2.1) is the singular value decomposition
(SVD) of A, the nonnegative numbers σj are its singular values, and the columns of U and
V are the corresponding left and right singular vectors, respectively.

We have the following important observation relating the four fundamental subspaces to
the SVD:

Corollary 2.3 For A ∈ Rm×n we have

a) colspace(A) ≡ range (A) = span{u1, . . . , us},

b) rowspace(A) ≡ range
(
AT
)

= span{v1, . . . , vs},

c) null(A) ≡ ker(A) = span{vs+1, . . . , vn},

d) cokernel(A) ≡ null(AT ) = span{us+1, . . . , um}.

Note that once this result is established, it is trivial to prove the dimension/rank-nullity
theorems:

null(A)⊕ range
(
AT
)

= Rn, (2.2a)

range (A)⊕ null(AT ) = Rm. (2.2b)

Before coming to the key observation which makes the SVD so important in dimension
reduction, we also recall that the SVD is related to matrix norms.

Corollary 2.4 Let A ∈ Rm×n have an SVD as in (2.1). Then

a) ‖A‖F =
√
σ2
1 + . . .+ σ2

s ,

b) ‖A‖2 = σ1 ( = σmax := max{σ ≥ 0, σ singular value ofA} ).

c) If s = min{m,n}, then cond2 (A) = σ1
σs

.

d) If m = n and A is invertible, then ‖A−1‖2 = σn.
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Also note that σmin := min{σ > 0, σ singular value ofA} is the size (measured in the
spectral norm) of the smallest perturbation to make a non-singular (or, more generally,
full-rank) A a singular (or rank-deficient) matrix. A proof of this fact can be deduced from
the following, more general statement, that will be the basis or at least the motivation for
a number of model reduction algorithms in the following.

Theorem 2.5 (Schmidt-Mirsky/Eckart-Young Theorem1) Let A ∈ Rm×n have an
SVD as in (2.1). For k ≤ rank (A), the best rank-k approximation to A in the spectral
norm is given by

Ak :=
k∑
j=1

σjujv
T
j , (2.3)

and the approximation error is

‖A− Ak‖2 = min
rank(B)=k

‖A−B‖2 = σk+1 for k ≤ rank (A) . (2.4)

Proof: See Exercise 1.4.
A particular instance of the above theorem is that A can be exactly represented as

A = As =
s∑
j=1

σjujv
T
j , s = rank (A) ,

In a “thin” SVD this can employed, by, e.g., computing only U1 = [u1, . . . , us ] and/or
V1 = [ v1, . . . , vs ], depending on which of the four subspaces is required, or whether only
the “minimal” representation of A through its singular vectors is required.

Note that the above theorem also holds if the spectral norm is replaced by the Frobenius
or any Schatten-p norm.

Remark 2.6 Also note that the Moore-Penrose pseudoinverse of A, i.e., the unique matrix
A+ = X satisfying

(i) AXA = A,

(ii) XAX = X,

(iii) (AX)T = AX,

(iv) (XA)T = XA,

is given by

A+ = V

[
Σ̂−1 0

0 0

]
UT ,

where Σ̂ = diag {σ1, . . . , σs}. This implies that the (minimum 2-norm) solution of the least
squares problem minx∈Rn ‖b− Ax‖ is x∗ = A+b.

1E. Schmidt 1907, Eckart/Young 1936, Mirsky 1960
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As a motivation for the use of the SVD in dimension reduction/data compression, we
cosnsider the following example:

Example 2.7 MATLAB: Clown, Gatlinburg

Krylov Subspaces

Another important ingredient from numerical linear algebra is the Krylov subspace.

Definition 2.8 Let A ∈ Rn×n, b ∈ Rn, and q ∈ N. The subspace

Kq(A, b) = span{b, Ab,A2b, . . . , Aq−1b} ⊂ Rn (2.5)

is called the Krylov subspace (of order q) corresponding to A, b, while

K(A, b, q) =
[
b, Ab,A2b, . . . , Aq−1b

]
∈ Rn×q

is the corresponding Krylov matrix.

The following result summarizes important properties of Krylov subspaces and correspond-
ing matrices.

Theorem 2.9 Let A ∈ Rn×n be nonsingular, b ∈ Rn and A−1b =: x∗ ∈ Rn be the solution
of the linear system Ax = b. The following statements are equivalent:

a) The vectors b, Ab,A2b, . . . , Akb are linearly dependent.

b) Kk(A, b) = Kk+1(A, b) = Kj(A, b) ∀j > k.

c) Kk(A, b) is an A-invariant subspace, that is AKk(A, b) ⊆ Kk(A, b).

d) x∗ ∈ Kk(A, b).

There is an important relation of Krylov subspaces and matrix decompositions.

Theorem 2.10 Let A ∈ Rn×n, Q ∈ Rn×n orthogonal satisfying

QTAQ = T =: H =


h11 h12 . . . . . . h1,n
h21 h22 . . . . . . h2,n

0 h32 h33 . . .
...

...
. . . . . . . . .

...
0 . . . 0 hn−1,n hn,n

 , (2.6)

then with q1 := Qe1 it holds:

a) QTK(A, q1, n) = R =

[
@
@@

]
, i.e, Q ·R is a QR decomposition of K(A, q1, n).
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b) If R is nonsingular, then H is unreduced (i.e., hk+1,k 6= 0 for all k = 1, . . . , n− 1).

c) Let K = argmin
k=1,...,n

{rkk = 0}, then K − 1 = argmin
k=1,...,n−1

{hk+1.k = 0}.

Proof:

QTK(A, q1, n) = [QT q1, Q
TAQQT q1, (QTAQ)2QT q1, . . . (QTAQ)n−1Qq1]

= [e1, He1, H
2e1, . . . , H

n−1e1] = R

with r11 = 1. Furthermore, r22 = h21, r33 = h32h21, . . . , rkk = hk+1,k · · ·h21 ⇒ R nonsin-
gular, hence from rkk 6= 0 ∀k it follows hk+1,k 6= 0∀k, i.e. T is unreduced.

rk−1,k−1 6= 0, rkk = 0⇒ hk+1,k = 0 ⇒ c).

Remark 2.11 The decomposition (2.6) is called Hessenberg decomposition of A. Note
that if A = AT , i.e., A is symmetric, the matrix H in the Hessenebrg form will necessarily
become symmetric tridiagonal.

The above theorem devises a way to compute orthogonal bases of Krylov subsapces: eval-
uating (2.6) in the form

AQ = QH

columnwise leads to algorithms which compute orthonormal bases of Kq(A, b) column by
column. For general nonsymmetric matrices, this leads to the Arnoldi algorithm, while for
symmetric A, one obtains the Lanczos iteration (see Exercise 1.2).

One obtains the Arnoldi recursion

AQk = QkHk + hk+1,kqk+1e
T
k+1 (2.7)

(and in a similar fashion, the Lanczos recursion in which the only difference is that with
symmetric A, Hk is symmetric, too, and thus tridiagonal). It follows

Hk = QT
kAQk,

which is the matrix Rayleigh quotient of A with respect to Qk.

2.2 Systems and Control Theory

Consider the linear, time-invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0, (2.8a)

y(t) = Cx(t) +Du(t), t ≥ 0, (2.8b)
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where A ∈ Rn×n is the state matrix, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and x0 ∈ Rn

is the initial state of the system. Here, n is the order (or state-space dimension) of the
system. The particular model imposed by (2.8), given by a differential equation describing
the behavior of the states x and an algebraic equation describing the outputs y is called a
state-space representation. Alternatively, the relation between inputs and outputs can also
be described in the frequency domain by an algebraic expression. Applying the Laplace
transform

L : x(t) 7→ x(s) =

∫ ∞
0

e−stx(t) dt (⇒ ẋ(t) 7→ sx(s))

to the two equations in (2.8), and denoting the transformed arguments as x(s), y(s), u(s)
where s is the Laplace variable, we obtain

sx(s)− x(0) = Ax(s) +Bu(s),

y(s) = Cx(s) +Du(s).

By solving for x(s) in the first equation and inserting this into the second equation, we
obtain

y(s) =
(
C(sIn − A)−1B +D

)
u(s) + C(sIn − A)−1x0.

For a zero initial state, the relation between inputs and outputs is therefore completely
described by the transfer function

G(s) := C(sIn − A)−1B +D. (2.9)

Many interesting characteristics of an LTI system are obtained by evaluating G(s) on the
positive imaginary axis, that is, setting s = ω. In this context, ω can be interpreted as
the operating frequency of the LTI system.

In this section, we introduce some basic notation and properties of LTI systems used
throughout this paper. More detailed introductions to LTI systems can be found in many
textbooks [GL95, HP05, Son98, ZDG96] or handbooks [Lev96, Mut99]. We essentially
follow these references here without further citations, but many other sources can be used
for a good overview on the subjects covered in this section.

2.2.1 Analysis of Control Systems

Definition 2.12 An LTI system is stable if all its poles are in the left half plane and it
asymptotically (or Lyapunov or exponentially) stable if all poles are in the open left half
plane C− := {z ∈ C | <(z) < 0}.

Sufficient for asymptotic stability is that A is asymptotically stable (or Hurwitz ), i.e., the
spectrum of A, denoted by Λ (A), satisfies Λ (A) ⊂ C−. Note that by abuse of notation,
often the terminology stable system is used for asymptotically stable systems.

First, we will ask the question whether for a given initial state x0 the target x1 can be
reached for some admissible input function u, where we will denote the set of admissible
functions by Uad. Controllability is only related to the state equation (2.8a). So we will
ignore the output equation for the moment.
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Definition 2.13 (Controllability) Consider the target (the state to be reached) x1 ∈ Rn.

a) The control system (2.8) with initial value x(t0) = x0 is controllable to x1 in time t1 > t0
if there exists u ∈ Uad such that x(t1;u) = x1. (Equivalently, (t1, x

1) is reachable from
(t0, x

0).)

b) x0 is controllable to x1 if there exists a t1 > t0 such that (t1, x
1) can be reached from

(t0, x
0).

c) If the system is controllable to x1 for all (t0, x
0) with x0 ∈ Rn, it is (completely)

controllable.

The controllability set w.r.t. x1 is defined as C :=
⋃
t1>t0

C(t1) where

C(t1) := {x0 ∈ X ;∃u ∈ Uad : x(t1;u) = x1}.

The last definition characterizes (complete) controllability as C = Rn if we have an LTI
system. Now we want to characterize controllability for linear systems. First, we need the
solution of linear systems.

Proposition 2.14 For the LTI system (2.8), the fundamental solution of the uncontrolled
part of the LTI system, i.e., the homogeneous linear ODE ẋ = Ax is Φ(t, s) = eA(t−s) and
therefore

x(t) = eAtx0 +

t∫
0

eA(t−s)Bu(s)ds = eAt(x0 +

t∫
0

e−AsBu(s)ds), (2.10)

y(t) = CeAt

x0 +

t∫
0

e−AsBu(s)ds

+Du(t). (2.11)

Proof: See theory of linear differential equations.
An important property of Φ(t, s) = eA(t−s) is the semigroup property :

Φ(t, s) = Φ(t, t̂)Φ(t̂, s) = eA(t−t̂)eA(t̂−s)

This follows from the uniqueness of the solution of the initial value problem ẋ = Ax, x(0) =
x0.

When does such an u ∈ Uad exist such that x1 can be reached from x0? Assume
u(t) = BT e−A

T tc, where c ∈ R is a constant. Then the solvability of

x1 = x(t1) = eAt1x0 +

t1∫
0

eA(t1−t)Bu(t)dt
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is equivalent to

e−At1x1 − x0 =

t1∫
0

e−AtBBT e−A
T tdt

︸ ︷︷ ︸
=:P (0,t1)

c.

We can uniquely solve for c (and, hence obtain an admissible control function u(t)) if the
finite time Gramian P (0, t1) is nonsingular, which, as it is positive semidefinite in any case,
implies

P (0, t1) :=

t1∫
0

e−AtBBT e−A
T tdt > 0. (2.12)

It should be noted that due to continuity of the integrand, positive semidefiniteness of
P (0, t) for one t > 0 implies positive semidefiniteness for all t, which in case of stability of
A is equivalent to positive definiteness of the (infinite) controllability Gramian

P :=

∫ ∞
0

eAsBBT eA
T sds. (2.13)

Definition 2.15 The controllability matrix of an LTI system as in (2.8) is

K(A,B) := [B,AB,A2B, . . . , An−1B] ∈ Rn×n·m.

The controllability matrix provides a nice characterization of controllability.

Theorem 2.16 For LTI systems: C(t1) = range(K(A,B)) ∀t1 > 0.

Theorem 2.16 shows that for a controllable system,

a) C(t1) = C(t2) ∀t1, t2 > 0. Hence C ≡ C(t) and all controllability concepts are the
same for LTI systems! Moreover, as K(A,B) is independent of the target x1, we
can also conclude that C(t) is independent of the target, and thus for controllable
systems, C = Rn for all targets x ∈ Rn.

b) P (0, t1) > 0 ⇔ P (0, t2) > 0 for t1, t2 > 0 arbitrary. In particular, for a controllable
system, the infinite controllability Gramian satisfies P > 0.

Another useful characterization is the Hautus–(Popov)–Lemma.

Theorem 2.17 The following are equivalent.

a) The LTI system is controllable.

b) rank (K(A,B)) = n

c) If z is a left eigenvector of A, then z∗B 6= 0.
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d) rank([λI − A,B]) = n ∀λ ∈ C (Hautus test).

e) The controllability Gramian P is positive definite.

Example 2.18

A =

[
0 1
1 0

]
, B =

[
0
1

]
=⇒ K(A,B) =

[
0 1
1 0

]
=⇒ rank (K(A,B)) = 2
=⇒ (A,B) controllable.

Alternatively using the Hautus–test we get:
As for λ /∈ Λ (A) : rank (λI − A) = n, we only need to check λ ∈ Λ (A) = {±1}.

λ = 1 : λI − A =

[
1 −1
−1 1

]
, left eigenvector is

[
1
1

]
, [1 1]B = 1 6= 0

λ = −1 : λI − A =

[
−1 −1
−1 −1

]
, left eigenvector is

[
1
−1

]
, [1 − 1]B = −1 6= 0.

Hence the system is controllable.

In many situations, full state information is not available. This rises the question whether
we can get enough information about the system from the output equation (2.8b). The
question is: suppose we have

y(t) = ỹ(t)

corresponding to two trajectories x, x̃ obtained by to the same input function u(t). Can
we conclude that x(t0) = x̃(t0), or even stronger that x(t) = x̃(t) for t ≤ t0, t ≥ 0
(past/future)? (Note that (x(t0) = x̃(t0) is sufficient as trajectory uniquely determined.
In other words, is the mapping x0 → y(t) injective?)

Definition 2.19 An LTI system is reconstructable (observable) if for solution trajectories
x(t), x̃(t) of (2.8a) obtained with the same input function u, we have

y(t) = ỹ(t) ∀t ≤ t0 (∀t ≥ t0)

=⇒ x(t) = x̃(t) ∀t ≤ t0 (∀t ≥ t0).

Note: For LTI systems it is easy to see that reconstructability and observability are equiv-
alent.

Theorem 2.20 (duality) An LTI system is reconstructable if and only if the dual system
ẋ(t) = −ATx(t) +−CTu(t) is controllable.

Theorem 2.21 An LTI system is observable if and only if the observability Gramian

Q :=

∞∫
0

eA
T tCTCeAtdt (2.14)

is positive definite.



12 CHAPTER 2. MATHEMATICAL BASICS

Duality also yields the Hautus–Popov–observability Lemma.

Corollary 2.22 The following conditions are equivalent:

a) The LTI system (2.8) is reconstructable.

b) The LTI system (2.8) is observable.

c) The observability matrix

O(A,C) =


C
CA
CA2

...
CAn−1

 ∈ Rnp×n has rank n.

d) If Ax = λx, then CTx 6= 0.

e) rank

[
λI − A
C

]
= n.

Note: a system that is both controllable and observable is called minimal for reasons which
become obvious later when considering realizations.

For systems that are not controllable, there is the weaker concept of stabilizability , for
which we have an analogous criterion.

Theorem 2.23 The following conditions are equivalent:

a) The LTI system (2.8) is stabilizable, i.e., ∃F ∈ Rm×n with Λ(A+BF ) ⊂ C−.

b) If p∗A = λ̃p∗ and Re(λ) ≥ 0, then p∗B 6= 0.

c) rank([A− λI,B]) = n ∀λ ∈ C with Re(λ) ≥ 0.

d) In the Kalman decomposition of (A,B),Λ(A3) ⊂ C−.

Definition 2.24 (dual concept of stabilizability) An LTI system is detectable if for any
solution x(t) of ẋ = Ax with Cx(t) ≡ 0 we have lim

t→∞
x(t) = 0.

(We can not observe all of x, but the unobservable part is stable.)

Corollary 2.25 The following conditions are equivalent:

a) An LTI system is detectable.

b) (AT , CT ) is stabilizable.

c) Ax = λx,Re(λ) ≥ 0⇒ CTx 6= 0.
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d) rank

[
λI − A
C

]
= n for all λ,Re(λ) ≥ 0.

e) In the observability Kalman decomposition of (AT , CT ),

W TAW =

[
A1 0
A2 A3

]
, CW = [C1 0],Λ (A3) ⊂ C−.

Note: In the Kalman decomposition, x̃ := W Tx,

˙̃x1 = A1x̃1
˙̃x2 = A2x̃1 + A3x̃2

y = C1x̃1

x̃2 has no influence on the output. The states x̃2 are called unobservable, λ ∈ Λ(A3)
unobservable modes.

2.2.2 Realizations

A realization of an LTI system is the set of the four matrices

(A,B,C,D) ∈ Rn×n × Rn×m × Rp×n × Rp×m

corresponding to (2.8). In general, an LTI system has infinitely many realizations as its
transfer function is invariant under state-space transformations,

T :

{
x → Tx,

(A,B,C,D) → (TAT−1, TB,CT−1, D),
(2.15)

as the simple calculation

D + (CT−1)(sI − TAT−1)−1(TB) = C(sIn − A)−1B +D = G(s)

demonstrates. But this is not the only non-uniqueness associated to LTI system represen-
tations. Any addition of states that does not influence the input-output relation, meaning
that for the same input u the same output y is achieved, leads to a realization of the same
LTI system. Two simple examples are

d

dt

[
x
x1

]
=

[
A 0

0 A1

] [
x
x1

]
+

[
B
B1

]
u(t), y(t) =

[
C 0

] [ x
x1

]
+Du(t),

d

dt

[
x
x2

]
=

[
A 0

0 A2

] [
x
x2

]
+

[
B
0

]
u(t), y(t) =

[
C C2

] [ x
x2

]
+Du(t),
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for arbitrary matrices Aj ∈ Rnj×nj , j = 1, 2, B1 ∈ Rn1×m, C2 ∈ Rp×n2 and any n1, n2 ∈ N.
An easy calculation shows that both of these systems have the same transfer function G(s)
as (2.8) so that

(A,B,C,D),

([
A 0

0 A1

]
,

[
B
B1

]
,
[
C 0

]
, D

)
,

([
A 0

0 A2

]
,

[
B
0

]
,
[
C C2

]
, D

)

are both realizations of the same LTI system described by the transfer function G(s) in
(2.9). Therefore, the order n of a system can be arbitrarily enlarged without changing the
input-output mapping. On the other hand, for each system there exists a unique minimal
number of states which is necessary to describe the input-output behavior completely.
This number n̂ is called the McMillan degree of the system. A minimal realization is a
realization (Â, B̂, Ĉ, D̂) of the system with order n̂. Note that only the McMillan degree
is unique; any state-space transformation (2.15) leads to another minimal realization of
the same system. Finding a minimal realization for a given system can be considered as
a first step of model reduction as redundant (non-minimal) states are removed from the
system. Sometimes this is part of a model reduction procedure, e.g. optimal Hankel norm
approximation, and can be achieved via balanced truncation.

An important fact is the following:

Theorem 2.26 A realization (A,B,C,D) of the LTI system (2.8) is minimal if and only
if (A,B) is controllable and (A,C) is observable.

Although realizations are highly non-unique, stable LTI systems have a set of invariants
with respect to state-space transformations that provide a good motivation for finding
reduced-order models. To see this, we note that the controllability Gramian P from (2.13)
and the observability Gramian Q from (2.14) of a stable LTI system (2.8) also satisfy the
pair of Lyapunov equations

AP + PAT +BBT = 0, (2.16a)

ATQ+QA+ CTC = 0. (2.16b)

From Lyapunov stability theory (see, e.g., [LT85, Chapter 13]) it is clear that for stable A,
the Lyapunov equations in (2.16) have unique positive semidefinite solutions P and Q. We
have already seen that P > 0 is equivalent to controllability and Q > 0 is equivalent to ob-
servability. By Theorem 2.26, controllability plus observability is equivalent to minimality
of the system so that for minimal systems, all eigenvalues of the product PQ are strictly
positive real numbers. The square roots of these eigenvalues, denoted in decreasing order
by

σ1 ≥ σ2 ≥ . . . ≥ σn > 0,

are known as the Hankel singular values (HSVs) of the LTI system and are invariants of
the system: let

(Â, B̂, Ĉ,D) = (TAT−1, TB,CT−1, D)
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be the transformed realization with associated controllability Lyapunov equation

0 = ÂP̂ + P̂ ÂT + B̂B̂T = TAT−1P̂ + P̂ T−TATT T + TBBTT T .

This is equivalent to

0 = A(T−1P̂ T−T ) + (T−1P̂ T−T )AT +BBT .

The uniqueness of the solution of the Lyapunov equation (see, e.g., [LT85]) implies that
P̂ = TPT T and, analogously, Q̂ = T−TQT−1. Therefore,

P̂ Q̂ = TPQT−1,

showing that Λ (P̂ Q̂) = Λ (PQ) = {σ2
1, . . . , σ

2
n}. Note that extending the state-space by

non-minimal states only adds HSVs of magnitude equal to zero, while the non-zero HSVs
remain unchanged.

An important (and name-inducing) type of realizations are balanced realizations . A
realization (A,B,C,D) is called balanced iff

P = Q =

 σ1
. . .

σn

 ;

that is, the controllability and observability Gramians are diagonal and equal with the
decreasing HSVs on their respective diagonal entries. For a minimal realization there
always exists a balancing state-space transformation of the form (2.15) with nonsingular
matrix Tb ∈ Rn×n:

Theorem 2.27 Given a minimal LTI system (2.8) with realization (A,B,C,D), a bal-
anced realization is given by the state-space transformation with

Tb := Σ−
1
2V TR,

where P = STS and Q = RTR (e.g., Cholesky decompositions) and

SRT = UΣV T

is the SVD of SRT .

Proof: First note that T−1 = STUΣ−
1
2 , then the result follows by simple algebraic manip-

ulations.

Remark 2.28 For non-minimal systems the Gramians can also be transformed into diag-
onal matrices with the leading n̂× n̂ submatrices equal to diag(σ1, . . . , σn̂), and

P̂ Q̂ = diag(σ2
1, . . . , σ

2
n̂, 0, . . . , 0);

see, e.g., [TP87].
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2.2.3 Frequency Domain and Norms

A stable transfer function defines a mapping

G : L2 → L2 : u→ y = Gu (2.17)

where the two function spaces denoted by L2 are actually different spaces and should
more appropriately be denoted by L2(Cm) and L2(Cp), respectively. As the dimension
of the underlying spaces will always be clear from the context, i.e., the dimension of
the transfer function matrix G(s) or the dimension of input and output spaces, we allow
ourselves the more sloppy notation used in (2.17). The function space L2 contains the
square integrable functions in the frequency domain, obtained via the Laplace transform
of the square integrable functions in the time domain, usually denoted as L2(−∞,∞).
The L2-functions that are analytic in the open right half plane C+ form the Hardy space
H2. Note that H2 is a closed subspace of L2. Under the Laplace transform L2 and H2

are isometric isomorphic to L2(−∞,∞) and L2[0,∞), respectively. (This is essentially the
Paley-Wiener Theorem which is the Laplace transform analog of Parseval’s identity for
the Fourier transform.) Therefore it is clear that the frequency domain spaces H2 and L2

can be endowed with the corresponding norms from their time domain counterparts. Due
to this isometry, our notation will not distinguish between norms for the different spaces
so that we will denote by ‖f‖2 the induced 2-norm on any of the spaces L2(−∞,∞), L2,
L2[0,∞), and H2. Using the definition (2.17), it is therefore possible to define an operator
norm for G by

‖G‖ := sup
‖u‖2≤1

‖Gu‖2.

It turns out that this operator norm equals the L∞-norm of the transfer function G, which
for rational transfer functions can be defined as

‖G‖∞ := sup
ω∈R

σmax(G(ω)). (2.18)

The p × m-matrix-valued functions G for which ‖G‖∞ is bounded, i.e., those essentially
bounded on the imaginary axis, form the function space L∞. The subset of L∞ containing
all p×m-matrix-valued functions that are analytical and bounded in C+ form the Hardy
space H∞. As a consequence of the maximum modulus theorem, H∞ functions must be
bounded on the imaginary axis so that the essential supremum in (2.18) simplifies to a
supremum for rational functions G. Thus, the H∞-norm of the rational transfer function
G ∈ H∞ can be defined as

‖G‖∞ := sup
ω∈R

σmax(G(ω)). (2.19)

A fact that will be of major importance throughout this paper is that the transfer function
of a stable LTI system is rational with no poles in the closed right-half plane. Thus,
G ∈ H∞ for all stable LTI systems.

Although the notation is somewhat misleading, the H∞-norm is the 2-induced operator
norm. Hence the sub-multiplicativity condition

‖y‖2 ≤ ‖G‖∞‖u‖2 (2.20)
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holds. This inequality implies an important way to tackle the model reduction problem:
suppose the original system and the reduced-order model (??) are driven by the same input
function u ∈ H2, so that

y(s) = G(s)u(s), ŷ(s) = Ĝ(s)u(s),

where Ĝ is the transfer function corresponding to (??); then we obtain the error bound

‖y − ŷ‖2 ≤ ‖G− Ĝ‖∞‖u‖2. (2.21)

Due to the aforementioned Paley-Wiener theorem, this bound holds in the frequency do-
main and the time domain. Therefore a goal of model reduction is to compute the reduced-
order model so that ‖G− Ĝ‖∞ is smaller than a given tolerance threshold.
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