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Abstract

This paper contains a short course on the construction, analy-
sis, and implementation of exponential integrators for time depen-
dent partial differential equations. A much more detailed recent
review can be found in Hochbruck and Ostermann (2010). Here,
we restrict ourselves to one-step methods for autonomous prob-
lems.

A basic principle for the construction of exponential integra-
tors is the linearization of a semilinear or a nonlinear evolution
equation. We distinguish exponential Runge–Kutta methods, us-
ing a fixed linearization and exponential Rosenbrock-type meth-
ods, which use a continuous linearization at the current approxi-
mation of the solution. We present some of the convergence results
and give a proof for the simplest method, the exponential Euler
method.

The fact that it is possible to construct explicit exponential
integrators which obey error bounds even for abstract evolution
equations comes at the price that one has to approximate products
of matrix functions with vectors in the spatially discrete case. For
an efficient implementation one has to combine the integrator with
well-chosen algorithms from numerical linear algebra. We briefly
sketch Krylov subspace methods for this task.
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1 Construction

In this section we will discuss methods for autonomous evolution equa-
tions of the form

u′(t) = F
(
u(t)

)
, u(t0) = u0, (1.1)

in a finite time interval t ∈ [t0, T ]. Our main interest is in the case
where F is a partial differential operator or its spatial discretization.
Note that in the abstract case, F involves an unbounded operator and
for the discrete case, the norm of the Jacobian grows with the inverse of
the spatial mesh width.

For a recent survey on exponential integrators see Hochbruck and
Ostermann (2010).

1.1 Runge–Kutta methods

Before we start to introduce exponential integrators, let us briefly re-
view Runge–Kutta methods for the solution of the ordinary differential
equation

u′(t) = g
(
u(t)

)
, u(t0) = u0. (1.2)

The function g is assumed to satisfy a Lipschitz condition with a moder-
ate Lipschitz constant (in contrast to F in the evolution equation (1.1)).

The construction of Runge–Kutta methods relies on the following
representation of the exact solution u of (1.2) at time tn+1 = tn + τ ,

u(tn+1) = u(tn) +

∫ τ

0

g
(
u(tn + θ)

)
dθ, n = 0, 1, . . . . (1.3)

The idea is to approximate the integral on the right-hand side by a
quadrature formula defined by nodes 0 ≤ c1 < · · · < cs ≤ 1 and weights
b1, . . . , bs. Assume we are given approximations un ≈ u(tn) and

Uni ≈ u(tn + ciτ).

Then we have

u(tn+1) ≈ un + τ

s∑
i=1

biU
′
ni, where U ′ni = g

(
Uni
)
, i = 1, . . . , s.

The approximations Uni, i = 1, . . . , s, can be obtained by yet other
quadrature formulas via

u(tn + ciτ) = u(tn) +

∫ tn+ciτ

tn

u′(θ)dθ ≈ un + τ

s∑
j=1

aijU
′
nj .
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A general s-stage Runge–Kutta method is defined as

un+1 = un + τ

s∑
i=1

biU
′
ni,

U ′ni = g(Uni), i = 1, . . . , s (1.4)

Uni = un + τ

s∑
j=1

aijU
′
nj , i = 1, . . . , s

and denoted in a so-called Butcher tableau as

ci aij
bj

If aij = 0 for j ≥ i, then Uni, i = 1, . . . , s, can be computed explicitly
by just evaluating the function g at already computed approximations.
Hence, these methods are called explicit Runge–Kutta methods.

Runge–Kutta methods belong to the class of one-step methods, since
they only use the current approximation un ≈ u(tn) to construct the
new approximation un+1 ≈ u(tn + τ).

Definition 1.1. The local error of a one-step method for solving the
initial value problem (1.2) is defined as

u1 − u(t0 + τ),

where u1 is the approximation obtained from u0 = u(t0) after one step
with step size τ .

An important property of methods for solving initial value problems
is the order.

Definition 1.2. A numerical scheme for solving the initial value problem
(1.2) is of order p if for any g ∈ Cp+1 the local error is of size O(τp+1).
If p ≥ 1, the method is called consistent.

Whenever using the notation O, it is of utmost importance to men-
tion all assumptions and quantities which enter the constant defining the
set. This is particularly true in the analysis of time-dependent partial
differential equations, no matter if the abstract problem is considered in
a function space or if a finite difference, a finite element, or a spectral
method is used for the spatial discretization.

To verify that a Runge–Kutta method is of a certain order, one has
to compute the Taylor expansion of the numerical solution and the Tay-
lor expansion of the exact solution. This requires assumptions on the
smoothness of the exact solution (namely that all derivatives used within
the expansion are bounded in a suitable norm).
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Example 1.3. The simplest method is the well-known explicit Euler
method

un+1 = un + τg(un), Butcher tableau
0 0

1

which is of order one. �
1.2 Exponential Runge–Kutta methods

Next we study the construction of exponential Runge–Kutta methods.
Such methods are based on linearizing F in (1.1). There are two main
options: the first one uses a fixed linearization

F
(
u(t)

)
= −Au(t) + g

(
u(t)

)
, A ≈ −∂F

∂u
(u0). (1.5)

The second option is based on a continuous linearization around the
current approximation un ≈ u(tn)

F
(
u(t)

)
= −Anu(t) + gn

(
u(t)

)
,

An = −∂F
∂u

(un),
n = 0, 1, . . . . (1.6)

We start with one-step methods based on the fixed linearization (1.5)
and consider the initial value problem in a finite dimensional space (say
Rd or Cd). The construction of exponential Runge–Kutta methods is
closely related to the construction of standard Runge–Kutta methods.
It relies on the variation-of-constants formula

u(tn + τ) = e−τAu(tn) +

∫ τ

0

e−(τ−σ)Ag
(
u(tn + σ)

)
dσ. (1.7)

Here, we used the notation e−τA for the matrix exponential or, in a
functional analytic framework, for a semigroup generated by −A.

We choose nodes 0 ≤ c1 < . . . < cs ≤ 1 and assume we are given
approximations

Uni ≈ u(tn + ciτ), i = 1, . . . , s. (1.8)

The integral in (1.7) is approximated by a quadrature formula, in which
only the nonlinearity g is approximated but the exponential operator
(semigroup) is treated exactly:

un+1 = e−τAun + τ

s∑
i=1

bi(−τA)Gni, (1.9a)

Gni = g
(
Uni), (1.9b)

Uni = e−ciτAun + τ

s∑
j=1

aij(−τA)Gnj . (1.9c)
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Note that choosing A = 0, i.e., F = g, the method reduces to a standard
Runge–Kutta method (1.4) with coefficients bi(0), aij(0). This Runge–
Kutta method will be called the underlying Runge–Kutta method. We
can gather the exponential Runge–Kutta method in the following tableau

ci aij(z)

bj(z)
, (1.10)

where the coefficients are analytic functions which are evaluated at the
linear operator −τA.

Since we use the exponential function within the integrator, a natural
requirement is to enforce the integrator to solve linear problems (1.1)
with constant g exactly. Then

u(tn + θτ) = e−θτAu(tn) + θτϕ1(−θτA)g, (1.11)

where

ϕ1(z) =

∫ 1

0

e(1−σ)zdσ =
ez − 1

z
. (1.12)

We use the representation (1.11) for θ = ci, i = 1, . . . , s and θ = 1. The
conditions

un = u(tn), Uni = u(tn + ciτ), n = 0, 1, . . . , i = 1, . . . , s (1.13)

are fulfilled if the simplifying assumptions

s∑
i=1

bi(z) = ϕ1(z), (1.14a)

s∑
j=1

aij(z) = ciϕ1(ciz), i = 1, . . . , s, (1.14b)

are satisfied. We restrict ourselves to explicit methods, where aij(z) = 0
for i ≤ j.
Remark. For z = 0, the simplifying assumptions just give

s∑
i=1

bi(0) = 1,

s∑
j=1

aij(0) = ci,

which ensures that the underlying Runge–Kutta method has stage order
q ≥ 1 (i.e., all inner quadrature formulas are of order at least one) and
order p ≥ 1.
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Example 1.4. For s = 1, (1.14) yields b1(z) = ϕ1(z). The resulting
method is called exponential Euler method. By e−z = 1 − zϕ1(−z) we
have the following equivalent representations of this scheme

un+1 = e−τAun + τϕ1(−τA)g(tn, un)

= (I − τAϕ1(−τA))un + τϕ1(−τA)g(tn, un) (1.15)

= un + τϕ1(−τA)F (tn, un).

For a practical application, where A is a large scale matrix stemming
from the space discretization of a differential operator, the latter formula
is computationally more efficient, since it requires the evaluation of one
product of a matrix function ϕ1(−τA) times a vector, while the first
formula requires two such evaluations. �

The computation of one time step of the general scheme (1.9) with
s > 1 requires evaluations of the product of matrix functions with s+ 1
different vectors, namely with un and Gni, i = 1, . . . , s. An attractive
option to evaluate these products is using an iterative method (for in-
stance a Krylov subspace method with respect to the matrix A and each
of the s+ 1 vectors). We will see later, that it is advantageous to apply
the iterative method to vectors of small norm. This can be achieved by
defining

Dni = Gni − g(un), i = 1, . . . , s. (1.16)

Note that for explicit methods, Dn1 = 0, and ‖Dni‖ = O(τ), i = 2, . . . , s.
Using the simplifying assumptions (1.14), we can reformulate the

method (1.9) equivalently as

Uni = un + ciτϕ1(−ciτA)F (un) + τ

i−1∑
j=2

aij(−τA)Dnj , (1.17a)

Dni = g(Uni)− g(un), (1.17b)

un+1 = un + τϕ1(−τA)F (un) + τ

s∑
i=2

bi(−τA)Dni. (1.17c)

Note that the inner stages Uni and un+1 can be interpreted as corrected
exponential Euler approximations with step size ciτ and τ , respectively.

The implementation of this method requires the evaluation of the
product of matrix functions with s vectors F (un), and Dnj , j = 2, . . . , s.
Only the vector F (un) is of norm O(1), but the remaining s− 1 vectors
Dnj are of size O(τ), so we can hope that only one expensive approxi-
mation is required.

A Matlab software package with an implementation of exponential
Runge–Kutta methods and exponential multistep methods for test prob-
lems is provided by Berland, Skaflestad, and Wright (2007).

http://www.math.ntnu.no/num/expint/matlab.php
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1.3 Exponential Rosenbrock-type methods

These methods are based on the continuous linearization (1.6) of the
differential equation (1.1). The idea is similar to that of exponential
Runge–Kutta methods, namely we start from the variation-of-constants
formula and approximate only gn but not the exponential operators.
We restrict ourselves to the more interesting case of explicit methods
satisfying the simplifying assumptions (1.14).

The variation-of-constants formula (1.7) for the solution of

u′ = F (u) = −Anu(t) + gn
(
u(t)

)
yields

u(tn + θτ) =e−θτAnu(tn) +

∫ θτ

0

e−(θτ−σ)Angn
(
u(tn + σ)

)
dσ.

We use this representation for θ = ci, i = 1, . . . , s, and θ = 1. With

Dni = gn(Uni)− gn(un), (1.18a)

we define approximations Uni ≈ u(tn + ciτ) by

Uni = e−ciτAnun + ciτϕ1(−ciτAn)gn(un) + τ

i−1∑
j=2

aij(−τAn)Dnj

= un + ciτϕ1(−ciτAn)F (un) + τ

i−1∑
j=2

aij(−τAn)Dnj , (1.18b)

and

un+1 = un + τϕ1(−τAn)F (un) + τ

s∑
i=2

bi(−τAn)Dni. (1.18c)

Example 1.5. Since c1 = 0, for s = 1 we obtain the exponential
Rosenbrock–Euler method proposed by Pope (1963).

un+1 = e−τAnun + τϕ1(−τAn)gn(un)

= un + τϕ1(−τAn)F (un).
(1.19)

It requires only one matrix function per step. �
Clearly, as for exponential Runge–Kutta methods, the approxima-

tions Uni and un+1 in (1.18) can be interpreted as corrections of the
exponential Rosenbrock-Euler method.
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2 Error bounds

In this section we present some basic ideas on how to derive error bounds
for exponential integrators for partial differential equations. We treat
abstract evolution equations and their spatial semidiscretization in a
uniform functional analytical framework. This leads to bounds which
are independent of the spatial mesh width.

2.1 Analytical framework

We study exponential integrators in a framework of semigroups, see En-
gel and Nagel (2006) for a short course.

Assumption 2.1. Let X be a Banach space with norm ‖·‖. We assume
that A is a linear operator on X and that (−A) is the infinitesimal
generator of a strongly continuous semigroup e−tA on X.

This assumption implies

‖e−tA‖X←X ≤ CA e−ωt, t ≥ 0 (2.1)

with CA ≥ 1, ω ∈ R. We will use only this bound for our error analysis.
For this lecture, the situation in the following example is the rele-

vant one and we just stated the assumption in this generality for people
familiar with semigroup theory.

Example 2.2. For X = Rn or X = Cn, the operator A can be repre-
sented by an n × n matrix A and e−tA is just the matrix exponential
function. For the spectral norm, the bound (2.1) is satisfied with CA = 1
if the field of values of A is contained in the complex half-plane

Cω := {z ∈ C : Re z ≥ ω}.

In this case, ω = −µ(−A), where µ(B) = λmax
(

1
2

(
B + BH

))
is the

so-called logarithmic norm of the matrix B.
As a special case, the bound (2.1) holds with ω = 0 if the field of

values F(A) of A defined as

F(A) = {xHAx, ‖x‖ = 1}

is contained in the right complex half-plane. In particular, this is true if
A = AH is positive semidefinite or A = −AH .

If A is diagonalizable, X−1AX = Λ, then (2.1) holds for an arbitrary
matrix norm induced by a vector norm with CA = κ(X) = ‖X‖

∥∥X−1
∥∥

if the spectrum of A is contained in Cω.
The crucial observation is that these assumptions are independent

of the dimension of A. This will allow to prove temporal convergence
results that are independent of the spatial mesh. �
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2.2 Exponential Runge–Kutta methods: analysis

Our analysis will make use of the variation-of-constants formula (1.7) for
the solution of

u′(t) +Au(t) = g
(
u(t)

)
, u(t0) = u0, (2.2)

i.e., (1.1) with fixed linearization (1.5). In order to simplify the notation,
we set

f(t) = g
(
u(t)

)
.

For the nonlinearity g we make the following assumption (for an
analysis under more general assumptions we refer to Hochbruck and
Ostermann (2005)):

Assumption 2.3. We assume that g : [0, T ] × X → X is locally
Lipschitz-continuous in a strip along the exact solution u. Thus, there
exists a real number L = L(R, T ) such that, for all t ∈ [0, T ],

‖g(v)− g(w)‖ ≤ L‖v − w‖ (2.3)

if max
(
‖v − u(t)‖, ‖w − u(t)‖

)
≤ R.

Our proofs are heavily based on the representation of the exact solu-
tion by the variation-of-constants formula (1.7), which coincides with

u(tn+1) = e−τAu(tn) +

∫ τ

0

e−(τ−σ)Af(tn + σ)dσ. (2.4)

in our notation.
In order to analyze exponential Runge–Kutta methods, we expand

f(t) in a Taylor series with remainder in integral form and insert it into
(2.4):

u(tn+1) = e−τAu(tn) +

∫ τ

0

e−(τ−σ)Af(tn + σ)dσ

= e−τAu(tn) + τ

p∑
k=1

ϕk(−τA)τk−1f (k−1)(tn)

+

∫ τ

0

e−(τ−σ)A

∫ σ

0

(σ − ξ)p−1

(p− 1)!
f (p)(tn + ξ)dξdσ.

(2.5)

Here we used the ϕ-functions defined as

ϕk(z) =

∫ 1

0

e(1−θ)z θk−1

(k − 1)!
dθ, k ≥ 1. (2.6)
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These functions satisfy ϕk(0) = 1/k! and the recurrence relation

ϕk+1(z) =
ϕk(z)− ϕk(0)

z
, ϕ0(z) = ez. (2.7)

Assumption 2.1 enables us to define the operators

ϕk(−τA) =

∫ 1

0

e−τ(1−θ)A θk−1

(k − 1)!
dθ, k ≥ 1.

The following lemma turns out to be crucial.

Lemma 2.4. Under Assumption 2.1, the operators ϕk(−τA), k = 1, 2, . . .,
are bounded on X.

Proof. The boundedness simply follows from the estimate

‖ϕk(−τA)‖X←X ≤
∫ 1

0

‖e−τ(1−θ)A‖X←X
θk−1

(k − 1)!
dθ

and the bound (2.1) on the semigroup.

We now present an error bound for the simplest exponential integra-
tor, the exponential Euler method.

The Taylor expansion of f with remainder in integral form is given
by

f(tn + σ) = f(tn) +

∫ σ

0

f ′(tn + θ)dθ. (2.8)

Inserting the exact solution into the numerical scheme yields

u(tn+1) = e−τAu(tn) + τϕ1(−τA)f(tn) + δn+1, (2.9)

where, by (2.5), the defect is given by

δn+1 =

∫ τ

0

e−(τ−σ)A

∫ σ

0

f ′(tn + θ)dθdσ. (2.10)

For this defect we have the following estimate.

Lemma 2.5. Let the semilinear initial value problem satisfy Assump-
tion 2.1 and assume that f ′ ∈ L∞(0, T ;X). Then∥∥∥∥n−1∑

j=0

e−jτAδn−j

∥∥∥∥ ≤ CτM, M := sup
0≤t≤tn

‖f ′(t)‖ (2.11)

holds with a constant C = C(CA, ω, tn), uniformly in 0 ≤ tn ≤ T .
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Proof. We write

e−jτAδn−j = e−jτA
∫ τ

0

e−(τ−σ)A

∫ σ

0

f ′(tn−j−1 + θ)dθdσ.

Using the stability bound (2.1), the sum is bounded by∥∥∥∥n−1∑
j=0

e−jτAδn−j

∥∥∥∥ ≤ CMτ2n ≤ CMτtn.

This proves the desired estimate.

For the exponential Euler method, we have the following convergence
result.

Theorem 2.6. Let the initial value problem (2.2) satisfy Assumption 2.1,
and consider for its numerical solution the exponential Euler method
(1.15). Further assume that f : [0, T ] → X is differentiable with f ′ ∈
L∞(0, T ;X). Then, the error bound

‖un − u(tn)‖ ≤ C τ sup
0≤t≤tn

‖f ′(t)‖

holds uniformly in 0 ≤ nτ ≤ T . The constant C depends on T , but it is
independent of n and τ .

Proof. Let the error be denoted by en = un−u(tn). Then the exponential
Euler method satisfies the error recursion

en+1 = e−τAen + τϕ1(−τA)
(
g(tn, un)− f(tn)

)
− δn+1 (2.12)

with defect δn+1 defined in (2.10). Solving this recursion yields

en = τ

n−1∑
j=0

e−(n−j−1)τAϕ1(−τA)
(
g(tj , uj)− f(tj)

)
−
n−1∑
j=0

e−jτAδn−j .

Using (2.1) and Lemma 2.5, we may estimate this by

‖en‖ ≤ Cτ
n−1∑
j=0

‖ej‖+ Cτ sup
0≤t≤tn

‖f ′(t)‖.

The application of the discrete Gronwall Lemma 2.7 concludes the proof.

In the previous proof we used the following standard discrete Gron-
wall Lemma.
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Lemma 2.7 (Discrete Gronwall Lemma). For τ > 0 and T > 0, let
0 ≤ tn = nτ ≤ T . Further assume that the sequence of non-negative
numbers εn satisfies the inequality

εn ≤ aτ
n−1∑
ν=1

εν + b

for some a, b ≥ 0. Then the estimate εn ≤ Cb holds, where the constant
C depends on a and on T .

The convergence analysis of higher-order methods turns out to be
much more complicated than that for the exponential Euler scheme, due
to the low order of the internal stages. The order conditions in Table 1
contain the functions

ψj(−τA) = ϕj(−τA)−
s∑
i=1

bi(−τA)
cj−1
i

(j − 1)!
(2.13)

and

ψj,i(−τA) = ϕj(−ciτA)cji −
i−1∑
k=1

aik(−τA)
cj−1
k

(j − 1)!
(2.14)

which arise in the Taylor expansion within the variation-of-constants
formula.

Theorem 2.8. (Hochbruck and Ostermann (2005))
Let the initial value problem (2.2) satisfy Assumptions 2.9 and 2.10 and
consider for its numerical solution an explicit exponential Runge–Kutta
method (1.9) satisfying (1.14). For 2 ≤ p ≤ 4, assume that the order
conditions of Table 1 hold up to order p− 1 and that ψp(0) = 0. Further
assume that the remaining conditions of order p hold in a weaker form
with bi(0) instead of bi(−τA) for 2 ≤ i ≤ s. Then the numerical solution
un satisfies the error bound

‖un − u(tn)‖ ≤ C τp

uniformly in 0 ≤ nτ ≤ T . The constant C depends on T , but it is
independent of n and τ .

Examples of higher order methods and references to them can be
found in Hochbruck and Ostermann (2005), Hochbruck and Ostermann
(2010), and Luan and Ostermann (2014a).
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Table 1: Stiff order conditions for explicit exponential Runge–Kutta
methods for α = 0. Here J and K denote arbitrary bounded opera-
tors on X. The functions ψi and ψk,` are defined in (2.13) and (2.14),
respectively.

Number Order Order condition
1 1 ψ1(−τA) = 0
2 2 ψ2(−τA) = 0

3 2 ψ1,i(−τA) = 0
4 3 ψ3(−τA) = 0

5 3
∑s
i=1 bi(−τA)Jψ2,i(−τA) = 0

6 4 ψ4(−τA) = 0

7 4
∑s
i=1 bi(−τA)Jψ3,i(−τA) = 0

8 4
∑s
i=1 bi(−τA)J

∑i−1
j=2 aij(−τA)Jψ2,j(−τA) = 0

9 4
∑s
i=1 bi(−τA)ciKψ2,i(−τA) = 0

2.3 Exponential Rosenbrock-type methods: analysis

For the error analysis of (1.18), we work in a semigroup framework.
Background information on semigroups can be found in the textbooks
Engel and Nagel (2000); Pazy (1992). Let

J = J(u) = DF (u) =
∂F

∂u
(u) (2.15)

be the Fréchet derivative of F in a neighborhood of the exact solution
of (1.5). Throughout the paper we consider the following assumptions.

Assumption 2.9. The linear operator J = J(u) is the generator of a
strongly continuous semigroup etJ on a Banach space X. More precisely,
we assume that there exist constants C and ω such that∥∥etJ

∥∥
X←X ≤ C eωt, t ≥ 0 (2.16)

holds uniformly in a neighborhood of the exact solution of (1.5).

In the subsequent analysis, we restrict our attention to autonomous
semilinear problems,

u′(t) = F
(
u(t)

)
, F (u) = −Au+ g(u), u(t0) = u0. (2.17)

This implies that (1.6) takes the form

−An = −A+
∂g

∂u
(un), gn

(
u(t)

)
= g
(
u(t)

)
− ∂g

∂u
(un)u(t). (2.18)
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We suppose that A satisfies Assumption 2.1. Our main hypothesis on
the nonlinearity g is the following:

Assumption 2.10. We assume that (2.2) possesses a sufficiently smooth
solution u : [0, T ]→ X with derivatives in X, and that g : [0, T ]×X → X
is sufficiently often Fréchet-differentiable in a strip along the exact solu-
tion. All occurring derivatives are assumed to be uniformly bounded.

The latter assumption implies that the Jacobian (2.15) satisfies the
Lipschitz condition

‖J(u)− J(v)‖X←X ≤ C ‖u− v‖ (2.19)

in a neighborhood of the exact solution.

Theorem 2.11. (Hochbruck et al., 2009, Theorem 4.1) Suppose the ini-
tial value problem (2.17) satisfies Assumption 2.1 and 2.10. Consider for
its numerical solution an explicit exponential Rosenbrock method (1.18)
that fulfills the order conditions of Table 2 up to order p for some 2 ≤
p ≤ 4. Further, let the step size sequence τj satisfy the condition

n−1∑
k=1

k−1∑
j=0

τp+1
j ≤ Cτ (2.20)

with a constant Cτ that is uniform in t0 ≤ tn ≤ T . Then, for Cτ
sufficiently small, the numerical method converges with order p. In par-
ticular, the numerical solution satisfies the error bound

‖un − u(tn)‖ ≤ C
n−1∑
j=0

τp+1
j (2.21)

uniformly on t0 ≤ tn ≤ T . The constant C is independent of the chosen
step size sequence satisfying (2.20).

The well-known exponential Rosenbrock–Euler method (1.19) obvi-
ously satisfies condition 1 of Table 2, while condition 2 is void. Therefore,
it is second-order convergent for problems satisfying our analytic frame-
work. A possible error estimator for (1.19) is described in Caliari and
Ostermann (2009).
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Table 2: Stiff order conditions for exponential Rosenbrock methods ap-
plied to autonomous problems.

Number Order condition Order
1

∑s
i=1 bi(z) = ϕ1(z) 1

2
∑i−1
j=1 aij(z) = ciϕ1(ciz), 2 ≤ i ≤ s 2

3
∑s
i=2 bi(z)c

2
i = 2ϕ3(z) 3

4
∑s
i=2 bi(z)c

3
i = 6ϕ4(z) 4

Example 2.12. Hochbruck, Lubich, and Selhofer (1998) proposed the
following class of exponential integrators

ki = ϕ1(−γτAn)

(
−Anun + gn(Uni)− τAn

i−1∑
j=1

βijkj

)
,

Uni = un + τ

i−1∑
j=1

αijkj , i = 1, . . . , s,

un+1 = un + τ

s∑
i=1

biki,

where γ, αij , βij , bi are coefficients that determine the method.
Note that in contrast to general Rosenbrock methods, this method

uses the ϕ1-function only. It thus cannot have order larger than two.
However, the method exp4 was designed such that the computation

of the matrix functions is particularly efficient. To achieve this, it was
not written as a three-stage exponential Rosenbrock-type method but as
a seven-stage method, which uses only three function evaluations. The
code comes with error and step size control and uses Krylov approxima-
tions for the approximation of the matrix functions.

�
The exp4 method of Hochbruck, Lubich, and Selhofer (1998) led

to a revival of exponential integrators and initiated a lot of activities
on the construction, implementation, analysis, and applications of such
methods.

Examples of higher order exponential Rosenbrock-type methods and
references to these methods can be found in Hochbruck, Ostermann, and
Schweitzer (2009) and Hochbruck and Ostermann (2010). A comparative
study of the performance of exponential, implicit, and explicit integrators
for stiff systems of ordinary differential equations is given in Loffeld and
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Tokman (2013). Variants of exponential Runge–Kutta methods which
are designed for efficient implementations have been proposed in Tokman
(2006, 2011) and Tokman, Loffeld, and Tranquilli (2012). Higher order
methods Rosenbrock methods are constructed and analyzed by Luan
and Ostermann (2014b)
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3 Approximation of the matrix exponential
operator

This section deals with the approximation of products of a function of a
matrix with a vector,

x = φ(A)b, A ∈ Cn,n, b ∈ Cn, ‖b‖ = 1, (3.1)

where φ : C→ C is analytic in a neighborhood of the spectrum of A or
in some cases even in a neighborhood of the field of values of A.

We refer to the excellent monograph Higham (2008) for a detailed
study of matrix functions. A survey on matrix functions with emphasis
on the matrix exponential was given by Frommer and Simoncini (2008).

Here, we are interested in φ(z) = ez or φ(z) = ϕk(z), k = 1, 2, . . .,
which arise in exponential integrators.

3.1 Arnoldi algorithm

Discretizations of partial differential operators lead to matrices A which
are large and sparse. Since, in general, Aj is no longer sparse if j is
large, the same holds for φ(A). In many applications, it is sufficient to
compute φ(A)b and this can be accomplished without computing φ(A)
explicitly. Here, we are interested in approximations in certain Krylov
subspaces.

There are several possible ways to motivate Krylov approximations
to matrix functions. Here, we follow the derivation of Hochbruck and
Lubich (1997). Note that Cauchy’s integral formula,

φ(A)b =
1

2πi

∫
Γ

φ(λ)(λI−A)−1b dλ =
1

2πi

∫
Γ

φ(λ)x(λ) dλ (3.2)

is based on the solution of shifted linear systems

(λI−A)x(λ) = b, λ ∈ Γ. (3.3)

These linear systems can be approximated in a Krylov subspace defined
as

Km(A,b) = span{b,Ab, . . . ,Am−1b}. (3.4)

We restrict ourselves to Arnoldi-based methods, which compute an or-
thonormal basis Vm ∈ Cn,m of Km(A,b). The derivation can be done
for Lanczos-based methods in an analogous way. For Hermitian or skew-
Hermitian matrices, the Lanczos and the Arnoldi algorithm are equiva-
lent.

The Arnoldi recurrence reads

AVm = VmHm + hm+1,mvm+1e
T
m, VH

mVm = Im,
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where

VH
mAVm = Hm. (3.5)

A simple implementation is given in the following algorithm.

Algorithm 3.1. (Arnoldi algorithm, see, e.g., Saad (1992))

Given A ∈ Cn,n, b ∈ Cn, and β = ‖b‖ > 0
v1 = b/β
for m = 1, 2, . . .

• for j = 1, . . . ,m
hj,m = 〈vj ,Avm〉

• ṽm+1 = Avm −
∑m
j=1 hj,mvj

• hm+1,m =
√
〈ṽm+1, ṽm+1〉

• vm+1 = ṽm+1/hm+1,m

Here, we will use the standard Euclidean inner product for the ease of
presentation. However, the inner product within the Arnoldi algorithm
should be chosen according to the application. In particular, for finite
element disretizations, Vm should be orthonormal with respect to the
discrete L2 inner product, i.e., VH

mMVm = Im. The algorithm and the
results below can be adapted without any difficulty.

The following properties of the Arnoldi algorithm are easily verified.

Lemma 3.2. Let Vm and Hm be the matrices from the Arnoldi algo-
rithm applied to A and b with ‖b‖ = 1. Then

(a) F(Hm) ⊆ F(A),

(b) pm−1(A)b = Vmpm−1(Hm)e1 for all polynomials of degree at most
m− 1.

Proof. Exercise.

The definition of a Krylov subspace implies that

Km(A,b) = Km(λI−A,b) for all λ ∈ C.

Moreover, the relation

(λI−A)Vm = Vm(λI−Hm)− hm+1,mvm+1e
T
m

holds.
The Galerkin approximation xm(λ) ∈ Km(A,b) for the solution x(λ)

of (3.3) is defined by the condition that the residual

rm(λ) = b− (λI−A)xm(λ) (3.6)



Exponential Integrators 19

is orthogonal to Km(A,b). Writing xm(λ) = Vmym(λ), this is equiva-
lent to

0 = VH
mrm(λ) = e1 − (λI−Hm)ym(λ).

If we choose a curve Γ which includes the field of values F(A) of A in
its interior, and by Lemma 3.2 also F(Hm), then Γ does not contain any
eigenvalue of Hm. Hence, λI−Hm is nonsingular and

xm(λ) = Vm(λI−Hm)−1e1. (3.7)

This is the approximation of the full orthogonalization method (FOM)
by Saad (1981).

An approximation to φ(A)b is obtained by approximating xm(λ)
within the Cauchy integral formula by its FOM iterate:

φ(A)b ≈ 1

2πi

∫
Γ

φ(λ)xm(λ)dλ

=
1

2πi

∫
Γ

φ(λ)Vm(λI−Hm)−1e1dλ (3.8)

= Vm
1

2πi

∫
Γ

φ(λ)(λI−Hm)−1dλ e1

= Vmφ(Hm)e1.

The last identity is again a Cauchy integral formula, but this time for
the tiny matrix Hm. For such a matrix, φ(Hm) can be computed or
approximated explicitly by diagonalization of Hm or by Padé approxi-
mation.

Note that we used the solution of the linear systems only for the
purpose of deriving the approximation xm. In practice, we do not have
to solve any of these linear systems but instead we just compute φ(Hm).
However, it is worth mentioning, that one could also choose certain nodes
θk on the curve Γ and construct a quadrature formula, which then re-
quires the solution of a small number of linear systems to approximate
xm(θk), see, e.g., Trefethen, Weideman, and Schmelzer (2006) and Hale,
Higham, and Trefethen (2008).

3.2 Stopping criteria

The above derivation via the Cauchy integral formula also motivates a
stopping criterion for approximations to matrix functions, cf. (Hochbruck
and Lubich, 1997, Section 6.3). For linear systems

(λI− τA)x(λ) = b
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it is usually based on the residual rm(λ) instead of the error

ε(λ) = xm(λ)− x(λ).

The residuals for the linear systems satisfy

rm(λ) = τhm+1,m

(
eTm(λI− τHm)−1e1

)
vm+1.

Using Cauchy’s integral formula, the error of the mth Krylov approxi-
mation to φ(−τA) can be written as

εm = Vmφ(τHm)e1 − φ(−τA)b =
1

2πi

∫
Γ

φ(λ)εm(λ)dλ,

where Γ is a contour enclosing the eigenvalues of τA. Replacing the
error εm(λ) by rm(λ), we get the generalized residual

rm =
1

2πi

∫
Γ

φ(λ)rm(λ)dλ = τhm+1,m

(
eTmφ(τHm)e1

)
vm+1,

which can be computed by no additional cost. The same stopping crite-
rion was proposed earlier by Saad (1992) with a different motivation and
in Lubich (2008, p. 94), a refined version can be found for the case of
φ(z) = ez and skew-Hermitian matrices A. A more detailed discussion
on stopping criteria can be found in Botchev, Grimm, and Hochbruck
(2013).

In Hochbruck and Lubich (1997) it was shown how to derive er-
ror bounds for the approximation of the matrix exponential based on
Cauchy’s integral formula by using Faber polynomials for different sets
in the complex plane. For the special case of skew Hermitian matrices,
error bounds and stopping criteria are given in Lubich (2008). Here, the
analysis is based on Chebyshev series.

3.3 Software

For the polynomial approximation of the matrix exponential, there is
excellent Matlab software available. Here is a list of packages, which are
freely available.

• expmv: Matlab code by Al-Mohy and Higham (2011). It is based
on a Taylor expansion and includes applications to exponential
integrators.

• expmvp and phipm: Matlab code by Niesen and Wright (2012). It
contains an implementation of Krylov subspace methods for ap-
proximating ϕ functions

http://eprints.ma.man.ac.uk/1591/
http://www1.maths.leeds.ac.uk/~jitse/software.html
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• expokit: Matlab and Fortran codes by Sidje (1998). This codes
approximates eτAb and uses a time-stepping procedure, if the
number of iterations exceeds a given limit (default value is mmax =
30).

http://www.maths.uq.edu.au/expokit/
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