Exercise/Review for Eigen-problems 2013 SIAM Gene Golub SIAM Summer School 10th Shanghai Summer School on Analysis and Numerics in Modern Sciences

Ren-Cang Li^{*}

July 29, 2013

1 Standard Hermitian Eigenvalue Problem

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian.

A subspace $\mathcal{X} \in \mathbb{C}^n$ is called an invariant subspace of A if $A\mathcal{X} \subseteq \mathcal{X}$. The Rayleigh quotient of A with respect to a vector $x \neq 0$ is

$$\rho(x) := \frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} x}$$

P-1.1. Show that

1. A is unitarily similar to a real diagonal matrix:

$$A = UAU^{\mathrm{H}},$$

where $U \in \mathbb{C}^{n \times n}$ is unitary and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ is real and diagonal. These λ_i are the eigenvalues arranged, for convenience, as

$$\lambda_1 \leq \lambda_2 \cdots \leq \lambda_n.$$

Write $U = [u_1, u_2, \ldots, u_n]$. Then u_i is the eigenvector corresponding to λ_i .

2.
$$\lambda_1 = \min_{x \neq 0} \rho(x), \quad \lambda_n = \max_{x \neq 0} \rho(x).$$

Notations U and λ_i will be assigned as in this problem for the rest of this section.

P-1.2. 1. Show that $\mathcal{Y} \in \mathbb{C}^n$ is an invariant subspace of A if and only if there exists a square matrix M such that

$$AY = YM,$$

where the columns of Y consist of basis vectors of \mathcal{Y} . How are the eigenvalues and eigenvectors of M and those of A are related?

^{*}Department of Mathematics, University of Texas at Arlington, P.O. Box 19408, Arlington, TX 76019. E-mail: rcli@uta.edu.

2. Let $V = [u_1, u_2, \ldots, u_k]$. Find the eigen-decomposition of $A + \xi V V^{H}$. What are its eigenvalues and eigenvectors?

P-1.3. Let $X \in \mathbb{C}^{n \times k}$ satisfying $X^{\mathrm{H}}X = I_k$. Define $\mathscr{R}(H) = AX - XH$. Show that

$$\|\mathscr{R}(X^{\mathrm{H}}AX)\|_{\mathrm{F}} \le \|\mathscr{R}(M)\|_{\mathrm{F}}$$

for any Hermitian $M \in \mathbb{C}^{k \times k}$, with equality if and only if $M = X^{\mathrm{H}}AX$, where $\|\cdot\|_{\mathrm{F}}$ stands for the matrix Frobenius norm.

2 Generalized Hermitian Eigenvalue Problem

Let $A, B \in \mathbb{C}^{n \times n}$ be Hermitian with $B \succ 0$ (positive definite). We are interested in the generalized eigenvalue problem for the matrix pencil $A - \lambda B$. The Rayleigh quotient of $A - \lambda B$ with respect to a vector $x \neq 0$ is

$$\rho(x) := \frac{x^{\mathrm{H}}Ax}{x^{\mathrm{H}}Bx}$$

In an optimization approach, it is often needed to solve

$$\inf_t \rho(x+tp),$$

the so-called Line Search, where t is either among \mathbb{R} or \mathbb{C} . A subspace $\mathcal{X} \in \mathbb{C}^n$ is called an invariant subspace of $A - \lambda B$ if $A\mathcal{X} \subseteq B\mathcal{X}$.

P-2.1. Show that

1. There exists nonsingular $U \equiv [u_1, u_2, \dots, u_n] \in \mathbb{C}^{n \times n}$ such that

$$U^{\mathrm{H}}AU = \Lambda, \quad U^{\mathrm{H}}BU = I_n,$$

where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ is real and diagonal. These λ_i are the eigenvalues of $A - \lambda B$ arranged, for convenience, as

$$\lambda_1 \leq \lambda_2 \cdots \leq \lambda_n$$

with the corresponding eigenvectors u_i .

2.
$$\lambda_1 = \min_{x \neq 0} \rho(x), \quad \lambda_n = \max_{x \neq 0} \rho(x).$$

Notations U and λ_i will be assigned as in this problem for the rest of this section.

P-2.2. 1. Show that $\mathcal{Y} \in \mathbb{C}^n$ is an invariant subspace of $A - \lambda B$ if and only if there exists a square matrix M such that

$$AY = BYM,$$

where the columns of Y consist of basis vectors of \mathcal{Y} . How are the eigenvalues and eigenvectors of M and those of $A - \lambda B$ are related?

2. Let $V = [u_1, u_2, \ldots, u_k]$. Find the eigen-decomposition of matrix pencil

$$A + \xi(BV)(BV)^{\mathrm{H}} - \lambda B.$$

What are its eigenvalues and eigenvectors?

P-2.3. Let $X \in \mathbb{C}^{n \times k}$ satisfying $X^{\mathrm{H}}BX = I_k$. Define $\mathscr{R}(H) = AX - BXH$. Show that

$$\|B^{-1/2}\mathscr{R}(X^{\mathrm{H}}AX)\|_{\mathrm{F}} \le \|B^{-1/2}\mathscr{R}(M)\|_{\mathrm{F}}$$

for any Hermitian $M \in \mathbb{C}^{k \times k}$, with equality if and only if $M = X^{\mathrm{H}} A X$.

P-2.4. Let $x, p \in \mathbb{C}^n$ are nonzero vectors.

1. Verify that the gradient of ρ at a point x is

$$\nabla \rho(x) = \frac{2}{x^{\mathrm{H}} B x} \left[A - \rho(x) B \right] x \equiv \frac{2}{x^{\mathrm{H}} B x} r(x).$$

(Be mindful about the distinction between the real case and complex case.)

2. In the complex case, it is possible that

$$\inf_{t \in \mathbb{R}} \rho(x+tp) > \inf_{t \in \mathbb{C}} \rho(x+tp).$$

Find an example.

3. Verify that

$$\inf_{t\in\mathbb{C}}\rho(x+tp) = \min_{|\xi|^2 + |\zeta|^2 > 0}\rho(\xi x + \zeta p)$$

which is the smaller eigenvalue of $[x, p]^{H}(A - \lambda B)[x, p]$, provided x and p are linearly independent.

4. Suppose $p^{\mathrm{H}}Bx = 0$ and $p^{\mathrm{H}}Ax \neq 0$. Show that

$$\inf_{t \in \mathbb{C}} \rho(x+tp) = \min_{t \in \mathbb{C}} \rho(x+tp) < \min\{\rho(x), \rho(p)\}.$$

3 Programming Assignment

These assignments will be posted at