Exercise/Review for Eigen-problems

2013 SIAM Gene Golub SIAM Summer School
10th Shanghai Summer School on Analysis and Numerics in Modern Sciences

Ren-Cang Li*

July 29, 2013

1 Standard Hermitian Eigenvalue Problem

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian.

A subspace $\mathcal{X} \in \mathbb{C}^{n}$ is called an invariant subspace of A if $A \mathcal{X} \subseteq \mathcal{X}$.
The Rayleigh quotient of A with respect to a vector $x \neq 0$ is

$$
\rho(x):=\frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} x} .
$$

$\mathbf{P - 1 . 1}$. Show that

1. A is unitarily similar to a real diagonal matrix:

$$
A=U \Lambda U^{\mathrm{H}},
$$

where $U \in \mathbb{C}^{n \times n}$ is unitary and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is real and diagonal. These λ_{i} are the eigenvalues arranged, for convenience, as

$$
\lambda_{1} \leq \lambda_{2} \cdots \leq \lambda_{n} .
$$

Write $U=\left[u_{1}, u_{2}, \ldots, u_{n}\right]$. Then u_{i} is the eigenvector corresponding to λ_{i}.
2. $\lambda_{1}=\min _{x \neq 0} \rho(x), \quad \lambda_{n}=\max _{x \neq 0} \rho(x)$.

Notations U and λ_{i} will be assigned as in this problem for the rest of this section.
P-1.2. 1. Show that $\mathcal{Y} \in \mathbb{C}^{n}$ is an invariant subspace of A if and only if there exists a square matrix M such that

$$
A Y=Y M,
$$

where the columns of Y consist of basis vectors of \mathcal{Y}. How are the eigenvalues and eigenvectors of M and those of A are related?

[^0]2. Let $V=\left[u_{1}, u_{2}, \ldots, u_{k}\right]$. Find the eigen-decomposition of $A+\xi V V^{\mathrm{H}}$. What are its eigenvalues and eigenvectors?

P-1.3. Let $X \in \mathbb{C}^{n \times k}$ satisfying $X^{\mathrm{H}} X=I_{k}$. Define $\mathscr{R}(H)=A X-X H$. Show that

$$
\left\|\mathscr{R}\left(X^{\mathrm{H}} A X\right)\right\|_{\mathrm{F}} \leq\|\mathscr{R}(M)\|_{\mathrm{F}}
$$

for any Hermitian $M \in \mathbb{C}^{k \times k}$, with equality if and only if $M=X^{\mathrm{H}} A X$, where $\|\cdot\|_{\mathrm{F}}$ stands for the matrix Frobenius norm.

2 Generalized Hermitian Eigenvalue Problem

Let $A, B \in \mathbb{C}^{n \times n}$ be Hermitian with $B \succ 0$ (positive definite). We are interested in the generalized eigenvalue problem for the matrix pencil $A-\lambda B$.
The Rayleigh quotient of $A-\lambda B$ with respect to a vector $x \neq 0$ is

$$
\rho(x):=\frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} B x} .
$$

In an optimization approach, it is often needed to solve

$$
\inf _{t} \rho(x+t p),
$$

the so-called Line Search, where t is either among \mathbb{R} or \mathbb{C}.
A subspace $\mathcal{X} \in \mathbb{C}^{n}$ is called an invariant subspace of $A-\lambda B$ if $A \mathcal{X} \subseteq B \mathcal{X}$.
P-2.1. Show that

1. There exists nonsingular $U \equiv\left[u_{1}, u_{2}, \ldots, u_{n}\right] \in \mathbb{C}^{n \times n}$ such that

$$
U^{\mathrm{H}} A U=\Lambda, \quad U^{\mathrm{H}} B U=I_{n},
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is real and diagonal. These λ_{i} are the eigenvalues of $A-\lambda B$ arranged, for convenience, as

$$
\lambda_{1} \leq \lambda_{2} \cdots \leq \lambda_{n}
$$

with the corresponding eigenvectors u_{i}.
2. $\lambda_{1}=\min _{x \neq 0} \rho(x), \quad \lambda_{n}=\max _{x \neq 0} \rho(x)$.

Notations U and λ_{i} will be assigned as in this problem for the rest of this section.
P-2.2. 1. Show that $\mathcal{Y} \in \mathbb{C}^{n}$ is an invariant subspace of $A-\lambda B$ if and only if there exists a square matrix M such that

$$
A Y=B Y M,
$$

where the columns of Y consist of basis vectors of \mathcal{Y}. How are the eigenvalues and eigenvectors of M and those of $A-\lambda B$ are related?
2. Let $V=\left[u_{1}, u_{2}, \ldots, u_{k}\right]$. Find the eigen-decomposition of matrix pencil

$$
A+\xi(B V)(B V)^{\mathrm{H}}-\lambda B .
$$

What are its eigenvalues and eigenvectors?
P-2.3. Let $X \in \mathbb{C}^{n \times k}$ satisfying $X^{\mathrm{H}} B X=I_{k}$. Define $\mathscr{R}(H)=A X-B X H$. Show that

$$
\left\|B^{-1 / 2} \mathscr{R}\left(X^{\mathrm{H}} A X\right)\right\|_{\mathrm{F}} \leq\left\|B^{-1 / 2} \mathscr{R}(M)\right\|_{\mathrm{F}}
$$

for any Hermitian $M \in \mathbb{C}^{k \times k}$, with equality if and only if $M=X^{\mathrm{H}} A X$.
P-2.4. Let $x, p \in \mathbb{C}^{n}$ are nonzero vectors.

1. Verify that the gradient of ρ at a point x is

$$
\nabla \rho(x)=\frac{2}{x^{\mathrm{H}} B x}[A-\rho(x) B] x \equiv \frac{2}{x^{\mathrm{H}} B x} r(x) .
$$

(Be mindful about the distinction between the real case and complex case.)
2. In the complex case, it is possible that

$$
\inf _{t \in \mathbb{R}} \rho(x+t p)>\inf _{t \in \mathbb{C}} \rho(x+t p) .
$$

Find an example.
3. Verify that

$$
\inf _{t \in \mathbb{C}} \rho(x+t p)=\min _{|\xi|^{2}+|\zeta|^{2}>0} \rho(\xi x+\zeta p)
$$

which is the smaller eigenvalue of $[x, p]^{\mathrm{H}}(A-\lambda B)[x, p]$, provided x and p are linearly independent.
4. Suppose $p^{\mathrm{H}} B x=0$ and $p^{\mathrm{H}} A x \neq 0$. Show that

$$
\inf _{t \in \mathbb{C}} \rho(x+t p)=\min _{t \in \mathbb{C}} \rho(x+t p)<\min \{\rho(x), \rho(p)\} .
$$

3 Programming Assignment

These assignments will be posted at

```
www.uta.edu/faculty/rcli/G2S3/g2s3.html.
```


[^0]: *Department of Mathematics, University of Texas at Arlington, P.O. Box 19408, Arlington, TX 76019. E-mail: rcli@uta.edu.

