Rayleigh Quotient Based Numerical Methods For Eigenvalue Problems

Ren-Cang Li
University of Texas at Arlington

Gene Golub SIAM Summer School 2013
10th Shanghai Summer School on Analysis and Numerics in Modern Sciences

July 22 - August 9, 2013

Overview

- Motivating Examples
- Hermitian Eigenvalue Problem - Basics
- Steep Descent/Ascent Type Methods
- Conjugate Gradient Type Methods
- Extending Min-Max Principles: Indefinite B
- Linear Response Eigenvalue Problem
- Quadratic Hyperbolic Eigenvalue Problem

Motivating Examples

- Density Functional Theory - Kohn-Sham Equation
- Data Mining - Trace Ratio Maximization

More in Chapter 10 of
目 Y. Saad. Numerical Methods for Large Eigenvalue Problems. SIAM, 2011.

Kohn-Sham Equation (Hohenberg and Kohn'64, Kohn and Sham'65):

$$
[-\frac{1}{2} \nabla^{2}+\underbrace{\int \frac{n\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d \boldsymbol{r}^{\prime}+\frac{\delta E_{\mathrm{xc}}(n(\boldsymbol{r}))}{\delta n(\boldsymbol{r})}+v_{\mathrm{ext}}(\boldsymbol{r})}_{v_{\mathrm{KS}}[n](\boldsymbol{r})}] \phi_{i}(\boldsymbol{r})=\lambda_{i} \phi_{i}(\boldsymbol{r})
$$

a remarkably successful theory to describe ground-state properties of condensed matter systems.

A nonlinear eigenvalue problem: Kohn-Sham (KS) operator depends on electronic density $n(\boldsymbol{r})=\sum_{i=1}^{N_{v}} \phi_{i}(\boldsymbol{r}) \phi_{i}^{*}(\boldsymbol{r})$ which depends on eigen-functions $\phi_{i}(\boldsymbol{r})$.

Usually solved by Self-Consistent-Field (SCF) iteration:

1) initial $n_{0}(\boldsymbol{r})=\sum_{i=1}^{N_{v}} \phi_{i}^{(0)}(\boldsymbol{r}) \phi_{i}^{(0)}{ }^{*}(\boldsymbol{r})$, and
2) repeat $\left[-\nabla^{2} / 2+v_{K S}\left[n_{j}\right](\boldsymbol{r})\right] \phi_{i}^{(j+1)}=\lambda_{i}^{(j+1)} \phi_{i}^{(j+1)}(\boldsymbol{r})$.

Each inner-iteration is an eigenvalue problem.

Discretized Kohn-Sham Equation

Ways of discretizations: plane waves, finite differences, finite elements, localized orbitals, and wavelets.

Discretized Kohn-Sham Equation: $H(X) X=S X \Lambda, X^{H} S X=I_{N_{V}}$. $H(X)$ is symmetric, depends on X, eigenvalue matrix Λ is diagonal, and $S \succ 0$. Some discretizations: $S=I$.

Nonlinear eigenvalue problem, dependent on eigenvectors, as oppose to usually on the eigenvalues.

Usually solved by Self-Consistent-Field (SCF) iteration:

1) initial X_{0}, and
2) repeat $H\left(X_{j}\right) X_{j+1}=S X_{j+1} \Lambda_{j}$ for $j=0,1, \ldots$ until convergence.

Each inner-iteration is a symmetric eigenvalue problem.
References more accessible to numerical analysts:
\square Yousef Saad, James R. Chelikowsky, Suzanne M. Shontz, Numerical Methods for Electronic Structure Calculations of Materials, SIAM Rev. 52:1 (2010), 3-54.C. Yang, J. C. Meza, B. Lee, and L.-W. Wang. KSSOLV-a MATLAB toolbox for solving the Kohn-Sham equations. ACM Trans. Math. Software, 36(2):1-35, 2009.

In Fisher linear discriminant analysis (LDA) for supervised learning, need to solve

$$
\max _{V^{\top} V=I_{k}} \frac{\operatorname{trace}\left(V^{\top} A V\right)}{\operatorname{trace}\left(V^{\top} B V\right)}
$$

where $A, B \in \mathbb{R}^{n \times n}$ symmetric, B positive semidefinite and $\operatorname{rank}(B)>n-k$.
trace $\left(V^{\top} A V\right)$ represents the in-between scatter, while trace $\left(V^{\top} B V\right)$ represents the within scatter. Maximizer V is used to project n-dimensional vectors (data) into k-dimensional vectors that best separates n-dimensional datasets into two or more datasets.

KKT condition for Maximizers:

$$
\underbrace{\left[A-\frac{\operatorname{trace}\left(V^{\top} A V\right)}{\operatorname{trace}\left(V^{\top} B V\right)} B\right]}_{=: E(V)} V=V\left[V^{\top} E(V) V\right]
$$

such that eigenvalues of $V^{\top} E(V) V$ are the k largest eigenvalues of $E(V)$.
Can be solved via SCF-like iteration; each inner iteration is a symmetric eigenvalue problem.

References for trace ratio problem:
T. Ngo, M. Bellalij, and Y. Saad. The trace ratio optimization problem for dimensionality reduction. SIAM J. Matrix Anal. Appl., 31(5):2950-2971, 2010.
. L.-H. Zhang, L.-Z. Liao, and M. K. Ng. Fast algorithms for the generalized Foley-Sammon discriminant analysis. SIAM J. Matrix Anal. Appl., 31(4):1584-1605, 2010.

More eigenvalues arising from Data mining can be found in chapter 2 of
0 S. Yu, L.-C. Tranchevent, B. De Moor, and Y. Moreau. Kernel-based Data Fusion for Machine Learning: Methods and Applications in Bioinformatics and Text Mining. Springer, Berlin, 2011.

Basic Theory

- Hermitian $A x=\lambda x$
- Hermitian $A x=\lambda B x(B \succ 0)$
- Justifying Rayleigh-Ritz

Hermitian $A=A^{H} \in \mathbb{C}^{n \times n}$.
Eigenvalues λ_{i} and eigenvectors $u_{i} \in \mathbb{C}^{n}$.

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}, \quad u_{i}^{\mathrm{H}} u_{j}=\delta_{i j}, \quad A u_{i}=\lambda_{i} u_{i} .
$$

Rich, elegant, and well-developed theories in "every" aspect ...

Popular References

R. Bhatia. Matrix Analysis. Springer, New York, 1996.
R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.
G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, Maryland, 3rd edition, 1996.
亘
B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998.

㤹 Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra. SIAM, Philadelphia, 1997.
T
G. W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.

Hermitian $A=A^{\mathrm{H}} \in \mathbb{C}^{n \times n}$. Eigenvalues: $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$.
Rayleigh quotient: $\rho(x)=\frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} x}$.
Courant (1920) and Fischer (1905)

$$
\lambda_{i}=\min _{\operatorname{dim}} \max _{x=i \in X} \rho(x), \quad \lambda_{i}=\max _{\operatorname{codim} X=i-1} \min _{x \in X} \rho(x)
$$

In particular,

$$
\begin{equation*}
\lambda_{1}=\min _{x} \rho(x), \quad \lambda_{n}=\max _{x} \rho(x) . \tag{1}
\end{equation*}
$$

- Can be used to justify Rayleigh-Ritz approximations for computational purposes.
- (1) is the foundation for using optimization techniques: steepest descent/ascent, CG type, for computing λ_{1} and, with the help of deflation, other λ_{j}.
$A=A^{\mathrm{H}} \in \mathbb{C}^{n \times n}$. Eigenvalues: $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$.

Trace Min/Trace Max

$$
\begin{aligned}
\sum_{j=1}^{k} \lambda_{j} & =\min _{X^{\mathrm{H} X=I_{k}}} \operatorname{trace}\left(X^{\mathrm{H}} A X\right), \\
\sum_{j=1}^{k} \lambda_{n-j+1} & =\max _{X^{\mathrm{H}} X=I_{k}} \operatorname{trace}\left(X^{\mathrm{H}} A X\right) .
\end{aligned}
$$

- Can be used to justify Rayleigh-Ritz approximations for computational purposes.
- Rayleigh quotient matrix: $X^{\mathrm{H}} A X$, assuming $X^{\mathrm{H}} X=I_{k}$.

Cauchy Interlacing Theorem

Hermitian $A=A^{\mathrm{H}} \in \mathbb{C}^{n \times n}$. Eigenvalues: $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$.
$X \in \mathbb{C}^{n \times k}, k \leq n, X^{H} X=I_{k}$. Eigenvalue of $X^{H} A X: \mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{k}$.

Cauchy (1829)

$$
\lambda_{j} \leq \mu_{j} \leq \lambda_{j+n-k} \quad \text { for } 1 \leq j \leq k
$$

Numerical implication: Pick X to "push" each μ_{j} down to λ_{j} or up to λ_{j+n-k}.
$A=A^{\mathrm{H}}, B=B^{\mathrm{H}} \in \mathbb{C}^{n \times n}$, and B positive definite.
Equivalency: $\quad A x=\lambda B x \Leftrightarrow \underbrace{B^{-1 / 2} A B^{-1 / 2}}_{=: \hat{A}} \hat{x}=\lambda \hat{x}, \hat{x}=B^{1 / 2} x$.
so same eigenvalues, and eigenvectors related by $\hat{x}=B^{1 / 2} x$.
Eigenvalues λ_{i} and eigenvectors $u_{i} \in \mathbb{C}^{n}$.

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}, \quad u_{i}^{\mathrm{H}} B u_{j}=\delta_{i j}, \quad A u_{i}=\lambda_{i} B u_{i} .
$$

Rayleigh quotient: $\rho(x):=\frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} B x} \equiv \frac{\hat{x}^{\mathrm{H}} \widehat{A} \hat{x}}{\hat{x}^{\mathrm{H}} \hat{x}}$.
Verbatim translation of theoretical results for $\widehat{A} \hat{x}=\lambda \hat{x}$ to ones for $A x=\lambda B x$.

Courant (1920) and Fischer (1905)

$$
\lambda_{i}=\min _{\operatorname{dim}} \max _{x=i \in X} \rho(x), \quad \lambda_{i}=\max _{\operatorname{codim} X=i-1} \min _{x \in X} \rho(x)
$$

In particular, $\lambda_{1}=\min _{x} \rho(x)$, and $\lambda_{n}=\max _{x} \rho(x)$.

Trace Min/Trace Max

$$
\sum_{j=1}^{k} \lambda_{j}=\min _{X^{H} B X=I_{k}} \operatorname{trace}\left(X^{\mathrm{H}} A X\right), \quad \sum_{j=1}^{k} \lambda_{n-j+1}=\max _{X^{H} B X=I_{k}} \operatorname{trace}\left(X^{\mathrm{H}} A X\right)
$$

Cauchy (1829)

$X \in \mathbb{C}^{n \times k}, k \leq n, \operatorname{rank}(X)=k$. Eigenvalues of $X^{\mathrm{H}} A X-\lambda X^{\mathrm{H}} B X$: $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{k}$.

$$
\lambda_{j} \leq \mu_{j} \leq \lambda_{j+n-k} \quad \text { for } 1 \leq j \leq k
$$

Why Rayleigh-Ritz?

Two most important aspects in solving large scale eigenvalue problems:
1 building subspaces close to the desired eigenvectors (or invariant subspaces). E.g., Krylov subspaces.

2 seeking "best possible" approximations from the suitably built subspaces.

For 2nd aspect: given $y \in \mathbb{C}^{n}$ and $\operatorname{dim} y=m$, find the "best possible" approximations to some of the eigenvalues of $A-\lambda B$ using y.

Usually done by Rayleigh-Ritz Procedure. Let Y be y 's basis matrix.

Rayleigh-Ritz Procedure

1 Solve the eigenvalue problem for $Y^{\mathrm{H}} A Y-\lambda Y^{\mathrm{H}} B Y: Y^{\mathrm{H}} A Y y_{i}=\mu_{i} Y^{\mathrm{H}} B Y_{y_{i}}$;
2 Approximate eigenvalues (Ritz values): $\mu_{i}\left(\approx \lambda_{i}\right)$; approximate eigenvectors (Ritz vectors): $Y_{y_{i}}$.

But in what sense and why are those approximations "best possible"?

Courant-Fischer: $\lambda_{i}=\min _{\operatorname{dim}} \max _{x \in X} \rho(x)$ suggests that best possible approximation to
λ_{i} should be taken as

$$
\mu_{i}=\min _{x \subset y, \operatorname{dim}} \max _{x=i} \rho(x)
$$

which is the i th eigenvalue of $Y^{\mathrm{H}} A Y-\lambda Y^{\mathrm{H}} B Y$.
Trace min principle: $\sum_{j=1}^{k} \lambda_{j}=\min _{X^{H} B X=I_{k}}$ trace $\left(X^{H} A X\right)$ suggests that best possible approximations to $\lambda_{i}(1 \leq i \leq k)$ should be gotten so that

$$
\operatorname{trace}\left(X^{\mathrm{H}} A X\right) \text { is minimized, subject to span }(X) \subset y, X^{\mathrm{H}} B X=I_{k} \text {. }
$$

The optimal value is the sum of 1 st k eigenvalues μ_{i} of $Y^{\mathrm{H}} A Y-\lambda Y^{\mathrm{H}} B Y$. Consequently, $\mu_{i} \approx \lambda_{i}$ are "best possible".

Steepest Descent Methods

■ Standard Steepest Descent Method

- Extended Steepest Descent Method
- Convergence Analysis
- Preconditioning Techniques
- Deflation
$A=A^{\mathrm{H}}, B=B^{\mathrm{H}} \in \mathbb{C}^{n \times n}$, and B positive definite.
Eigenvalues λ_{i} and eigenvectors $u_{i} \in \mathbb{C}^{n}$.

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}, \quad u_{i}^{\mathrm{H}} B u_{j}=\delta_{i j}, \quad A u_{i}=\lambda_{i} B u_{i}
$$

Rayleigh quotient: $\rho(x):=\frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} B x}$.
Interested in computing 1st eigenpair $\left(\lambda_{1}, u_{1}\right)$. Later: Other eigenpairs with the help of deflation.

Largest eigenpairs: through considering $(-A)-\lambda B$ instead.

SD method: a general technique to solve $\min f(x)$.
Steepest descent direction: at given x_{0}, along which direction p, f decreases fastest?

$$
\begin{equation*}
\left.\min _{p} \frac{d}{d t} f\left(x_{0}+t p\right)\right|_{t=0}=\min _{p} p^{\top} \nabla f\left(x_{0}\right)=-\left\|\nabla f\left(x_{0}\right)\right\|_{2} \tag{2}
\end{equation*}
$$

optimal p is in the opposite direction of the gradient $\nabla f\left(x_{0}\right)$.
Plain SD: Given x_{0}, for $i=0,1, \ldots$ until convergence

$$
\begin{equation*}
t_{i}=\underset{t}{\arg \min } f\left(x_{i}+t \nabla f\left(x_{i}\right)\right), \quad x_{i+1}=x_{i}+t_{i} \nabla f\left(x_{i}\right) . \tag{3}
\end{equation*}
$$

Major work: solve $\min _{t} f\left(x_{i}+t p\right)$, so-called line search.

Food for thought. Derivation in (2) not quite right for real-valued function f of complex vector x.
In (3): $t \in \mathbb{R}$ or $t \in \mathbb{C}$ makes difference. $t \in \mathbb{C}$ potentially much more complicated!

Recall $\quad \lambda_{1}=\min _{x} \rho(x)$.
Gradient: $\nabla \rho(x)=\frac{2}{x^{\mathrm{H} B x}}[A x-\rho(x) B x]=: \frac{2}{x^{\mathrm{H}} B x} r(x)$. Note: $x^{\mathrm{H}} r(x) \equiv 0$.
$\|q\|$ tiny, up to 1st order:

$$
\begin{aligned}
\rho(x+q) & =\frac{(x+q)^{\mathrm{H}} A(x+q)}{(x+q)^{\mathrm{H}} B(x+q)}=\frac{x^{\mathrm{H}} A x+q^{\mathrm{H}} A x+x^{\mathrm{H}} A q}{x^{\mathrm{H}} B x+q^{\mathrm{H}} B x+x^{\mathrm{H}} B q} \\
& =\frac{x^{\mathrm{H}} A x+q^{\mathrm{H}} A x+x^{\mathrm{H}} A q}{x^{\mathrm{H}} B x} \cdot\left[1-\frac{q^{\mathrm{H}} B x+x^{\mathrm{H}} B q}{x^{\mathrm{H}} B x}\right]=\rho(x)+\frac{q^{\mathrm{H}} r(x)+r(x)^{\mathrm{H}} q}{x^{\mathrm{H}} B x} .
\end{aligned}
$$

Steepest descent direction: $\nabla \rho(x)$ parallel to residual $r(x)=A-\rho(x) B x$.
Plain SD: Given x_{0}, for $i=0,1, \ldots$ until convergence

$$
t_{i}=\underset{t}{\arg \inf } \rho\left(x_{i}+t r\left(x_{i}\right)\right), \quad x_{i+1}=x_{i}+t_{i} r\left(x_{i}\right) .
$$

- Major work: solve $\inf _{t} \rho\left(x_{i}+t p\right)$, so-called line search.
- When to stop?

Can show

$$
\inf _{t \in \mathbb{C}} \rho(x+t p)=\min _{|\xi|^{2}+|\zeta|^{2}>0} \rho(\xi x+\zeta p)
$$

which is smaller eigenvalue μ of 2×2 pencil $X^{\mathrm{H}} A X-\lambda X^{\mathrm{H}} B X$, where $X=[x, p]$.
Let $v=\left[\begin{array}{l}\nu_{1} \\ \nu_{2}\end{array}\right]$ be the eigenvector. Then $\rho(X v)=\mu$, and $X v=\nu_{1} X+\nu_{2} p$. So

$$
\underset{t \in \mathbb{C}}{\arg \inf } \rho(x+t p)=: t_{\mathrm{opt}}= \begin{cases}\nu_{2} / \nu_{1}, & \text { if } \nu_{1} \neq 0 \\ \infty, & \text { if } \nu_{1}=0\end{cases}
$$

Interpret $t_{\mathrm{opt}}=\infty$ in the sense $\lim _{t \rightarrow \infty} \rho(x+t p)=\rho(p)$.

$$
\rho(y)=\inf _{t \in \mathbb{C}} \rho(x+t p), \quad y= \begin{cases}x+t_{\mathrm{opt}} p & \text { if } t_{\mathrm{opt}} \text { is finite } \\ p & \text { otherwise }\end{cases}
$$

Line Search

Suppose x, p are linearly independent. Then $x^{H} r(y)=0$ and $p^{H} r(y)=0$.

Proof

$p^{H} r(y)=0$: True if $y=p$, i.e., $t_{\text {opt }}=\infty$. Otherwise

$$
y=x+t_{\text {opt }} \boldsymbol{p}, \quad \rho(y)=\min _{t \in \mathbb{C}} \rho(x+t p)=\min _{s \in \mathbb{C}} \rho(y+s p) .
$$

Optimal at $s=0 . \rho(y+s p)=\rho(y)+\frac{2}{y^{H} B y} \Re\left(s p^{\mathrm{H}} r(y)\right)+\mathcal{O}\left(s^{2}\right)$ implies $p^{\mathrm{H}} r(y)=0$.
$x^{H} r(y)=0$: True if $y=x, t_{\text {opt }}=0$. and thus $x^{H} r(y)=x^{H} r(x)=0$. Otherwise

$$
y=\underset{s \in \mathbb{C}}{\arg \inf } \rho(p+s x) .
$$

Therefore $x^{H} r(y)=0$.

Stopping Criteria

Common one: check if $\|r(x)\|$ tiny enough. Reason: Easy to use and available.

$$
\text { if } \frac{\|r(\boldsymbol{x})\|_{2}}{\|\boldsymbol{A x}\|_{2}+|\rho(\boldsymbol{x})|\|B \boldsymbol{x}\|_{2}} \leq \text { rtol }
$$

Implication: $(\rho(\boldsymbol{x}), \boldsymbol{x})$ is an exact eigenpair of $(A+E)-\lambda B$ for some Hermitian matrix E.
Can prove that (suppose $\|\boldsymbol{x}\|_{2}=1$)

$$
\min \|E\|_{2}=\|r(x)\|_{2}, \quad \min \|E\|_{F}=\sqrt{2}\|r(x)\|_{2} .
$$

More can be found in Chapter 5 of:
Zhaojun Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (editors). Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000.

Steepest Descent method

Given an initial approximation \boldsymbol{x}_{0} to u_{1}, and a relative tolerance rtol, the algorithm attempts to compute an approximate eigenpair to (λ_{1}, u_{1}) with the prescribed rtol.

```
\(1: x_{0}=x_{0} /\left\|x_{0}\right\|_{B}, \rho_{0}=x_{0}^{\mathrm{H}} A x_{0}, r_{0}=A x_{0}-\rho_{0} B x_{0} ;\)
2: for \(\ell=0,1, \ldots\) do
3: if \(\left\|\boldsymbol{r}_{\ell}\right\|_{2} /\left(\left\|A \boldsymbol{x}_{\ell}\right\|_{2}+\left|\boldsymbol{\rho}_{\ell}\right|\left\|B \boldsymbol{x}_{\ell}\right\|_{2}\right) \leq \mathrm{rtol}\) then
4: BREAK;
5: else
6: \(\quad\) compute the smaller eigenvalue \(\mu\) and corresponding eigenvector \(v\) of
\(Z^{H}(A-\lambda B) Z\), where \(Z=\left[\boldsymbol{x}_{\ell}, r_{\ell}\right]\);
\(\hat{x}=Z v, \boldsymbol{x}_{\ell+1}=\hat{x} /\|\hat{x}\|_{B} ;\)
\(\boldsymbol{\rho}_{\ell+1}=\mu, \boldsymbol{r}_{\ell+1}=A \boldsymbol{x}_{\ell+1}-\boldsymbol{\rho}_{\ell+1} B \boldsymbol{x}_{\ell+1} ;\)
    end if
    end for
    return \(\left(\boldsymbol{\rho}_{\ell}, \boldsymbol{x}_{\ell}\right)\) as an approximate eigenpair to \(\left(\lambda_{1}, u_{1}\right)\).
```

Note: At Line 6, $\operatorname{rank}(Z)=2$ always unless $\boldsymbol{r}_{\ell}=0$ because $\boldsymbol{x}_{\ell}^{\mathrm{H}} \boldsymbol{r}_{\ell}=0$.

Pros: Easy to implement; low memory requirement.
Cons: Possibly slow to converge, sometimes unbearably slow.
Well-known: SD slowly moves in zigzag towards an optimal point when the contours near the point are extremely flat.

Ways to rescue:

- Extended the search space: "line search" to "subspace search"
- Modify the search direction: move away from the steepest descent direction $-\nabla \rho(x)$
- Combination

Seek to extend the search space naturally.
SD search space span $\{x, r(x)\}$. Note $r(x)=A x-\rho(x) B x=[A-\rho(x) B] x$.

$$
\operatorname{span}\{x, r(x)\}=\operatorname{span}\{x,[A-\rho(x) B] x\}=\mathcal{K}_{2}([A-\rho(x) B], x)
$$

the 2nd Krylov subspace of $A-\rho(x) B$ on x.
Naturally extend $\mathcal{K}_{2}([A-\rho(x) B], x)$ to

$$
\mathcal{K}_{m}([A-\rho(x) B], x)=\operatorname{span}\left\{x,[A-\rho(x) B] x, \ldots,[A-\rho(x) B]^{m-1} x\right\}
$$

the mth Krylov subspace of $A-\rho(x) B$ on x.
Call resulting method extended steepest descent method (ESD). It is in fact the inverse free Krylov subspace method of Golub and Ye (2002).

Extended Steepest Descent method

Given an initial approximation \boldsymbol{x}_{0} to u_{1}, a relative tolerance rtol, and an integer $m \geq 2$, the algorithm attempts to compute an approximate eigenpair to (λ_{1}, u_{1}) with the prescribed rtol.
1: $x_{0}=x_{0} /\left\|x_{0}\right\|_{B}, \rho_{0}=x_{0}^{\mathrm{H}} A x_{0}, r_{0}=A x_{0}-\rho_{0} B x_{0}$;
2: for $\ell=0,1, \ldots$ do
3: if $\left\|\boldsymbol{r}_{\ell}\right\|_{2} /\left(\left\|A \boldsymbol{x}_{\ell}\right\|_{2}+\left|\boldsymbol{\rho}_{\ell}\right|\left\|B \boldsymbol{x}_{\ell}\right\|_{2}\right) \leq$ rtol then
4: BREAK;
5: else
6:
7:
compute a basis matrix $Z \in \mathbb{C}^{n \times m}$ of Krylov subspace $\mathcal{K}_{m}\left(A-\boldsymbol{\rho}_{\ell} B, \boldsymbol{x}_{\ell}\right)$;
compute the smallest eigenvalue μ and corresponding eigenvector v of $Z^{H}(A-\lambda B) Z$;
8: $\quad y=Z v, x_{\ell+1}=y /\|y\|_{B}$;
9: $\quad \boldsymbol{\rho}_{\ell+1}=\mu, \boldsymbol{r}_{\ell+1}=A \boldsymbol{x}_{\ell+1}-\boldsymbol{\rho}_{\ell+1} B \boldsymbol{x}_{\ell+1}$;
10: end if
11: end for
12: return $\left(\boldsymbol{\rho}_{\ell}, \boldsymbol{x}_{\ell}\right)$ as an approximate eigenpair to $\left(\lambda_{1}, u_{1}\right)$.

Note: If $B=I$, it is equivalent to Restarted Lanczos
$C=A-\rho B$ is Hermitian.

Lanczos process

```
\(z_{1}=\boldsymbol{x} /\|\boldsymbol{x}\|_{2}, \beta_{0}=0 ; z_{0}=0 ;\)
for \(j=1,2, \ldots, k\) do
        \(z=C z_{j}, \alpha_{j}=z_{j}^{\mathrm{H}} z ;\)
        \(z=z-\alpha_{j} z_{j}-\beta_{j-1} z_{j-1}, \beta_{j}=\|z\|_{2} ;\)
        if \(\beta_{j}=0\) then
            BREAK;
        else
            \(z_{j+1}=z / \beta_{j} ;\)
        end if
    end for
```

- Keep $A z_{j}$ and $B z_{j}$ for projecting A and B later. Or, just z_{j} but solve $Z^{\mathrm{H}} C Z-\lambda Z^{\mathrm{H}} B Z$ instead
- Implemented as is, $Z=\left[z_{1}, \ldots, z_{m}\right]$ may lose orthogonality - partial or full re-orthogonalization should be used. Pose little problem since usually m is modest.
- Possibly $\operatorname{dim} \mathcal{K}_{m}(A-\boldsymbol{\rho} B, \boldsymbol{x})<m$. Pose no problem $-Z$ has fewer than m columns

Global Convergence

Convergence

For SD and ESD, $\boldsymbol{\rho}_{\ell}$ converges to some eigenvalue $\hat{\lambda}$ of $A-\lambda B$ and $\left\|(A-\hat{\lambda} B) x_{\ell}\right\|_{2} \rightarrow 0$.

Proof.

1) $\left\{\boldsymbol{\rho}_{\ell}\right\}$ monotonically decreasing and $\boldsymbol{\rho}_{\ell} \geq \lambda_{1} \Rightarrow \boldsymbol{\rho}_{\ell} \rightarrow \hat{\lambda}$.
2) $\left\{\boldsymbol{x}_{\ell}\right\}$ bounded in $\mathbb{C}^{n} \Rightarrow$ convergent $\left\{\boldsymbol{x}_{n_{\ell}}\right\}, \boldsymbol{x}_{n_{\ell}} \rightarrow \hat{x}$.
3) $\boldsymbol{x}_{n_{\ell}}^{\mathrm{H}}\left(A-\boldsymbol{\rho}_{n_{\ell}} B\right) \boldsymbol{x}_{n_{\ell}}=0 \quad \Rightarrow \quad \hat{x}^{\mathrm{H}} \hat{r}=\hat{x}^{\mathrm{H}}(A-\hat{\lambda} B) \hat{x}=0$.
4) Claim $\hat{r}=0$. Otherwise $\hat{r} \neq 0, \operatorname{rank}([\hat{x}, \hat{r}])=2$, and

$$
\widehat{A}-\hat{\lambda} \widehat{B}:=\left[\begin{array}{l}
\hat{x}^{\mathrm{H}} \\
\hat{r}^{\mathrm{H}}
\end{array}\right] A[\hat{x}, \hat{r}]-\hat{\lambda}\left[\begin{array}{l}
\hat{x}^{\mathrm{H}} \\
\hat{r}^{\mathrm{H}}
\end{array}\right] B[\hat{x}, \hat{r}]=\left[\begin{array}{cc}
0 & \hat{r}^{\mathrm{H}} \hat{r} \\
\hat{r}^{H} \hat{r} & \hat{r}^{\mathrm{H}}(A-\hat{\lambda} B) \hat{r}
\end{array}\right] \text { is indefinite. }
$$

Smaller eigenvalue μ of $\widehat{A}-\lambda \widehat{B}: \mu<\hat{\lambda}$. Let

$$
\widehat{A}_{\ell}=\left[x_{\ell}, \boldsymbol{r}_{\ell}\right]^{H} A\left[x_{\ell}, \boldsymbol{r}_{\ell}\right], \quad \widehat{B}_{\ell}=\left[x_{\ell}, \boldsymbol{r}_{\ell}\right]^{\mathrm{H}} B\left[x_{\ell}, \boldsymbol{r}_{\ell}\right],
$$

$\mu_{\ell+1}$ smaller eigenvalue of $\widehat{A}_{\ell}-\lambda \widehat{B}_{\ell}$. Then
(i) $\widehat{A}_{n_{\ell}} \rightarrow \widehat{A}, \quad \widehat{B}_{n_{\ell}} \rightarrow \widehat{B} \quad \Rightarrow \quad \mu_{n_{\ell}+1} \rightarrow \mu$,
(ii) $\rho_{n_{\ell}+1} \leq \mu_{n_{\ell}+1} \quad \Rightarrow \quad \hat{\lambda}=\lim _{i \rightarrow \infty} \rho_{n_{\ell}+1} \leq \lim _{i \rightarrow \infty} \mu_{n_{\ell}+1}=\mu$,
a contradiction! So $\hat{r}=0$.

The j th Chebyshev polynomial of the first kind $\mathscr{T}_{j}(t)$

$$
\begin{aligned}
\mathscr{T}_{j}(t) & =\cos (j \arccos t) & & \text { for }|t| \leq 1, \\
& =\frac{1}{2}\left[\left(t+\sqrt{t^{2}-1}\right)^{j}+\left(t+\sqrt{t^{2}-1}\right)^{-j}\right] & & \text { for } t \geq 1 .
\end{aligned}
$$

Or, $\mathscr{T}_{0}(t)=1, \mathscr{T}_{1}(t)=t$, and $\mathscr{T}_{j}(t)=2 \mathscr{T}_{j-1}(t)-\mathscr{T}_{j-2}(t)$ for $j \geq 2$.
Numerous optimal properties among polynomials
$\square \operatorname{deg}(p) \leq j,|p(t)| \leq 1$ for $t \in[-1,1] \Rightarrow|p(t)| \leq\left|\mathscr{T}_{j}(t)\right|$ for $t \notin[-1,1]$.
I.e., $\left|\mathscr{T}_{j}(t)\right| \leq 1$ for $|t| \leq 1$ and $\left|\mathscr{F}_{j}(t)\right|$ grows fastest. (Sample plots next slide.)

$$
\left|\mathscr{T}_{j}\left(\frac{1+t}{1-t}\right)\right|=\left|\mathscr{T}_{j}\left(\frac{t+1}{t-1}\right)\right|=\frac{1}{2}\left[\Delta_{t}^{j}+\Delta_{t}^{-j}\right] \quad \text { for } 1 \neq t>0
$$

where $\quad \Delta_{t}:=\frac{\sqrt{t}+1}{|\sqrt{t}-1|}$ for $t>0$.
Frequently show up in numerical analysis and computations: Chebyshev acceleration in iterative methods, convergence of CG and Lanczos methods.

Chebyshev Polynomial (sample plots)

Chebyshev Polynomial: typical use

Problem Given $[\alpha, \beta]$ and $\gamma \notin[\alpha, \beta]$, seek a polynomial p with $\operatorname{deg}(p) \leq m$ such that $p(\gamma)=1$ and $\max _{x \in[\alpha, \beta]}|p(x)|$ is minimized.

Define 1-1 mapping $x \in[\alpha, \beta] \rightarrow t \equiv t(x):=\frac{2}{\beta-\alpha}\left(x-\frac{\alpha+\beta}{2}\right) \in[-1,1]$,

$$
t(\gamma)=-\frac{1+\frac{\alpha-\gamma}{\beta-\gamma}}{1-\frac{\alpha-\gamma}{\beta-\gamma}} \quad \text { for } \gamma<\alpha, \text { and } \quad \frac{1+\frac{\gamma-\beta}{\gamma-\alpha}}{1-\frac{\gamma-\beta}{\gamma-\alpha}} \quad \text { for } \beta<\gamma .
$$

Optimal $p(x)=\frac{\mathscr{T}_{m}(t(x))}{\mathscr{T}_{m}(t(\gamma))}$:

$$
\begin{gathered}
p(\gamma)=1, \quad \max _{x \in[\alpha, \beta]}|p(x)|=\frac{1}{\left|\mathscr{T}_{m}(t(\gamma))\right|}=2\left[\Delta_{\eta}^{j}+\Delta_{\eta}^{-j}\right]^{-1}, \\
\Delta_{\eta}=\frac{1+\sqrt{\eta}}{1-\sqrt{\eta}}, \quad \eta=\frac{\alpha-\gamma}{\beta-\gamma} \quad \text { for } \gamma<\alpha, \text { and } \quad \eta=\frac{\gamma-\beta}{\gamma-\alpha} \quad \text { for } \beta<\gamma .
\end{gathered}
$$

Theorem on Convergence Rate (Golub \& Ye, 2002)

Suppose λ_{1} is simple, i.e., $\lambda_{1}<\lambda_{2}$, and $\lambda_{1}<\boldsymbol{\rho}_{\ell}<\lambda_{2}$. Let

$$
\omega_{1}<\omega_{2} \leq \cdots \leq \omega_{n}
$$

be the eigenvalues of $A-\boldsymbol{\rho}_{\ell} B$ and v_{1} be an eigenvector corresponding to ω_{1}. Then

$$
\boldsymbol{\rho}_{\ell+1}-\lambda_{1} \leq\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right) \epsilon_{m}^{2}+2\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right)^{3 / 2} \epsilon_{m}\left(\frac{\|B\|_{2}}{\omega_{2}}\right)^{1 / 2}+\delta_{\ell}
$$

where

$$
\begin{aligned}
0 \leq \delta_{\ell} & :=\boldsymbol{\rho}_{\ell}-\lambda_{1}+\omega_{1} \frac{v_{1}^{\mathrm{H}} v_{1}}{v_{1}^{\mathrm{H}} B v_{1}}=\mathcal{O}\left(\left|\boldsymbol{\rho}_{\ell}-\lambda_{1}\right|^{2}\right) \\
\epsilon_{m} & :=\min _{f \in \mathbb{P}_{m-1}, f\left(\omega_{1}\right)=1} \max _{j>1}\left|f\left(\omega_{j}\right)\right|
\end{aligned}
$$

$\epsilon_{m}:=\min _{f \in \mathbb{P}_{m-1}, f\left(\omega_{1}\right)=1} \max _{j>1}\left|f\left(\omega_{j}\right)\right|$ usually unknown, except,
$1 m=2$ for which the optimal $f_{\text {opt }}$ is

$$
\begin{gathered}
f_{\mathrm{opt}}(t)=\frac{t-\left(\omega_{2}+\omega_{n}\right) / 2}{\omega_{1}-\left(\omega_{2}+\omega_{n}\right) / 2} \in \mathbb{P}_{m-1}, \quad f_{\mathrm{opt}}\left(\omega_{1}\right)=1, \max _{j>1}\left|f_{\mathrm{opt}}\left(\omega_{j}\right)\right|=\left|f_{\mathrm{opt}}\left(\omega_{2}\right)\right|<1 . \\
\epsilon_{2}=\frac{1-\eta}{1+\eta}, \quad \eta=\frac{\omega_{2}-\omega_{1}}{\omega_{n}-\omega_{1}}
\end{gathered}
$$

$2 \omega_{2}=\cdots=\omega_{n}$ for which $f_{\text {opt }}(t)=\left(t-\omega_{2}\right) /\left(\omega_{1}-\omega_{2}\right)$ and $\epsilon_{m}=0$ for all $m \geq 2$.
In general ϵ_{m} can be bounded by using the Chebyshev polynomial

$$
\begin{gathered}
f(t)=\mathscr{T}_{m-1}\left(\frac{2 t-\left(\omega_{n}+\omega_{2}\right)}{\omega_{n}-\omega_{2}}\right) / \mathscr{T}_{m-1}\left(\frac{1+\eta}{1-\eta}\right), \quad f\left(\omega_{1}\right)=1, \\
\epsilon_{m} \leq \max _{\omega_{2} \leq t \omega_{n}}|f(t)|=\left[\mathscr{T}_{m-1}\left(\frac{1+\eta}{1-\eta}\right)\right]^{-1}=2\left[\Delta_{\eta}^{m-1}+\Delta_{\eta}^{-(m-1)}\right]^{-1} .
\end{gathered}
$$

$\boldsymbol{\rho}_{\ell+1}-\lambda_{1} \leq\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right) \epsilon_{m}^{2}+2\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right)^{3 / 2} \epsilon_{m}\left(\frac{\|B\|_{2}}{\omega_{2}}\right)^{1 / 2}+\mathcal{O}\left(\left|\boldsymbol{\rho}_{\ell}-\lambda_{1}\right|^{2}\right)$.
Ignoring high order terms, $\frac{\boldsymbol{\rho}_{\ell+1}-\lambda_{1}}{\boldsymbol{\rho}_{\ell}-\lambda_{1}} \gtrsim \epsilon_{m}^{2}$.
If $\epsilon_{m}=0$ (unlikely, however), then $\boldsymbol{\rho}_{\ell+1}-\lambda_{1}=\mathcal{O}\left(\left|\boldsymbol{\rho}_{\ell}-\lambda_{1}\right|^{2}\right)$, quadratic convergence.
Locally, $\boldsymbol{\rho}_{\ell} \approx \lambda_{1}, \operatorname{eig}\left(A-\boldsymbol{\rho}_{\ell} B\right) \approx \operatorname{eig}\left(A-\lambda_{1} B\right)=\left\{0=\gamma_{1}<\gamma_{2} \leq \cdots \leq \gamma_{n}\right\}$. So

$$
\begin{gathered}
\epsilon_{m} \approx \min _{f \in \mathbb{P}_{m-1}, f\left(\gamma_{1}\right)=1} \max _{j>1}\left|f\left(\gamma_{j}\right)\right| \leq 2\left[\Delta_{\eta}^{m-1}+\Delta_{\eta}^{-(m-1)}\right]^{-1} \\
\Delta_{\eta}=\frac{1+\sqrt{\eta}}{1-\sqrt{\eta}}, \quad \eta=\frac{\gamma_{2}-\gamma_{1}}{\gamma_{n}-\gamma_{1}}
\end{gathered}
$$

Observation. ϵ_{m} depends on $\operatorname{eig}\left(A-\rho_{\ell} B\right)$, not on $\operatorname{eig}(A, B)$. This is the Key for preconditioning later: transforming $A-\lambda B$ to preserve eig (A, B) but make $\operatorname{eig}\left(A-\rho_{\ell} B\right)$ more preferable.

Lemma (Golub \& Ye, 2002)

Let $\left(\omega_{1}, v_{1}\right)$ be the smallest eigenvalue of $A-\boldsymbol{\rho}_{\ell} B$, i.e.. Then

$$
\begin{equation*}
-\omega_{1} \frac{v_{1}^{\mathrm{H}} v_{1}}{v_{1}^{\mathrm{H}} B v_{1}} \leq \boldsymbol{\rho}_{\ell}-\lambda_{1} \leq-\omega_{1} \frac{u_{1}^{\mathrm{H}} u_{1}}{u_{1}^{\mathrm{H}} B u_{1}} . \tag{4}
\end{equation*}
$$

Asymptotically, if λ_{1} is a simple eigenvalue of $A-\lambda B$, then as $\boldsymbol{\rho}_{\ell} \rightarrow \lambda_{1}$,

$$
\begin{equation*}
\omega_{1} \frac{v_{1}^{\mathrm{H}} v_{1}}{v_{1}^{\mathrm{H}} B v_{1}}=\left(\lambda_{1}-\boldsymbol{\rho}_{\ell}\right)+\mathcal{O}\left(\left|\lambda_{1}-\boldsymbol{\rho}_{\ell}\right|^{2}\right) . \tag{5}
\end{equation*}
$$

Importance. Relate $\lambda_{1}-\boldsymbol{\rho}_{\ell}$ to ω_{1}. Special case: $B=I, \omega_{1}=\lambda_{1}-\boldsymbol{\rho}_{\ell}$.

1) $\boldsymbol{\rho}_{\ell} \geq \lambda_{1}$ always. If $\boldsymbol{\rho}_{\ell}=\lambda_{1}$, then $\omega_{1}=0$. No proof needed.
2) Suppose $\boldsymbol{\rho}_{\ell}>\lambda_{1}$. $A-\boldsymbol{\rho}_{\ell} B$ is indefinite and hence $\omega_{1}<0$. We have

$$
\left(A-\boldsymbol{\rho}_{\ell} B\right) v_{1}=\omega_{1} v_{1}, \quad\left(A-\omega_{1} I-\boldsymbol{\rho}_{\ell} B\right) v_{1}=0, \quad A-\omega_{1} I-\boldsymbol{\rho}_{\ell} B \succeq 0 .
$$

Therefore $\left(\boldsymbol{\rho}_{\ell}, v_{1}\right)$ is the smallest eigenpair of $\left(A-\omega_{1} I\right)-\lambda B$.
3) Note also $\left(\lambda_{1}, u_{1}\right)$ is the smallest eigenpair of $A-\lambda B$.

$$
\begin{aligned}
\boldsymbol{\rho}_{\ell} & =\frac{v_{1}^{\mathrm{H}}\left(A-\omega_{1} l\right) v_{1}}{v_{1}^{\mathrm{H} B v_{1}}}=\frac{v_{1}^{\mathrm{H}} A v_{1}}{v_{1}^{\mathrm{H}} B v_{1}}+\frac{-\omega_{1} v_{1}^{\mathrm{H}} v_{1}}{v_{1}^{\mathrm{H}} B v_{1}} \\
& \geq \min _{x} \frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} B x}+\frac{-\omega_{1} v_{1}^{\mathrm{H}} v_{1}}{v_{1}^{\mathrm{H}} B v_{1}}=\lambda_{1}+\frac{-\omega_{1} v_{1}^{\mathrm{H}} v_{1}}{v_{1}^{\mathrm{H}} B v_{1}}, \\
\lambda_{1} & =\frac{u_{1}^{\mathrm{H}} A u_{1}}{u_{1}^{\mathrm{H}} B u_{1}}=\frac{u_{1}^{\mathrm{H}}\left(A-\boldsymbol{\rho}_{\ell} B\right) u_{1}}{u_{1}^{\mathrm{H}} u_{1}} \cdot \frac{u_{1}^{\mathrm{H}} u_{1}}{u_{1}^{\mathrm{H}} B u_{1}}+\boldsymbol{\rho}_{\ell} \\
& \geq \min _{x} \frac{x^{\mathrm{H}}\left(A-\boldsymbol{\rho}_{\ell} B\right) x}{x^{\mathrm{H}} x} \cdot \frac{u_{1}^{\mathrm{H}} u_{1}}{u_{1}^{\mathrm{H}} B u_{1}}+\boldsymbol{\rho}_{\ell}=\omega_{1} \cdot \frac{u_{1}^{\mathrm{H}} u_{1}}{u_{1}^{\mathrm{H}} B u_{1}}+\boldsymbol{\rho}_{\ell} .
\end{aligned}
$$

Together yielding $-\omega_{1} \frac{v_{1}^{\mathrm{H}} v_{1}}{v_{1}^{\mathrm{H}} B v_{1}} \leq \boldsymbol{\rho}_{\ell}-\lambda_{1} \leq-\omega_{1} \frac{u_{1}^{\mathrm{H}} u_{1}}{u_{1}^{\mathrm{H}} B u_{1}}$.
4) $\omega_{1}(t)=\lambda_{\text {min }}(A-t B)$, for t near λ_{1}. Then $\omega_{1}\left(\lambda_{1}\right)=0$ and $\omega_{1}\left(\boldsymbol{\rho}_{\ell}\right)=\omega_{1}$.
5) $\omega_{1}\left(\lambda_{1}\right)=0$ is a simple eigenvalue of $A-\lambda_{1} B$. So $\omega_{1}(t)$ is differentiable in a neighborhood of λ_{1}.
6) Expand $\omega_{1}(t)$ at $\boldsymbol{\rho}_{\ell}$, sufficiently close to λ_{1}. Can prove $\omega_{1}^{\prime}\left(\boldsymbol{\rho}_{\ell}\right)=-\frac{v_{1}^{H} B v_{1}}{v_{1}^{H} v_{1}}$. Hence

$$
\begin{aligned}
\omega_{1}(t) & =\omega_{1}\left(\boldsymbol{\rho}_{\ell}\right)+\sigma_{1}^{\prime}\left(\boldsymbol{\rho}_{\ell}\right)\left(t-\boldsymbol{\rho}_{\ell}\right)+\mathcal{O}\left(\left|t-\boldsymbol{\rho}_{\ell}\right|^{2}\right) \\
& =\omega_{1}-\frac{v_{1}^{H} B v_{1}}{v_{1}^{H} v_{1}}\left(t-\boldsymbol{\rho}_{\ell}\right)+\mathcal{O}\left(\left|t-\boldsymbol{\rho}_{\ell}\right|^{2}\right)
\end{aligned}
$$

Setting $t=\lambda_{1}$,

$$
0=\omega_{1}\left(\lambda_{1}\right)=\omega_{1}-\frac{v_{1}^{\mathrm{H}} B v_{1}}{v_{1}^{\mathrm{H}} v_{1}}\left(\lambda_{1}-\boldsymbol{\rho}_{\ell}\right)+\mathcal{O}\left(\left|\lambda_{1}-\boldsymbol{\rho}_{\ell}\right|^{2}\right),
$$

from which

$$
\omega_{1} \frac{v_{1}^{\mathrm{H}} v_{1}}{v_{1}^{\mathrm{H}} B v_{1}}=\left(\lambda_{1}-\boldsymbol{\rho}_{\ell}\right)+\mathcal{O}\left(\left|\lambda_{1}-\boldsymbol{\rho}_{\ell}\right|^{2}\right) .
$$

Theorem on Convergence Rate (Golub \& Ye, 2002)

Suppose λ_{1} is simple, i.e., $\lambda_{1}<\lambda_{2}$, and $\lambda_{1}<\boldsymbol{\rho}_{\ell}<\lambda_{2}$. Let

$$
\omega_{1}<\omega_{2} \leq \cdots \leq \omega_{n}
$$

be the eigenvalues of $A-\boldsymbol{\rho}_{\ell} B$ and v_{1} be an eigenvector corresponding to ω_{1}. Then

$$
\boldsymbol{\rho}_{\ell+1}-\lambda_{1} \leq\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right) \epsilon_{m}^{2}+2\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right)^{3 / 2} \epsilon_{m}\left(\frac{\|B\|_{2}}{\omega_{2}}\right)^{1 / 2}+\delta_{\ell}
$$

where

$$
\begin{aligned}
0 \leq \delta_{\ell} & :=\boldsymbol{\rho}_{\ell}-\lambda_{1}+\omega_{1} \frac{v_{1}^{\mathrm{H}} v_{1}}{v_{1}^{\mathrm{H}} B v_{1}}=\mathcal{O}\left(\left|\boldsymbol{\rho}_{\ell}-\lambda_{1}\right|^{2}\right) \\
\epsilon_{m} & :=\min _{f \in \mathbb{P}_{m-1}, f\left(\omega_{1}\right)=1} \max _{j>1}\left|f\left(\omega_{j}\right)\right|
\end{aligned}
$$

1) $C=A-\rho_{\ell} B=V \Omega V^{H}$ (eigen-decomposition), $V=\left[v_{1}, v_{2}, \cdots, v_{n}\right]$ (orthogonal), $\Omega=\operatorname{diag}\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)$.
2) $\mathcal{K}_{m} \equiv \mathcal{K}_{m}\left(C, \boldsymbol{x}_{\ell}\right)=\left\{f(C) \boldsymbol{x}_{\ell}, f \in \mathbb{P}_{m-1}\right\}$, and

$$
\begin{align*}
\boldsymbol{\rho}_{\ell+1} & =\min _{x \in \mathscr{K}_{m}} \frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} B x}=\boldsymbol{\rho}_{\ell}+\min _{x \in \mathscr{K}_{m}} \frac{x^{\mathrm{H}}\left(A-\boldsymbol{\rho}_{\ell} B\right) x}{x^{\mathrm{H}} B x} \\
& =\boldsymbol{\rho}_{\ell}+\min _{f \in \mathbb{P}_{m-1}} \frac{\boldsymbol{x}_{\ell}^{\mathrm{H}} f(C) C f(C) \boldsymbol{x}_{\ell}}{\boldsymbol{x}_{\ell}^{\mathrm{H}} f(C) B f(C) \boldsymbol{x}_{\ell}} . \tag{6}
\end{align*}
$$

3) Let $f_{\text {opt }} \in \mathbb{P}_{m-1}$ be the minimizing polynomial that defines ϵ_{m}. Then $f_{\text {opt }}\left(\omega_{1}\right)=1$ by the definition, and also $\epsilon_{m}=\max _{j>1}\left|f_{\text {opt }}\left(\omega_{j}\right)\right|<1$ because

$$
f(t)=\frac{t-\left(\omega_{2}+\omega_{n}\right) / 2}{\omega_{1}-\left(\omega_{2}+\omega_{n}\right) / 2} \in \mathbb{P}_{m-1}, f\left(\omega_{1}\right)=1, \max _{j>1}\left|f\left(\omega_{j}\right)\right|=\left|f\left(\omega_{2}\right)\right|<1
$$

4) $\boldsymbol{x}_{\ell}^{\mathrm{H}}\left(A-\boldsymbol{\rho}_{\ell} B\right) \boldsymbol{x}_{\ell}=0 \Rightarrow$ that $v_{1}^{\mathrm{H}} \boldsymbol{x}_{\ell} \neq 0$ and hence $f_{\mathrm{opt}}(C) \boldsymbol{x}_{\ell} \neq 0$ (why?). Thus

$$
\begin{aligned}
\boldsymbol{\rho}_{\ell+1} & \leq \boldsymbol{\rho}_{\ell}+\frac{\boldsymbol{x}_{\ell}^{\mathrm{H}} f_{\mathrm{opt}}(C) C f_{\mathrm{opt}}(C) \boldsymbol{x}_{\ell}}{\boldsymbol{x}_{\ell}^{\mathrm{H}} f_{\mathrm{opt}}(C) B f_{\mathrm{opt}}(C) \boldsymbol{x}_{\ell}}=\boldsymbol{\rho}_{\ell}+\frac{\boldsymbol{x}_{\ell}^{\mathrm{H}} V f_{\mathrm{opt}}^{2}(\Omega) \Omega V^{\mathrm{H}} \boldsymbol{x}_{\ell}}{\boldsymbol{x}_{\ell}^{\mathrm{H}} V f_{\mathrm{opt}}(\Omega) B_{1} f_{\mathrm{opt}}(\Omega) V^{\mathrm{H}} \boldsymbol{x}_{\ell}} \\
& =\boldsymbol{\rho}_{\ell}+\frac{y^{\mathrm{H}} f_{\mathrm{opt}}^{2}(\Omega) \Omega y}{y^{\mathrm{H}} f_{\mathrm{opt}}(\Omega) B_{1} f_{\mathrm{opt}}(\Omega) y}, \quad \text { where } B_{1}=V^{\mathrm{H}} B V, y=V^{\mathrm{H}} \boldsymbol{x}_{\ell} .
\end{aligned}
$$

5) Write $y=\left[\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right]^{\top}=\xi_{1} e_{1}+\hat{y}, \hat{y}=\left[0, \xi_{2}, \ldots, \xi_{n}\right]^{\top}$. We have

$$
\begin{aligned}
y^{\mathrm{H}} f_{\mathrm{opt}}(\Omega) B_{1} f_{\mathrm{opt}}(\Omega) y= & \left(\xi_{1} e_{1}+\hat{y}\right)^{\mathrm{H}} f_{\mathrm{opt}}(\Omega) B_{1} f_{\mathrm{opt}}(\Omega)\left(\xi_{1} e_{1}+\hat{y}\right) \\
= & \xi_{1}^{2} f_{\mathrm{opt}}\left(\omega_{1}\right)^{2} e_{1}^{\mathrm{H}} B_{1} e_{1}+2 \xi_{1} f_{\mathrm{opt}}\left(\omega_{1}\right) e_{1}^{\mathrm{H}} B_{1} f_{\mathrm{opt}}(\Omega) \hat{y} \\
& +\hat{y}^{\mathrm{H}} f_{\mathrm{opt}}(\Omega) B_{1} f_{\mathrm{opt}}(\Omega) \hat{y} \\
= & \xi_{1}^{2} \beta_{1}^{2}+2 \xi_{1} \beta_{2}+\beta_{3}^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
\beta_{1}^{2} & =e_{1}^{\mathrm{H}} B_{1} e_{1}=v_{1}^{\mathrm{H}} B v_{1} \\
\beta_{3}^{2} & =\hat{y}^{\mathrm{H}} f_{\mathrm{opt}}(\Omega) B_{1} f_{\mathrm{opt}}(\Omega) \hat{y} \leq \max _{j>1} f_{\mathrm{opt}}\left(\omega_{j}\right)^{2}\left\|B_{1}\right\|_{2}\|\hat{y}\|_{2}^{2}=\epsilon_{m}^{2}\|B\|_{2}\|\hat{y}\|_{2}^{2} \\
\left|\beta_{2}\right| & =\left|e_{1}^{\mathrm{H}} B_{1} f_{\mathrm{opt}}(\Omega) \hat{y}\right| \leq \beta_{1} \beta_{3}
\end{aligned}
$$

Note $\sum_{j} \omega_{j} \xi_{j}^{2}=y^{\mathrm{H}} \Omega y=\boldsymbol{x}_{\ell}^{\mathrm{H}}\left(A-\boldsymbol{\rho}_{\ell} B\right) \boldsymbol{x}_{\ell}=0 \Rightarrow\left|\omega_{1}\right| \xi_{1}^{2}=\sum_{j>1} \omega_{j} \xi_{j}^{2} \geq \omega_{2}\|\hat{y}\|_{2}^{2}$. Hence

$$
\beta_{3} \leq \epsilon_{m}\|B\|_{2}^{1 / 2}\left(\frac{\left|\omega_{1}\right|}{\omega_{2}}\right)^{1 / 2}\left|\xi_{1}\right| .
$$

6) $y^{\mathrm{H}} f_{\text {opt }}^{2}(\Omega) \Omega y=\xi_{1}^{2} \omega_{1}+\hat{y}^{\mathrm{H}} f_{\text {opt }}(\Omega)^{2} \Omega \hat{y}$, and

$$
\begin{aligned}
& y^{\mathrm{H}} f_{\mathrm{opt}}^{2}(\Omega) \Omega y=\sum_{j} \omega_{j} f_{\mathrm{opt}}^{2}\left(\omega_{j}\right) \xi_{\ell}^{2} \leq \sum_{j} \omega_{j} \xi_{j}^{2}=y^{\mathrm{H}} \Omega y=0 \\
& \hat{y}^{\mathrm{H}} f_{\mathrm{opt}}^{2}(\Omega) \Omega \hat{y}=\sum_{j>1} \omega_{j} f_{\mathrm{opt}}^{2}\left(\omega_{j}\right) \xi_{\ell}^{2} \leq \epsilon_{m}^{2} \sum_{j>1} \omega_{j} \xi_{j}^{2}=\epsilon_{m}^{2}\left|\omega_{1}\right| \xi_{1}^{2} . \\
& \frac{y^{\mathrm{H}} f_{\mathrm{opt}}^{2}(\Omega) \Omega y}{y^{\mathrm{H}} f_{\mathrm{opt}}(\Omega) B_{1} f_{\mathrm{opt}}(\Omega) y} \leq \frac{\xi_{1}^{2} \omega_{1}+\hat{y}^{\mathrm{H}} f_{\mathrm{opt}}(\Omega)^{2} \Omega \hat{y}}{\xi_{1}^{2} \beta_{1}^{2}+2\left|\xi_{1}\right| \beta_{1} \beta_{3}+\beta_{3}^{2}} \\
&=\frac{\omega_{1}}{\beta_{1}^{2}}-\frac{\omega_{1}}{\beta_{1}^{2}} \cdot \frac{2\left|\xi_{1}\right| \beta_{1} \beta_{3}+\beta_{3}^{2}}{\xi_{1}^{2} \beta_{1}^{2}+2\left|\xi_{1}\right| \beta_{1} \beta_{3}+\beta_{3}^{2}}+\frac{\hat{y}^{\mathrm{H}} f_{\mathrm{opt}}(\Omega)^{2} \Omega \hat{y}}{\xi_{1}^{2} \beta_{1}^{2}+2\left|\xi_{1}\right| \beta_{1} \beta_{3}+\beta_{3}^{2}} \\
& \leq \frac{\omega_{1}}{\beta_{1}^{2}}-\frac{\omega_{1}}{\beta_{1}^{2}} \cdot \frac{2\left|\xi_{1}\right| \beta_{1} \beta_{3}}{\xi_{1}^{2} \beta_{1}^{2}}+\frac{\hat{y}^{\mathrm{H}} f_{\mathrm{opt}}(\Omega)^{2} \Omega \hat{y}}{\xi_{1}^{2} \beta_{1}^{2}} \\
& \leq \frac{\omega_{1}}{\beta_{1}^{2}}+2\left(\frac{\left|\omega_{1}\right|}{\beta_{1}^{2}}\right)^{3 / 2} \epsilon_{m}\left(\frac{\|B\|_{2}}{\omega_{2}}\right)^{1 / 2}+\frac{\left|\omega_{1}\right|}{\beta_{1}^{2}} \epsilon_{m}^{2} .
\end{aligned}
$$

7) We have proved

$$
\frac{y^{\mathrm{H}} f_{\mathrm{opt}}^{2}(\Omega) \Omega y}{y^{\mathrm{H}} f_{\mathrm{opt}}(\Omega) B_{1} f_{\mathrm{opt}}(\Omega) y} \leq \frac{\omega_{1}}{\beta_{1}^{2}}+2\left(\frac{\left|\omega_{1}\right|}{\beta_{1}^{2}}\right)^{3 / 2} \epsilon_{m}\left(\frac{\|B\|_{2}}{\omega_{2}}\right)^{1 / 2}+\frac{\left|\omega_{1}\right|}{\beta_{1}^{2}} \epsilon_{m}^{2} .
$$

Note $\frac{\omega_{1}}{\beta_{1}^{2}}=\omega_{1} \frac{v_{1}^{\mathrm{H}} v_{1}}{v_{1}^{\mathrm{H}} B v_{1}}=\left(\lambda_{1}-\boldsymbol{\rho}_{\ell}\right)+\mathcal{O}\left(\left|\lambda_{1}-\boldsymbol{\rho}_{\ell}\right|^{2}\right)$ by the lemma. Therefore

$$
\begin{aligned}
\boldsymbol{\rho}_{\ell+1}-\lambda_{1} & \leq \boldsymbol{\rho}_{\ell}-\lambda_{1}+\frac{y^{\mathrm{H}} f_{\mathrm{opt}}^{2}(\Omega) \Omega y}{y^{\mathrm{H}} f_{\mathrm{opt}}(\Omega) B_{1} f_{\mathrm{opt}}(\Omega) y} \\
& \leq \underbrace{\boldsymbol{\rho}_{\ell}-\lambda_{1}+\frac{\omega_{1}}{\beta_{1}^{2}}}_{\delta_{\ell}}+2\left(\frac{\left|\omega_{1}\right|}{\beta_{1}^{2}}\right)^{3 / 2} \epsilon_{m}\left(\frac{\|B\|_{2}}{\omega_{2}}\right)^{1 / 2}+\frac{\left|\omega_{1}\right|}{\beta_{1}^{2}} \epsilon_{m}^{2} \\
& \leq \delta_{\ell}+2\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right)^{3 / 2} \epsilon_{m}\left(\frac{\|B\|_{2}}{\omega_{2}}\right)^{1 / 2}+\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right) \epsilon_{m}^{2}
\end{aligned}
$$

as expected.

Preconditioning. Transforming a problem that is "easier" (e.g., taking less time) to solve iteratively.

Preconditioning natural for linear systems: transform $A x=b$ to $K A x=K b$ which is "easier" than before. Extreme case: $K A=I$, i.e., $K=A^{-1}$, then $x=K b$. But this is impractical!

A comprise: make $K A \approx I$ as much as practical. Here $K A \approx I$ is understood either $\|K A-I\|$ is relatively small or $K A-I$ is near a low rank matrix.

Preconditioning not so natural for eigenvalue problems: transform $A-\lambda B$ to $K A-\lambda K B$ or $L^{H} A L-\lambda L^{H} B L$ which is "easier" than before.

- No straightforward explanation as to what K makes $K A-\lambda K B$ "easier"
- No straightforward explanation as to what L makes $L^{H} A L-\lambda L^{H} B L$ "easier", except L being the eigenvector matrix that is unknown. No easy way to approximate the unknown eigenvector matrix either.

Will present two ways to understand eigen-problem preconditioning and construct preconditioners.

Eigen-problem preconditioning,

Ideal search direction p : starting at \boldsymbol{x}_{ℓ}, p points to the optimum, i.e., the optimum is on the line $\left\{\boldsymbol{x}_{\ell}+t p: t \in \mathbb{C}\right\}$. How can it be done with unknown optimum?

Expand x_{ℓ} as a linear combination of u_{ℓ}

$$
\boldsymbol{x}_{\ell}=\sum_{j=1}^{n} \alpha_{j} u_{j}=: \alpha_{1} u_{1}+\boldsymbol{v}, \quad \boldsymbol{v}=\sum_{j=2}^{n} \alpha_{j} u_{j} \perp_{B} u_{1}
$$

Then ideal $p=\alpha u_{1}+\beta \boldsymbol{v}, \beta \neq 0$ such that $\alpha_{1} \beta-\alpha \neq 0$ (otherwise $p=\beta \boldsymbol{x}_{\ell}$). Ideal p has to be approximated to be practical. One such approximate p is

$$
p=(A-\sigma B)^{-1} \boldsymbol{r}_{\ell}=(A-\sigma B)^{-1}\left[A-\boldsymbol{\rho}_{\ell} B\right] \boldsymbol{x}_{\ell}
$$

where $\boldsymbol{\rho}_{\ell} \neq \sigma \approx \lambda_{1}$, also reasonably we assume $\sigma \neq \lambda_{j}$ for all $j>1$. Why so?

$$
p=\sum_{j=1}^{n} \mu_{j} \alpha_{j} u_{j}, \quad \mu_{j}:=\frac{\lambda_{j}-\boldsymbol{\rho}_{\ell}}{\lambda_{j}-\sigma} .
$$

Now if $\lambda_{1} \leq \boldsymbol{\rho}_{\ell}<\lambda_{2}$ and if the gap $\lambda_{2}-\lambda_{1}$ is reasonably modest, then

$$
\mu_{j} \approx 1 \quad \text { for } j>1
$$

to give a $p \approx \alpha v_{1}+\boldsymbol{v}$, resulting in fast convergence.

Preconditioner $(A-\sigma B)^{-1}$

Let $\boldsymbol{x}_{\ell}=\sum_{j=1}^{n} \alpha_{j} u_{j}$, and suppose $\alpha_{1} \neq 0$. If $\sigma \neq \boldsymbol{\rho}_{\ell}$ such that

$$
\text { either } \mu_{1}<\mu_{j} \text { for } 2 \leq j \leq n \text { or } \mu_{1}>\mu_{j} \text { for } 2 \leq j \leq n,
$$

where $\mu_{j}=\frac{\lambda_{j}-\boldsymbol{\rho}_{\ell}}{\lambda_{j}-\sigma}$, then

$$
\begin{aligned}
\tan \theta_{B}\left(u_{1}, \mathcal{K}_{m}\right) \leq 2\left[\Delta_{\eta}^{m-1}+\Delta_{\eta}^{-(m-1)}\right]^{-1} \tan \theta_{B}\left(u_{1}, \boldsymbol{x}_{\ell}\right), \\
0 \leq \boldsymbol{\rho}_{\ell+1}-\lambda_{1} \leq 4\left[\Delta_{\eta}^{m-1}+\Delta_{\eta}^{-(m-1)}\right]^{-2} \tan \theta_{B}\left(u_{1}, \boldsymbol{x}_{\ell}\right),
\end{aligned}
$$

where $\mathcal{K}_{m}:=\mathcal{K}_{m}\left([A-\sigma B]^{-1}\left[A-\boldsymbol{\rho}_{\ell} B\right], \boldsymbol{x}_{\ell}\right)$, and

$$
\eta= \begin{cases}\frac{\lambda_{n}-\sigma}{\lambda_{n}-\lambda_{1}} \cdot \frac{\lambda_{2}-\lambda_{1}}{\lambda_{2}-\sigma}, & \text { if } \mu_{1}<\mu_{j} \text { for } 2 \leq j \leq n \\ \frac{\lambda_{2}-\sigma}{\lambda_{2}-\lambda_{1}} \cdot \frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}-\sigma}, & \text { if } \mu_{1}>\mu_{j} \text { for } 2 \leq j \leq n\end{cases}
$$

$\eta \approx 1$ (fast convergence) if $\sigma \approx \lambda_{1}$. In fact $\eta=1$ (implying $\Delta_{\eta}=\infty$) if $\sigma=\lambda_{1}$.
But shift σ needs to make μ_{1} either smallest or biggest among all μ_{j}. Three interesting cases:

- $\sigma<\lambda_{1} \leq \rho<\lambda_{2}, \mu_{1}$ smallest
- $\lambda_{1}<\sigma<\rho<\lambda_{2}, \mu_{1}$ biggest
- $\lambda_{1}<\rho<\sigma<\lambda_{2}, \mu_{1}$ smallest.
$(A-\sigma B)^{-1}$ realized through linear system solving, but cost is high if solved accurately, thus only approximately, such as
- incomplete decompositions $L D L^{\mathrm{H}}$ of $A-\sigma B$ with/without an iterative method
- CG, MINRES
(more from Sherry Li's lectures.)

Eigen-problem preconditioning,

Use Golub and Ye's Theorem (2002) as starting point:

$$
\begin{gathered}
\boldsymbol{\rho}_{\ell+1}-\lambda_{1} \leq\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right) \epsilon_{m}^{2}+2\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right)^{3 / 2} \epsilon_{m}\left(\frac{\|B\|_{2}}{\omega_{2}}\right)^{1 / 2}+\mathcal{O}\left(\left|\boldsymbol{\rho}_{\ell}-\lambda_{1}\right|^{2}\right) \\
\epsilon_{m}:=\min _{f \in \mathbb{P}_{m-1}, f\left(\omega_{1}\right)=1} \max _{j>1}\left|f\left(\omega_{j}\right)\right|
\end{gathered}
$$

where $\omega_{1}<\omega_{2} \leq \cdots \leq \omega_{n}$ are the eigenvalues of $A-\boldsymbol{\rho}_{\ell} B$.
Idea: Transform $A-\lambda B$ to $L^{-1}(A-\lambda B) L^{-H}$ so that $L^{-1}\left(A-\rho_{\ell} B\right) L^{-H}$ has "better" eigenvalue distribution, i.e., much smaller ϵ_{m}.

Ideal: $\omega_{2}=\cdots=\omega_{n}$, then $\epsilon_{m}=0$ for $m \geq 2$ and thus $\boldsymbol{\rho}_{\ell+1}-\lambda_{1}=\mathcal{O}\left(\left|\boldsymbol{\rho}_{\ell}-\lambda_{1}\right|^{2}\right)$, quadratic convergence.
$A-\boldsymbol{\rho}_{\ell} B=L D L^{\mathrm{H}} \Rightarrow L^{-1}\left(A-\boldsymbol{\rho}_{\ell} B\right) L^{-\mathrm{H}}=D=\operatorname{diag}(\pm 1)$. Ideal but not practical:

1. $A-\boldsymbol{\rho}_{\ell} B=L D L^{H}$ may not exist at all. It exists if all leading principle submatrices are nonsingular.
$2 A-\rho_{\ell} B=L D L^{H}$ may not be numerically stable to compute, especially when $\rho_{\ell} \approx \lambda_{1}$.
$3 L$ significantly denser than A and B combined. Ensuing computations are too expensive.

Compromise. $A-\rho_{\ell} B \approx L D L^{H}$ with a good chance that

```
one smallest isolated eigenvalue }\mp@subsup{\omega}{1}{}\mathrm{ , and the rest }\mp@subsup{\omega}{j}{}(2\leqj\leqn
a few tight clusters.
```

Here $A-\rho_{\ell} B \approx L D L^{\mathrm{H}}$ includes not only the usual "approximately equal", but also when $\left(A-\boldsymbol{\rho}_{\ell} B\right)-L D L^{\mathrm{H}}$ approximately of a low rank.
L varies from one iterative step to another; Can be expensive; Possible to use constant preconditioner, i.e., one L for all steps or change it every few steps.

Constant preconditioner: Use a shift $\sigma \approx \lambda_{1}$, and perform an incomplete $L D L^{H}$ decomposition of $A-\sigma B \approx L D L^{\mathrm{H}}$. Then

$$
\widehat{C}_{\ell}=L^{-1}(A-\sigma B) L^{-H}+\left(\sigma-\rho_{\ell}\right) L^{-1} B L^{-H} \approx D
$$

would have a better spectral distribution so long as $\left(\sigma-\boldsymbol{\rho}_{\ell}\right) L^{-1} B L^{-H}$ is small relative to \widehat{C}_{ℓ}.

Insisted so far about applying ESD straightforwardly to the transformed problem $L^{-1}(A-\lambda B) L^{-H}$. But there is alternative, perhaps better, way.
$A-\lambda B$ to $\widehat{A}_{\ell}-\lambda \widehat{B}_{\ell}:=L_{\ell}^{-1}(A-\lambda B) L_{\ell}^{-H}$. Typical step of ESD for $\widehat{A}_{\ell}-\lambda \widehat{B}_{\ell}:$
$\widehat{Z}^{\mathrm{C}} \mathrm{H}\left(\widehat{A}_{\ell}-\lambda \widehat{B}_{\ell}\right) \widehat{Z}^{2}$, where $\hat{Z} \in \mathbb{C}^{n \times m}$ is a basis matrix of Krylov subspace
$\mathcal{K}_{m}\left(\widehat{A}_{\ell}-\hat{\boldsymbol{\rho}}_{\ell} \widehat{B}_{\ell}, \hat{\boldsymbol{x}}_{\ell}\right)$.

Notice $\left[\widehat{A}_{\ell}-\hat{\boldsymbol{\rho}}_{\ell} \widehat{B}_{\ell}\right]^{j} \hat{\boldsymbol{x}}_{\ell}=L_{\ell}^{H}\left[\left(L_{\ell} L_{\ell}^{H}\right)^{-1}\left(A-\hat{\boldsymbol{\rho}}_{\ell} B\right)\right]^{j}\left(L_{\ell}^{-H^{-}} \hat{\boldsymbol{x}}_{\ell}\right)$ to see

$$
L_{\ell}^{-H} \cdot \mathcal{K}_{m}\left(\widehat{A}_{\ell}-\hat{\boldsymbol{\rho}}_{\ell} \widehat{B}_{\ell}, \hat{\boldsymbol{x}}_{\ell}\right)=\mathcal{K}_{m}\left(K_{\ell}\left(A-\hat{\boldsymbol{\rho}}_{\ell} B\right), \boldsymbol{x}_{\ell}\right), \boldsymbol{x}_{\ell}=L_{\ell}^{-H^{\boldsymbol{x}_{\ell}}}, K_{\ell}=\left(L_{\ell} L_{\ell}^{H}\right)^{-1} .
$$

So $Z=L_{\ell}^{-H} \widehat{Z}$ is a basis matrix of Krylov subspace $\mathcal{K}_{m}\left(K_{\ell}\left(A-\hat{\boldsymbol{\rho}}_{\ell} B\right), \boldsymbol{x}_{\ell}\right)$. Also

$$
\begin{gathered}
\widehat{Z}^{\mathrm{H}}\left(\widehat{A}_{\ell}-\lambda \widehat{B}_{\ell}\right) \widehat{Z}=\left(L_{\ell}^{-\mathrm{H}} \widehat{Z}\right)^{\mathrm{H}}(A-\lambda B)\left(L_{\ell}^{-\mathrm{H}} \widehat{Z}\right)=Z^{\mathrm{H}}(A-\lambda B) Z, \\
\hat{\boldsymbol{\rho}}_{\ell}=\frac{\hat{\boldsymbol{x}}_{\ell}^{\mathrm{H}} \widehat{A}_{\ell} \hat{\boldsymbol{x}}_{\ell}}{\hat{\boldsymbol{x}}_{\ell}^{\mathrm{H}} \widehat{B}_{\ell} \hat{\boldsymbol{x}}_{\ell}}=\frac{\boldsymbol{x}_{\ell}^{\mathrm{H}} A \boldsymbol{x}_{\ell}}{\boldsymbol{x}_{\ell}^{\mathrm{H}} B \boldsymbol{x}_{\ell}}=\boldsymbol{\rho}_{\ell} .
\end{gathered}
$$

The typical step can be reformulated equivalently to
compute the smallest eigenvalue μ and corresponding eigenvector v of $Z^{\mathrm{H}}(A-\lambda B) Z$, where $Z \in \mathbb{C}^{n \times m}$ is a basis matrix of Krylov subspace $\mathcal{K}_{m}\left(K_{\ell}\left(A-\boldsymbol{\rho}_{\ell} B\right), \boldsymbol{x}_{\ell}\right)$, where $K_{\ell}=\left(L_{\ell} L_{\ell}^{H}\right)^{-1}$.

Extended Preconditioned Steepest Descent method

Given an initial approximation \boldsymbol{x}_{0} to u_{1}, a relative tolerance rtol, and an integer $m \geq 2$, the algorithm attempts to compute an approximate eigenpair to (λ_{1}, u_{1}) with the prescribed rtol.
1: $x_{0}=x_{0} /\left\|x_{0}\right\|_{B}, \rho_{0}=x_{0}^{H} A x_{0}, r_{0}=A x_{0}-\boldsymbol{\rho}_{0} B x_{0} ;$
2: for $\ell=0,1, \ldots$ do
3: if $\left\|\boldsymbol{r}_{\ell}\right\|_{2} /\left(\left\|A \boldsymbol{x}_{\ell}\right\|_{2}+\left|\boldsymbol{\rho}_{\ell}\right|\left\|B \boldsymbol{x}_{\ell}\right\|_{2}\right) \leq$ rtol then
4: BREAK;
5: else
6: \quad construct a preconditioner K_{ℓ};
7: \quad compute a basis matrix $Z \in \mathbb{C}^{n \times m}$ of Krylov subspace $\mathcal{K}_{m}\left(K_{\ell}\left(A-\boldsymbol{\rho}_{\ell} B\right), \boldsymbol{x}_{\ell}\right)$;
compute the smallest eigenvalue μ and corresponding eigenvector v of $Z^{H}(A-\lambda B) Z$;

$$
y=Z v, x_{\ell+1}=y /\|y\|_{B}
$$

$$
\boldsymbol{\rho}_{\ell+1}=\mu, \boldsymbol{r}_{\ell+1}=A \boldsymbol{x}_{\ell+1}-\boldsymbol{\rho}_{\ell+1} B \boldsymbol{x}_{\ell+1}
$$

end if
end for
return $\left(\boldsymbol{\rho}_{\ell}, \boldsymbol{x}_{\ell}\right)$ as an approximate eigenpair to $\left(\lambda_{1}, u_{1}\right)$.
It actually includes Eigen-problem preconditioning, I \& II.

Theorem on Convergence Rate (Golub \& Ye, 2002)

Suppose λ_{1} is simple, i.e., $\lambda_{1}<\lambda_{2}$, and $\lambda_{1}<\boldsymbol{\rho}_{\ell}<\lambda_{2}$, and preconditioner $K_{\ell} \succ 0$. Let

$$
\omega_{1}<\omega_{2} \leq \cdots \leq \omega_{n}
$$

be the eigenvalues of $K_{\ell}\left(A-\boldsymbol{\rho}_{\ell} B\right)$ and v_{1} be an eigenvector corresponding to ω_{1}. Then

$$
\boldsymbol{\rho}_{\ell+1}-\lambda_{1} \leq\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right) \epsilon_{m}^{2}+2\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right)^{3 / 2} \epsilon_{m}\left(\frac{\left\|\boldsymbol{L}_{\ell}^{-1} B L_{\ell}^{-H}\right\|_{2}}{\omega_{2}}\right)^{1 / 2}+\delta_{\ell}
$$

where

$$
\begin{aligned}
0 \leq \delta_{\ell} & :=\boldsymbol{\rho}_{\ell}-\lambda_{1}+\omega_{1} \frac{v_{1}^{H} K_{\ell}^{-1} v_{1}}{v_{1}^{\mathrm{H}} B v_{1}}=\mathcal{O}\left(\left|\boldsymbol{\rho}_{\ell}-\lambda_{1}\right|^{2}\right) \\
\epsilon_{m} & :=\min _{f \in \mathbb{P}_{m-1}, f\left(\omega_{1}\right)=1} \max _{j>1}\left|f\left(\omega_{j}\right)\right|
\end{aligned}
$$

$\epsilon_{m}:=\min _{f \in \mathbb{P}_{m-1}, f\left(\omega_{1}\right)=1} \max _{j>1}\left|f\left(\omega_{j}\right)\right|$ usually unknown, except,
$1 m=2$ for which the optimal $f_{\text {opt }}$ is

$$
\begin{gathered}
f(t)=\frac{t-\left(\omega_{2}+\omega_{n}\right) / 2}{\omega_{1}-\left(\omega_{2}+\omega_{n}\right) / 2} \in \mathbb{P}_{m-1}, f\left(\omega_{1}\right)=1, \max _{j>1}\left|f\left(\omega_{j}\right)\right|=\left|f\left(\omega_{2}\right)\right|<1 . \\
\epsilon_{2}=\frac{1-\eta}{1+\eta}, \quad \eta=\frac{\omega_{2}-\omega_{1}}{\omega_{n}-\omega_{1}}
\end{gathered}
$$

$2 \omega_{2}=\cdots=\omega_{n}$ for which $f_{\text {opt }}(t)=\left(t-\omega_{2}\right) /\left(\omega_{1}-\omega_{2}\right)$ and $\epsilon_{m}=0$ for all $m \geq 2$.
In general ϵ_{m} can be bounded by using the Chebyshev polynomial

$$
\begin{gathered}
f(t)=\mathscr{T}_{m-1}\left(\frac{2 t-\left(\omega_{n}+\omega_{2}\right)}{\omega_{n}-\omega_{2}}\right) / \mathscr{T}_{m-1}\left(\frac{1+\eta}{1-\eta}\right), \quad f\left(\omega_{1}\right)=1, \\
\epsilon_{m} \leq \max _{\omega_{2} \leq t \omega_{n}}|f(t)|=\left[\mathscr{T}_{m-1}\left(\frac{1+\eta}{1-\eta}\right)\right]^{-1}=2\left[\Delta_{\eta}^{m-1}+\Delta_{\eta}^{-(m-1)}\right]^{-1} .
\end{gathered}
$$

$\boldsymbol{\rho}_{\ell+1}-\lambda_{1} \leq\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right) \epsilon_{m}^{2}+2\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right)^{3 / 2} \epsilon_{m}\left(\frac{\left\|L_{\ell}^{-1} B L_{\ell}^{-H}\right\|_{2}}{\omega_{2}}\right)^{1 / 2}+\mathcal{O}\left(\left|\boldsymbol{\rho}_{\ell}-\lambda_{1}\right|^{2}\right)$.
Ignoring high order terms, $\frac{\boldsymbol{\rho}_{\ell+1}-\lambda_{1}}{\boldsymbol{\rho}_{\ell}-\lambda_{1}} \lesssim \epsilon_{m}^{2}$.
If $\epsilon_{m}=0$ (unlikely, however), then $\boldsymbol{\rho}_{\ell+1}-\lambda_{1}=\mathcal{O}\left(\left|\boldsymbol{\rho}_{\ell}-\lambda_{1}\right|^{2}\right)$, quadratically convergence.

Locally, $\boldsymbol{\rho}_{\ell} \approx \lambda_{1}, \operatorname{eig}\left(K_{\ell}\left(A-\boldsymbol{\rho}_{\ell} B\right)\right) \approx \operatorname{eig}\left(K_{\ell}\left(A-\lambda_{1} B\right)\right)=\left\{0=\gamma_{1}<\gamma_{2} \leq \cdots \leq \gamma_{n}\right\}$, and

$$
\begin{gathered}
\epsilon_{m} \approx \min _{f \in \mathbb{P}_{m-1}, f\left(\gamma_{1}\right)=1} \max _{j>1}\left|f\left(\gamma_{j}\right)\right| \leq 2\left[\Delta_{\eta}^{m-1}+\Delta_{\eta}^{-(m-1)}\right]^{-1} \\
\Delta_{\eta}=\frac{1+\sqrt{\eta}}{1-\sqrt{\eta}}, \quad \eta=\frac{\gamma_{2}-\gamma_{1}}{\gamma_{n}-\gamma_{1}}
\end{gathered}
$$

Convergence Rate: Samokish Theorem

Theorem on Convergence Rate (Samokish, 1958)

$m=2, \operatorname{eig}\left(K_{\ell}\left(A-\lambda_{1} B\right)\right)=\left\{0=\gamma_{1}<\gamma_{2} \leq \cdots \leq \gamma_{n}\right\}$. Suppose λ_{1} is simple, i.e., $\lambda_{1}<\lambda_{2}$, and $\lambda_{1}<\boldsymbol{\rho}_{\ell}<\lambda_{2}$,

$$
\delta=\sqrt{\left\|B^{1 / 2} K_{\ell} B^{1 / 2}\right\|_{2}\left[\boldsymbol{\rho}_{\ell}-\lambda_{1}\right]}, \quad \tau=\frac{2}{\gamma_{2}+\gamma_{n}} .
$$

If $\tau\left(\sqrt{\gamma_{n}}+\delta\right) \delta<1$, then

$$
\begin{equation*}
\boldsymbol{\rho}_{\ell+1}-\lambda_{1} \leq\left[\frac{\epsilon_{2}+\tau \sqrt{\gamma_{n}} \delta}{1-\tau\left(\sqrt{\gamma_{n}}+\delta\right) \delta}\right]^{2}\left[\boldsymbol{\rho}_{\ell}-\lambda_{1}\right] \tag{7}
\end{equation*}
$$

where

$$
\eta=\frac{\gamma_{2}-\gamma_{1}}{\gamma_{n}-\gamma_{1}}, \quad \epsilon_{2}=2\left[\Delta_{\eta}+\Delta_{\eta}^{-1}\right]^{-1}=\frac{1-\eta}{1+\eta} .
$$

Asymptotically $\boldsymbol{\rho}_{\ell+1}-\lambda_{1} \lesssim \epsilon_{2}^{2}\left(\boldsymbol{\rho}_{\ell}-\lambda_{1}\right)$, same as Golub \& Ye (2002), but (7) is strict.

1) $t_{\mathrm{opt}}=\arg \min _{t} \rho\left(\boldsymbol{x}_{\ell}+t K_{\ell} \boldsymbol{r}_{\ell}\right), \boldsymbol{y}=\boldsymbol{x}_{\ell}+t_{\mathrm{opt}} K_{\ell} \boldsymbol{r}_{\ell}$. Thus $\boldsymbol{\rho}_{\ell+1}=\rho(y)$.
2) Drop subscript ℓ to $\boldsymbol{x}, \boldsymbol{r}$, and $K: \boldsymbol{r}_{\ell}=r(\boldsymbol{x}), \boldsymbol{\rho}_{\ell}=\rho(\boldsymbol{x})$.
3) $z=\boldsymbol{x}-\tau \operatorname{Kr}(\boldsymbol{x})$. Then $\lambda_{1} \leq \rho(y) \leq \rho(z)$, thus $\rho(y)-\lambda_{1} \leq \rho(z)-\lambda_{1}$.
4) Suffices to show $\rho(z)-\lambda_{1} \leq$ RHS of (7).
5) $A-\lambda_{1} B$ is symmetric positive semidefinite. $\|\cdot\|_{A-\lambda_{1} B}$ is a semi-norm.

$$
\begin{gathered}
\|w\|_{A-\lambda_{1} B}^{2}=\left[\rho(w)-\lambda_{1}\right]\|w\|_{B}^{2} \\
\left\|\left[I-\tau K\left(A-\lambda_{1} B\right)\right] w\right\|_{A-\lambda_{1} B} \leq \epsilon_{2}\|w\|_{A-\lambda_{1} B} .
\end{gathered}
$$

6) Write $z=\left[I-\tau K\left(A-\lambda_{1} B\right)\right] \boldsymbol{x}+\tau\left[\rho(\boldsymbol{x})-\lambda_{1}\right] K B \boldsymbol{x}$, and assume $\|\boldsymbol{x}\|_{B}=1$.

$$
\begin{aligned}
\|z\|_{A-\lambda_{1} B} & =\sqrt{\rho(z)-\lambda_{1}}\|z\|_{B}, \\
\|z\|_{A-\lambda_{1} B} & \leq\left\|\left[I-\tau K\left(A-\lambda_{1} B\right)\right] \boldsymbol{x}\right\|_{A-\lambda_{1} B}+\tau\left[\rho(\boldsymbol{x})-\lambda_{1}\right]\|K B \boldsymbol{x}\|_{A-\lambda_{1} B} \\
& \leq \epsilon_{2}\|\boldsymbol{x}\|_{A-\lambda_{1} B}+\tau\left[\rho(\boldsymbol{x})-\lambda_{1}\right] \sqrt{\gamma_{n}}\|B \boldsymbol{x}\|_{K} \\
& \leq \epsilon_{2} \sqrt{\rho(\boldsymbol{x})-\lambda_{1}}+\tau\left[\rho(\boldsymbol{x})-\lambda_{1}\right] \sqrt{\gamma_{n}\left\|B^{1 / 2} K B^{1 / 2}\right\|_{2}} \\
& =\left(\epsilon_{2}+\tau \sqrt{\gamma_{n}} \delta\right) \sqrt{\rho(\boldsymbol{x})-\lambda_{1}} .
\end{aligned}
$$

7) $z=\boldsymbol{x}-\tau K r(\boldsymbol{x})$, and $\|\boldsymbol{x}\|_{B}=1$.

$$
\begin{aligned}
\|z\|_{B} & \geq\|\boldsymbol{x}\|_{B}-\tau\|K r(\boldsymbol{x})\|_{B}=1-\tau\|K r(\boldsymbol{x})\|_{B} \\
\|K r(\boldsymbol{x})\|_{B} & =\left\|K\left(A-\lambda_{1} B\right) \boldsymbol{x}-\left[\rho(\boldsymbol{x})-\lambda_{1}\right] K B \boldsymbol{x}\right\|_{B} \\
& \leq\left\|K\left(A-\lambda_{1} B\right) \boldsymbol{x}\right\|_{B}+\left[\rho(\boldsymbol{x})-\lambda_{1}\right]\|K B \boldsymbol{x}\|_{B} \\
& \leq \sqrt{\left\|K^{1 / 2} B K^{1 / 2}\right\|_{2} \gamma_{n}}\|\boldsymbol{x}\|_{A-\lambda_{1} B}+\left[\rho(\boldsymbol{x})-\lambda_{1}\right]\left\|B^{1 / 2} K B^{1 / 2}\right\|_{2}\|\boldsymbol{x}\|_{B} \\
& =\sqrt{\gamma_{n}} \delta+\delta^{2} .
\end{aligned}
$$

8) Finally use

$$
\rho(z)-\lambda_{1}=\frac{\|z\|_{A-\lambda_{1} B}^{2}}{\|z\|_{B}^{2}} \leq \frac{\|z\|_{A-\lambda_{1} B}^{2}}{\left[1-\tau\|\operatorname{Kr}(x)\|_{B}\right]^{2}}
$$

to complete the proof.

So far computing (λ_{1}, u_{1}) by single-vector steepest descent type methods.
To compute any following eigenpairs, must incorporate deflation techniques.
Or use a multi-vector/block method (not discussed yet). Deflation is also a necessary tool to make a block method more efficient.

Assume acceptable approximations to $\left(\lambda_{i}, u_{i}\right)$ for $1 \leq j \leq k$ known. Diagonal $\boldsymbol{D} \in \mathbb{R}^{k \times k}$ holds known approximations of λ_{i}, $\boldsymbol{U} \in \mathbb{R}^{n \times k}$ holds known approximations of u_{i}. Assume $\boldsymbol{U}^{\mathrm{H}} B \boldsymbol{U}=\boldsymbol{I}_{k}$.

Deflation: avoid computing $\left(\lambda_{i}, u_{i}\right)$ for $1 \leq j \leq k$, and seek approximation to $\left(\lambda_{k+1}, u_{k+1}\right)$. Will discuss two deflation techniques.

When the basis matrix Z is computed, make sure that Z is B-orthogonal to \boldsymbol{U}. E.g., build a basis matrix Z for $\mathcal{K}_{m}(K(A-\rho B), x)$ such that $U^{\mathrm{H}} \perp_{B} Z=0$. Suppose $x \perp_{B} \boldsymbol{U}=0$ already.

Arnoldi-like process

1: $Z_{(:, 1)}=x /\|x\|_{B}, \rho=x^{\mathrm{H}} A x /\|x\|_{B}^{2}$;
2: for $i=2$ to m do
3: $\quad q=K\left(A Z_{(:, i-1)}-\rho B Z_{(:, i-1)}\right)$;
4: $\quad q=q-\boldsymbol{U}\left(\boldsymbol{U}^{\mathrm{H}}(B q)\right)$;
5: \quad for $j=1$ to $i-1$ do
6: $\quad t=Z_{(:, i-1)}^{\mathrm{H}} B q, q=q-Z_{(:, i-1)} t$;
7: end for
8: $\quad t=\|q\|_{B}$;
9: if $t>0$ then
10: $\quad Z_{(:, i)}=q / t$;
11: else
12: BREAK;
13: end if
14: end for
Note: Keep $A Z$ for later use.

Lemma

Let $U_{1}=U_{(:, 1: k)}=\left[u_{1}, \ldots, u_{k}\right] .\left(A+\zeta B U_{1} U_{1}^{H} B\right)-\lambda B$ and $A-\lambda B$ share same eigenvectors u_{i}, but the eigenvalues of $\left(A+\zeta B U_{1} U_{1}^{H} B\right)-\lambda B$ are

$$
\lambda_{i}+\zeta \text { for } 1 \leq i \leq k \text { and } \lambda_{i} \text { for } k+1 \leq i \leq n .
$$

Modify $A-\lambda B$ in form, but not explicitly, to $\left(A+\zeta B \boldsymbol{U} \boldsymbol{U}^{H} B\right)-\lambda B$, where ζ should be selected such that $\zeta+\lambda_{1} \geq \lambda_{k+2}$.

But λ_{k+2} is unknown. What we can do in practice to pick ζ a sufficiently large number.

Block Steepest Descent Method

- Block Steepest Descent Method
- Block Extended Steepest Descent Method
- Block Preconditioned Extended Steepest Descent Method

Single-vector SD and variations:

- compute (λ_{1}, u_{1}), and, with deflations, other $\left(\lambda_{i}, u_{i}\right)$, one pair at a time. Most computations are of matrix-vector type.
- Slow convergence if $\left(\gamma_{2}-\gamma_{1}\right) /\left(\gamma_{n}-\gamma_{1}\right)$ tiny; usually happens when λ_{2} very close to λ_{1}. (γ_{i} are eigenvalues of $K\left(A-\lambda_{1} B\right)$.)
- Often in practice, there are needs to compute the first few eigenpairs, not just the first one.
Block versions:
- Can simultaneously compute the first k eigenpairs $\left(\lambda_{j}, u_{j}\right)$;
- Run more efficiently on modern computer architecture: more computations in matrix-matrix multiplication type;
- Better rates of convergence; can save overall cost by using a block size that is slightly bigger than the number of asked eigenpairs.
In summary, the benefits of using a block variation are similar to those of using the simultaneous subspace iteration vs. the power method.

Start with $X_{0} \in \mathbb{C}^{n \times n_{b}}$, $\operatorname{rank}\left(X_{0}\right)=n_{b} \geq k$, instead of just one vector $\boldsymbol{x}_{0} \in \mathbb{C}^{n}$.
May assume j th column of X_{0} approximates u_{j}; otherwise $\mathcal{R}\left(X_{0}\right)$ approximates $\operatorname{span}\left\{u_{1}, \ldots, u_{n_{b}}\right\}$. In the latter, preprocessing X_{0} :

1 compute eigen-decomposition $\left(X_{0}^{\mathrm{H}} A X_{0}\right) W=\left(X_{0}^{\mathrm{H}} B X_{0}\right) W \Omega$, where $\Omega=\operatorname{diag}\left(\rho_{0 ; 1}, \rho_{0 ; 2}, \ldots, \rho_{0 ; n_{b}}\right) ;$
2 Reset $X_{0}:=X_{0} W$.
Can always assume j th column of X_{0} approximates u_{j}.
Typical ℓ th iterative step: already have

$$
\begin{array}{ll}
X_{\ell}=\left[x_{\ell ; 1}, x_{\ell ; 2}, \ldots, x_{\ell ; n_{b}}\right] \in \mathbb{C}^{n \times n_{b}}, & j \text { th column } x_{\ell ; j} \text { approximates } u_{j} \\
\Omega_{\ell}=\operatorname{diag}\left(\rho_{\ell ; 1}, \rho_{\ell ; 2}, \ldots, \rho_{\ell ; n_{b}}\right), & \rho_{\ell, j}=\rho\left(x_{\ell ; j}\right) \approx \lambda_{j}
\end{array}
$$

To compute new approximations as follows.
1 Compute a basis matrix Z of $\mathcal{R}\left(\left[X_{\ell}, R_{\ell}\right]\right)$ by, e.g., MGS in the B-inner product, keeping in mind that X_{ℓ} is B-orthonormal already;
2 Find the first n_{b} eigenpairs of $Z^{\mathrm{H}} A Z-\lambda Z^{\mathrm{H}} B Z$ to get $\left(Z^{\mathrm{H}} A Z\right) W=\left(Z^{\mathrm{H}} B Z\right) W \Omega_{\ell+1}, \Omega_{\ell+1}=\operatorname{diag}\left(\rho_{\ell+1 ; 1}, \rho_{\ell+1 ; 2}, \ldots, \rho_{\ell+1 ; n_{b}}\right)$;
3 Set $X_{\ell+1}=Z W$.

Block SD (previous slide) is is the stronger version of Simultaneous Rayleigh Quotient Minimization Method of Longsine and McCormick (1980).

Note that $r\left(x_{\ell ; j}\right)=\left(A-\rho_{\ell ; j} B\right) x_{\ell ; j}$ and thus

$$
\mathcal{R}\left(\left[X_{\ell}, R_{\ell}\right]\right)=\sum_{j=1}^{n_{b}} \mathcal{R}\left(\left[x_{\ell ; j},\left(A-\rho_{\ell ; j} B\right) x_{\ell ; j}\right]\right)=\sum_{j=1}^{n_{b}} \mathcal{K}_{2}\left(A-\rho_{\ell ; j} B, x_{\ell ; j}\right) .
$$

Naturally, as before, to expand search space, $\mathcal{R}\left(\left[X_{\ell}, R_{\ell}\right]\right)$ through extending each $\mathcal{K}_{2}\left(A x_{\ell ; j}-\rho_{\ell ; j} B, x_{\ell ; j}\right)$ to a high order one. The new extended search subspace now is

$$
\sum_{j=1}^{n_{b}} \mathcal{K}_{m}\left(A-\rho_{\ell ; j} B, x_{\ell ; j}\right)=\operatorname{span}\left\{X_{\ell}, \mathscr{R}_{\ell}\left(X_{\ell}\right), \ldots, \mathscr{R}_{\ell}^{m-1}\left(X_{\ell}\right)\right\}=: \mathcal{K}_{m}\left(\mathscr{R}_{\ell}, X_{\ell}\right)
$$

where the linear operator $\mathscr{R}_{\ell}: X \in \mathbb{C}^{n \times n_{b}} \rightarrow \mathscr{R}_{\ell}(X)=A X-B X \Omega_{\ell} \in \mathbb{C}^{n \times n_{b}}$. $\mathscr{R}_{\ell}^{i}(\cdot)=\mathscr{R}_{\ell}^{i-1}\left(\mathscr{R}_{\ell}(\cdot)\right)$, e.g., $\mathscr{R}_{\ell}^{2}(X)=\mathscr{R}_{\ell}\left(\mathscr{R}_{\ell}(X)\right)$.
Block Extended SD: make Z basis matrix of $\mathcal{K}_{m}\left(\mathscr{R}_{\ell}, X_{\ell}\right)$.

Incorporate Preconditioners

In light of extensive discussions on preconditioning, natural to modify the search subspace to

$$
\sum_{j=1}^{n_{b}} \mathcal{K}_{m}\left(K_{\ell ; j}\left(A-\rho_{\ell ; j} B\right), x_{\ell ; j}\right),
$$

where $K_{\ell ; j}$ is the preconditioner intended to move ($\rho_{\ell ; j}, x_{\ell ; j}$) towards $\left(\lambda_{j}, u_{j}\right)$ faster for each j.

Two ways to construct $K_{\ell ; j}$:

- $K_{\ell ; j} \approx\left(A-\tilde{\rho}_{\ell ; j} B\right)^{-1}$ for some $\tilde{\rho}_{\ell ; j} \neq \rho_{\ell ; j}$, ideally closer to λ_{j} than to any other eigenvalue of $A-\lambda B$.
Since the eigenvalues of $A-\lambda B$ are unknown, practically make $\tilde{\rho}_{\ell ; j}$ closer but not equal to $\rho_{\ell ; j}$ than to any other $\rho_{\ell ; k}$.
- Perform incomplete $L D L^{H}$ factorization: $A-\rho_{\ell ; j} B \approx L_{\ell ; j} D_{\ell ; j} L_{\ell ; j}^{H}$, where " \approx " includes not only the usual "aproximately equal", but also the case when $\left(A-\rho_{\ell ; j} B\right)-L_{\ell ; j} D_{\ell ; j} L_{\ell ; j}^{\mathrm{H}}$ is approximately a low rank matrix, and $D_{\ell ; j}=\operatorname{diag}(\pm 1)$.
Finally, $K_{i: j}=L_{\ell ; j} L_{\ell ; j}^{H}$.

Block Preconditioned Extended Steepest Descent method

Given an initial approximation $X_{0} \in \mathbb{C}^{n \times n_{b}}$ with $\operatorname{rank}\left(X_{0}\right)=n_{b}$, and an integer $m \geq 2$, the algorithm attempts to compute approximate eigenpair to $\left(\lambda_{j}, u_{j}\right)$ for $1 \leq j \leq n_{b}$.
1: compute the eigen-decomposition: $\left(X_{0}^{\mathrm{H}} A X_{0}\right) W=\left(X_{0}^{\mathrm{H}} B X_{0}\right) W \Omega_{0}$,
where $W^{\mathrm{H}}\left(X_{0}^{\mathrm{H}} B X_{0}\right) W=I, \Omega_{0}=\operatorname{diag}\left(\rho_{0 ; 1}, \rho_{0 ; 2}, \ldots, \rho_{0 ; n_{b}}\right)$;
$X_{0}=X_{0} W$
for $\ell=0,1, \ldots$ do
test convergence and lock up the converged (detail to come later);
5: \quad construct preconditioners $K_{\ell ; j}$ for $1 \leq j \leq n_{b}$;
6: compute a basis matrix $Z \in \mathbb{C}^{n \times m n_{b}}$ of $\sum_{j=1}^{n_{b}} \mathcal{K}_{m}\left(K_{\ell ; j}\left(A-\rho_{\ell ; j} B\right), x_{\ell ; j}\right)$;
7: compute the n_{b} smallest eigenvalues and corresponding eigenvectors of $Z^{\mathrm{H}}(A-\lambda B) Z$ to get $\left(Z^{\mathrm{H}} A Z\right) W=\left(Z^{\mathrm{H}} B Z\right) W \Omega_{\ell}$, where $W^{\mathrm{H}}\left(Z^{\mathrm{H}} B Z\right) W=I$, $\Omega_{\ell+1}=\operatorname{diag}\left(\rho_{\ell+1 ; 1}, \rho_{\ell+1 ; 2}, \ldots, \rho_{\ell+1 ; n_{b}}\right)$;

$$
X_{\ell+1}=Z W
$$

end for
10: return approximate eigenpairs to $\left(\lambda_{j}, u_{j}\right)$ for $1 \leq j \leq n_{b}$.

Different preconditioner $K_{\ell ; j}$ for each different approximate eigenpair ($\rho_{\ell ; j}, x_{\ell ; j}$) good for convergence rates, but may not reduce overall time:

- expensive to construct all preconditioners
- cannot compute Z mostly by matrix-matrix multiplications (more later)

Use $K_{\ell ; j} \equiv K_{\ell}$, one preconditioner for all speeding up the convergence of ($\rho_{\ell ; 1}, x_{\ell ; 1}$). At the same time other ($\rho_{\ell ; j}, x_{\ell ; j}$) are making progress, too, but at a slower speed.

Usually ($\rho_{\ell ; 1}, x_{\ell ; 1}$) converges first and quickly.
Once ($\rho_{\ell ; 1}, x_{\ell ; 1}$) (or the first few in the case of a tight cluster) is determined to be sufficiently accurate, the converged eigenpair is locked up and deflated.

A new preconditioner is computed to aim at the next non-converged eigenpair, and the process continues.

Need to compute basis matrix $Z \in \mathbb{C}^{n \times m n_{b}}$ of $\sum_{j=1}^{n_{b}} \mathcal{K}_{m}\left(K_{\ell ; j}\left(A-\rho_{\ell ; j} B\right), x_{\ell ; j}\right)$.
Z can be gotten by packing the basis matrices of all $\mathcal{K}_{m}\left(K_{\ell ; j}\left(A-\rho_{\ell ; j} B\right), x_{\ell ; j}\right)$ for $1 \leq j \leq n_{b}$ together. Two drawbacks:

- Such a Z could be ill-conditioned, i.e., columns of Z may not be sufficiently numerically linearly independent; Possible cure: re-orthogonalize packed Z - too costly.
- Building basis for each $\mathcal{K}_{m}\left(K_{\ell ; j}\left(A-\rho_{\ell ; j} B\right), x_{\ell ; j}\right)$ uses mostly BLAS-2 operations. Have to be this way if $K_{\ell ; j}$ are different.

Different situation if $K_{\ell ; j} \equiv K$ (drop iteration step index ℓ). Then

$$
\begin{aligned}
\sum_{j=1}^{n_{b}} \mathcal{K}_{m}\left(K\left(A-\rho_{\ell ; j} B\right), x_{\ell ; j}\right) & =\mathcal{K}_{m}(K \mathscr{R}, X) \\
& \equiv \operatorname{span}\left\{X, K \mathscr{R}\left(X_{\ell}\right), \ldots,[K \mathscr{R}]^{m-1}(X)\right\},
\end{aligned}
$$

where $\mathscr{R}(X)=A X-B X \Omega,[K \mathscr{R}]^{i}(\cdot)=[K \mathscr{R}]^{i}(K \mathscr{R}(\cdot))$, e.g., $[K \mathscr{R}]^{2}(X)=K \mathscr{R}_{\ell}(K \mathscr{R}(X))$.

Implementation Issue, II (cont'd)

$Z=\left[Z_{1}, Z_{2}, \ldots, Z_{m}\right]$ can be computed by the following block Arnoldi-like process in the B-inner product.

Arnoldi-like process for Z

1: $Z_{1}=X$ (recall $X^{\mathrm{H}} B X=I_{n_{b}}$ already);
2: for $i=2$ to m do
3: $\quad Y=K\left(A Z_{i-1}-B \Omega Z_{i-1}\right)$;
4: \quad for $j=1$ to $i-1$ do
5: $\quad T=Z_{j}^{\mathrm{H}} B Y ; Y=Y-Z_{j} T$;
6: end for
7: $\quad Z_{i} T=Y$ (MGS in the B-inner product);
8: end for

Note: At Line 7, Y may not be numerically of full column rank - not a problem.
Anytime if a column is deemed linearly dependent on previous columns, that column should be deleted, along with corresponding ρ_{j} from Ω.

At completion of MGS, Z_{j+1} will have fewer columns than Y and the size of Ω is shrunk accordingly.

Implementation Issue, III

$\left(\rho_{\ell ; j}, x_{\ell ; j}\right)$ is considered acceptable if $\frac{\left\|r_{\ell ; j}\right\|_{2}}{\left\|A x_{\ell ; j}\right\|_{2}+\left|\rho_{\ell ; j}\right|\left\|B x_{\ell ; j}\right\|_{2}} \leq$ rtol. Usually λ_{j} are converged to in order, i.e., the smallest eigenvalues emerge first.

Lock all acceptable approximate eigenpairs in $k_{\text {cvgd }} \times k_{\text {cvgd }}$ diagonal matrix \boldsymbol{D} for eigenvalues and $n \times k_{\text {cvgd }}$ tall matrix \boldsymbol{U} for eigenvectors.

Every time a converged eigenpair is detected, delete the converged $\rho_{\ell ; j}$ and $x_{\ell ; j}$ from Ω_{ℓ} and X_{ℓ}, respectively, and expand \boldsymbol{D} and \boldsymbol{U} to lock up the pair, accordingly.

At the same time, either reduce n_{b} by 1 or append a (random) B-orthogonal column to X to maintain n_{b} unchanged.

Deflate to avoid recomputing converged eigenpairs:
1 At Line 7 in the Arnoldi-like process, each column of Z_{j+1} is B-orthogonalized against \boldsymbol{U}.
2 Modify $A-\lambda B$ in form, but not explicitly, to $\left(A+\zeta B U U^{H} B\right)-\lambda B$, where ζ should be selected such that $\zeta+\lambda_{1} \geq \lambda_{k_{\text {cvgd }}+n_{b}+1}$. Here we pre-assume the $k_{\text {cvgd }}$ converged eigenpairs are indeed those for $\left(\lambda_{j}, u_{j}\right)$ for $1 \leq j \leq k_{\text {cvgd }}$. This is usually so, but with no guarantee, of course.

Conjugate Gradient Methods

- Digression: CG for Linear System $A x=b$
- Conjugate Gradient Method
- Preconditioned Conjugate Gradient Method
- Locally Optimal Conjugate Gradient Method
- Locally Optimal Extended Conjugate Gradient Method

■ Locally Optimal Block Preconditioned Extended Conjugate Gradient Method

CG for Linear System $A x=b$

A is $n \times n$, symmetric, and positive definite. Let

$$
\phi(x)=\frac{1}{2} x^{\top} A x-x^{\top} b
$$

quadratic in x, convex, a unique local and global minimum at $x=A^{-1} b$,
$\nabla \phi(x)=r(x) \equiv A x-b$.
CG Algorithm (Hestenes and Stiefel, 1950s):
1 Given x_{0}, compute $r_{0}=A x_{0}-b$, and set $p_{0}=-r_{0}$;
2 For $i=0,1, \ldots$, do

$$
\begin{array}{rlrl}
\alpha_{i} & =\underset{\alpha}{\arg \min } \phi\left(x_{i}+\alpha p_{i}\right), & x_{i+1} & =x_{i}+\alpha_{i} p_{i}, \\
r_{i+1} & =r_{i}+\alpha_{i} A p_{i}, & p_{i+1}=-r_{i+1}+\beta_{i} p_{i} .
\end{array}
$$

β_{i} chosen so that $p_{i+1}^{\top} A p_{i}=0$; equivalent expressions:

$$
\beta_{i}=\frac{p_{i}^{\top} A r_{i+1}}{p_{i}^{\top} A p_{i}}=\frac{r_{i+1}^{\top} r_{i+1}}{r_{i}^{\top} r_{i}}=\frac{r_{i+1}^{\top}\left(r_{i+1}-r_{i}\right)}{r_{i}^{\top} r_{i}}
$$

Verbatim translations of Hestenes' and Stiefel's CG to solve

$$
\min _{x} \phi(x), \quad \phi(x) \text { not necessarily quadratic, }
$$

replacing all $r\left(x_{i}\right)$ by $\nabla \phi\left(x_{i}\right)$.
Nonlinear CG Algorithm (Fletcher and Reeves, 1964):
1 Given x_{0}, compute $\nabla \phi_{0}=\nabla \phi\left(x_{0}\right)$, and set $p_{0}=-\nabla \phi_{0}$;
2 For $i=0,1, \ldots$, do

$$
\begin{array}{ll}
\alpha_{i}=\underset{\alpha}{\arg \min } \phi\left(x_{i}+\alpha p_{i}\right), & x_{i+1}=x_{i}+\alpha_{i} p_{i}, \\
\text { evaluate } \nabla \phi_{i+1}=\nabla \phi\left(x_{i+1}\right), & p_{i+1}=-\nabla \phi_{i+1}+\beta_{i} p_{i} .
\end{array}
$$

Several choices for β_{i} :

$$
\beta_{i}=\frac{\nabla \phi_{i+1}^{\top} \nabla \phi_{i+1}}{\nabla \phi_{i}^{\top} \nabla \phi_{i}}, \quad \beta_{i}=\frac{\nabla \phi_{i+1}^{\top}\left(\nabla \phi_{i+1}-\nabla \phi_{i}\right)}{\nabla \phi_{i}^{\top} \nabla \phi_{i}}
$$

Locally Optimal CG

Linear CG: choices of β_{i} make

- search directions p_{i} conjugate, i.e., $p_{i}^{\top} A p_{j}=0$ for $i \neq j$.
- CG method terminates in at most n steps.

Nonlinear CG: many nice properties no longer hold for any choice of β_{i}.

Observe

$$
\begin{aligned}
x_{i+2} & =x_{i+1}+\alpha_{i+1}\left(-\nabla \phi_{i+1}+\beta_{i} p_{i}\right) \\
& \in \operatorname{span}\left\{x_{i+1}, \nabla \phi_{i+1}, p_{i}\right\}=\operatorname{span}\left\{x_{i+1}, \nabla \phi_{i+1}, x_{i}\right\} .
\end{aligned}
$$

Since many nice properties in linear CG are lost anyway in the nonlinear case, why not pick β_{i}, implicitly, such that (Takahashi, 1965)

$$
x_{i+2}=\underset{y \in \operatorname{span}\left\{x_{i+1}, \nabla \phi_{i+1}, x_{i}\right\}}{\arg \min } \phi(y) .
$$

This gives locally optimal CG. But search over $y \in \operatorname{span}\left\{x_{i+1}, \nabla \phi_{i+1}, x_{i}\right\}$ harder than before.

Minimize $\rho(x)$ to compute $\left(\lambda_{1}, u_{1}\right)$:

$$
\rho(x)=\frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} B x}, \quad \nabla \rho(x)=\frac{2}{x^{\mathrm{H}} B x} r(x), \quad r(x):=A x-\rho(x) B x .
$$

Line-search $\rho(y)=\inf _{t \in \mathbb{C}} \rho(x+t p)$
1: compute the smaller eigenvalue μ of $X^{H} A X-\lambda X^{H} B X$, where $X=[x, p]$, and eigenvector $v=\left[\nu_{1}, \nu_{2}\right]^{\top}$;
2: $\underset{t \in \mathbb{C}}{\arg \inf } \rho(x+t p)=: t_{\mathrm{opt}}= \begin{cases}\nu_{2} / \nu_{1}, & \text { if } \nu_{1} \neq 0, \\ \infty, & \text { if } \nu_{1}=0 ;\end{cases}$
3: $y= \begin{cases}x+t_{\mathrm{opt}} p & \text { if } t_{\mathrm{opt}} \text { is finite, } \\ p & \text { otherwise. }\end{cases}$
CG for $A x=\lambda B x$: in nonlinear CG simply replace $\nabla \phi(x)$ by $r(x):=A x-\rho(x) B x$.

CG for $A x=\lambda B x$

Given an initial approximation \boldsymbol{x}_{0} to u_{1}, and a relative tolerance rtol, the algorithm attempts to compute an approximate eigenpair to $\left(\lambda_{1}, u_{1}\right)$ with the prescribed rtol.
1: $\boldsymbol{x}_{0}=\boldsymbol{x}_{0} /\left\|\boldsymbol{x}_{0}\right\|_{B}, \boldsymbol{\rho}_{0}=\boldsymbol{x}_{0}^{\mathrm{H}} A \boldsymbol{x}_{0}, \boldsymbol{r}_{0}=A \boldsymbol{x}_{0}-\boldsymbol{\rho}_{0} B \boldsymbol{x}_{0}, \boldsymbol{p}_{0}=-\boldsymbol{r}_{0}$;
2: for $\ell=0,1, \ldots$ do
3: if $\left\|\boldsymbol{r}_{\ell}\right\|_{2} /\left(\left\|A \boldsymbol{x}_{\ell}\right\|_{2}+\left|\boldsymbol{\rho}_{\ell}\right|\left\|B \boldsymbol{x}_{\ell}\right\|_{2}\right) \leq$ rtol then
4: BREAK;
5: else
6: compute $\alpha_{\ell}=t_{\mathrm{opt}}:=\inf _{t \in \mathbb{C}} \rho\left(\boldsymbol{x}_{\ell}+t \boldsymbol{p}_{\ell}\right)$, and then

$$
y= \begin{cases}\boldsymbol{x}_{\ell}+\alpha_{\ell} \boldsymbol{p}_{\ell} & \text { if } \alpha_{\ell} \text { is finite } \\ \boldsymbol{p}_{\ell} & \text { otherwise }\end{cases}
$$

7: $\quad \boldsymbol{x}_{\ell+1}=y /\|y\|_{B}$;
8: $\quad \operatorname{set} \boldsymbol{\rho}_{\ell+1}=\boldsymbol{x}_{\ell+1}^{\mathrm{H}} A \boldsymbol{x}_{\ell+1}, \boldsymbol{r}_{\ell+1}=A \boldsymbol{x}_{\ell+1}-\boldsymbol{\rho}_{\ell+1} B \boldsymbol{x}_{\ell+1}, \boldsymbol{p}_{\ell+1}=-\boldsymbol{r}_{\ell+1}+\beta_{\ell} \boldsymbol{p}_{\ell}$, where $\beta_{\ell}=\frac{\boldsymbol{r}_{\ell+1}^{\mathrm{H}} \boldsymbol{r}_{\ell+1}}{\boldsymbol{r}_{\ell}^{\mathrm{H}} \boldsymbol{r}_{\ell}}$ or $\frac{\boldsymbol{r}_{\ell+1}^{\mathrm{H}}\left(\boldsymbol{r}_{\ell+1}-\boldsymbol{r}_{\ell}\right)}{\boldsymbol{r}_{\ell}^{\mathrm{H}} \boldsymbol{r}_{\ell}}$
9: end if
10: end for
11: return $\left(\boldsymbol{\rho}_{\ell}, \boldsymbol{x}_{\ell}\right)$ as an approximate eigenpair to $\left(\lambda_{1}, u_{1}\right)$.

Convergence Theorem (Yang, 1993)

With $\beta_{\ell}=\frac{\boldsymbol{r}_{\ell+1}^{H} \boldsymbol{r}_{\ell+1}}{\boldsymbol{r}_{\ell}^{H} \boldsymbol{r}_{\ell}}, \boldsymbol{\rho}_{\ell}$ converges to some eigenvalue $\hat{\lambda}$ of $A-\lambda B$ and there is a convergent subsequence $\left\{\boldsymbol{x}_{\ell_{i}}\right\}$ of $\left\{\boldsymbol{x}_{\ell}\right\}$ such that

$$
\left\|(A-\hat{\lambda} B) x_{\ell_{i}}\right\|_{2} \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty
$$

i.e., $\boldsymbol{x}_{\ell_{i}}$ converges in direction to a corresponding eigenvector.

If $\hat{\lambda}=\lambda_{1}$, then $\left\|(A-\hat{\lambda} B) x_{\ell}\right\|_{2} \rightarrow 0$ as $\ell \rightarrow \infty$, i.e., \boldsymbol{x}_{ℓ} converges in direction to a corresponding eigenvector. (seem new)

- First part due to (Yang, 1993); second part seems new.
- Only for $\beta_{\ell}=\frac{r_{\ell+1}^{H} r_{\ell+1}}{r_{\ell}^{H} r_{\ell}}$, however.
- Proof much more complicated than for SD.
- Rate of convergence: mostly heuristic, none rigorous proven.

As in SD, Preconditioned CG $=$ vanilla $C G$ on $L^{-H} A L^{-1}-\lambda L^{-H} B L^{-1}$.
Let $\widetilde{A}-\lambda \widetilde{B}:=L^{-H} A L^{-1}-\lambda L^{-H} B L^{-1}$. Adopt notation convention for $\widetilde{A}-\lambda \widetilde{B}$: same symbols but with tildes. E.g., $\tilde{x}=L x$,

$$
\widetilde{\rho}(\widetilde{x})=\frac{\widetilde{x}^{H} L^{-H} A L^{-1} \widetilde{x}}{\widetilde{x}^{H} L^{-H} B L^{-1} \widetilde{x}} \equiv \rho(x), \quad \widetilde{r}(\widetilde{x})=L^{-H} A L^{-1} \widetilde{x}-\widetilde{\rho}(\widetilde{x}) L^{-H} B L^{-1} \widetilde{x} \equiv L^{-H^{H}} r(x) .
$$

Key CG step:

$$
\begin{aligned}
& \widetilde{\alpha}_{\ell}=\arg \min \widetilde{\rho}\left(\widetilde{\boldsymbol{x}}_{\ell}+\widetilde{\alpha} \widetilde{\boldsymbol{p}}_{\ell}\right), \\
& \widetilde{\boldsymbol{x}}_{\ell+1}=\widetilde{\boldsymbol{x}}_{\ell}+\widetilde{\alpha}_{\ell} \widetilde{\boldsymbol{p}}_{\ell}, \\
& \widetilde{\boldsymbol{r}}_{\ell+1}=L^{-H} A L^{-1} \widetilde{\boldsymbol{x}}_{\ell+1}-\widetilde{\rho}\left(\widetilde{\boldsymbol{x}}_{\ell+1}\right) L^{-H} B L^{-1} \widetilde{\boldsymbol{x}}_{\ell+1}, \quad \widetilde{\boldsymbol{p}}_{\ell+1}=-\widetilde{\boldsymbol{r}}_{\ell+1}+\widetilde{\beta}_{\ell} \widetilde{\boldsymbol{p}}_{\ell} .
\end{aligned}
$$

$$
\begin{gathered}
\widetilde{\alpha}_{\ell}=\underset{\widetilde{\alpha}}{\arg \min } \rho(\boldsymbol{x}_{\ell}+\widetilde{\alpha} \underbrace{L^{-1} \widetilde{\boldsymbol{p}}_{\ell}}_{=: \boldsymbol{p}_{\ell}}), \quad \boldsymbol{x}_{\ell+1}=\boldsymbol{x}_{\ell}+\widetilde{\alpha}_{\ell} L^{-1} \widetilde{\boldsymbol{p}}_{\ell} \\
\boldsymbol{r}_{\ell+1}=A \boldsymbol{x}_{\ell+1}-\rho\left(\boldsymbol{x}_{\ell+1}\right) B \boldsymbol{x}_{\ell+1}, \quad \underbrace{L^{-1} \widetilde{\boldsymbol{p}}_{\ell+1}}_{=: \boldsymbol{p}_{\ell+1}}=-\underbrace{\left(L^{\mathrm{H}} L\right)^{-1}}_{=: K} \boldsymbol{r}_{\ell+1}+\widetilde{\beta}_{\ell} \underbrace{L^{-1} \widetilde{\boldsymbol{p}}_{\ell}}_{=: \boldsymbol{p}_{\ell}} .
\end{gathered}
$$

Preconditioned CG for $A x=\lambda B x$

Given an initial approximation \boldsymbol{x}_{0} to u_{1}, a (positive definite) preconditioner K, and a relative tolerance rtol, the algorithm attempts to compute an approximate pair to $\left(\lambda_{1}, u_{1}\right)$ with the prescribed rtol.
1: $x_{0}=x_{0} /\left\|x_{0}\right\|_{B}, \rho_{0}=x_{0}^{\mathrm{H}} A x_{0}, r_{0}=A x_{0}-\rho_{0} B x_{0}, p_{0}=-K r_{0}$;
2: for $\ell=0,1, \ldots$ do
3: if $\left\|\boldsymbol{r}_{\ell}\right\|_{2} /\left(\left\|A \boldsymbol{x}_{\ell}\right\|_{2}+\left|\boldsymbol{\rho}_{\ell}\right|\left\|B \boldsymbol{x}_{\ell}\right\|_{2}\right) \leq$ rtol then
4: BREAK;
5: else
6: compute $\alpha_{\ell}=t_{\text {opt }}:=\inf _{t \in \mathbb{C}} \rho\left(\boldsymbol{x}_{\ell}+t \boldsymbol{p}_{\ell}\right)$, and then

$$
y= \begin{cases}\boldsymbol{x}_{\ell}+\alpha_{\ell} \mathbf{p}_{\ell} & \text { if } \alpha_{\ell} \text { is finite } \\ \boldsymbol{p}_{\ell} & \text { otherwise }\end{cases}
$$

7: $\quad \boldsymbol{x}_{\ell+1}=y /\|y\|_{B}$;
8: $\quad \operatorname{set} \rho_{\ell+1}=x_{\ell+1}^{H} A x_{\ell+1}, r_{\ell+1}=A x_{\ell+1}-\rho_{\ell+1} B x_{\ell+1}$,

$$
\boldsymbol{p}_{\ell+1}=-K \boldsymbol{r}_{\ell+1}+\beta_{\ell} \boldsymbol{p}_{\ell}, \text { where } \beta_{\ell}=\frac{\boldsymbol{r}_{\ell+1}^{H} K \boldsymbol{r}_{\ell+1}}{\boldsymbol{r}_{\ell}^{H} K \boldsymbol{r}_{\ell}} \text { or } \frac{\mathbf{r}_{\ell+1}^{H} K\left(\boldsymbol{r}_{\ell+1}-\boldsymbol{r}_{\ell}\right)}{\boldsymbol{r}_{\ell}^{H} K \boldsymbol{r}_{\ell}} \text {. }
$$

9: end if
10: end for
11: return $\left(\boldsymbol{\rho}_{\ell}, \boldsymbol{x}_{\ell}\right)$ as an approximate eigenpair to $\left(\lambda_{1}, u_{1}\right)$.

Earlier discussions on selecting a good preconditioner for PSD should apply:

- $A-\sigma B=L D L^{H}, D=\operatorname{diag}(\pm 1), K=\left(L^{H} L\right)^{-1}$.

Various heuristics on the convergence rates of the preconditioned CG, but none is rigorously proved. Even less can be said about the theoretical analysis of block (or subspace) versions of the preconditioned CG method (to come soon).

But since preconditioned CG is CG for $L^{-H} A L^{-1}-\lambda L^{-H} B L^{-1}$, previous convergence theorem for CG remains valid.

In writing down CG for $A x=\lambda B x$, we did

- gradient-to-residual replacement: replacing the gradient by the eigen-residual $r(x)=A x-\rho(x) B x$ which differs by a scalar factor $2 / x^{\mathrm{H}} B x$ from the gradient $\nabla \rho(x)=\frac{2}{x^{H} B x}[A x-\rho(x) B x] ;$
- also normalizing \boldsymbol{x}_{ℓ}. No theory around as to why we should normalize \boldsymbol{x}_{ℓ}, beside that they are some eigenvector approximations.
We made a couple of "arbitrary choices". Their effects on the rate of convergence are not clear.

Locally optimal CG eliminates the "arbitrariness" altogether: compute $\boldsymbol{x}_{\ell+1}$ from the subspace $\operatorname{span}\left\{\boldsymbol{x}_{\ell-1}, \boldsymbol{x}_{\ell}, \boldsymbol{r}_{\ell}\right\}$ by

$$
\min _{x \in \operatorname{span}\left\{x_{\ell-1}, \boldsymbol{x}_{\ell}, \boldsymbol{r}_{\ell}\right\}} \rho(x),
$$

which is solvable through the Rayleigh-Ritz procedure.

Locally Optimal CG for $A x=\lambda B x$

Given an initial approximation \boldsymbol{x}_{0} to u_{1}, and a relative tolerance rtol, the algorithm attempts to compute an approximate eigenpair to (λ_{1}, u_{1}) with the prescribed rtol.
1: $x_{0}=x_{0} /\left\|x_{0}\right\|_{B}, \rho_{0}=x_{0}^{H} A x_{0}, r_{0}=A x_{0}-\rho_{0} B x_{0}, x_{-1}=0$;
2: for $\ell=0,1, \ldots$ do
3: if $\left\|\boldsymbol{r}_{\ell}\right\|_{2} /\left(\left\|A \boldsymbol{x}_{\ell}\right\|_{2}+\left|\boldsymbol{\rho}_{\ell}\right|\left\|B \boldsymbol{x}_{\ell}\right\|_{2}\right) \leq$ rtol then
4: BREAK;
5: else
6: \quad compute a basis matrix $Z \in \mathbb{C}^{n \times k}(k=2$ or 3$)$ of the subspace $\operatorname{span}\left\{\boldsymbol{x}_{\ell}, \boldsymbol{x}_{\ell-1}, \boldsymbol{r}_{\ell}\right\}$;
7: compute the smallest eigenvalue μ and corresponding eigenvector v of $Z^{H}(A-\lambda B) Z$;

$$
y=Z v, x_{\ell+1}=y /\|y\|_{B}
$$

$$
\boldsymbol{\rho}_{\ell+1}=\mu, \boldsymbol{r}_{\ell+1}=\boldsymbol{A} \boldsymbol{x}_{\ell+1}-\boldsymbol{\rho}_{\ell+1} B \boldsymbol{x}_{\ell+1}
$$

end if
11: end for
12: return $\left(\boldsymbol{\rho}_{\ell}, \boldsymbol{x}_{\ell}\right)$ as an approximate eigenpair to $\left(\lambda_{1}, u_{1}\right)$.

Implementation

\boldsymbol{x}_{ℓ} moves closer and closer to $u_{1} ; \boldsymbol{x}_{\ell}, \boldsymbol{x}_{\ell-1}$ increasingly move towards being linearly dependent.

Line 6: Z contaminated more and more by rounding errors. How to mitigate that?
To replace $\boldsymbol{x}_{\ell-1}$ by some $\boldsymbol{y}_{\ell}:=\xi_{\ell, 1} \boldsymbol{x}_{\ell}-\xi_{\ell, 2} \boldsymbol{x}_{\ell-1}$ such that

$$
\operatorname{span}\left\{\boldsymbol{x}_{\ell}, \boldsymbol{x}_{\ell-1}, \boldsymbol{r}_{\ell}\right\}=\operatorname{span}\left\{\boldsymbol{x}_{\ell}, \boldsymbol{y}_{\ell}, \boldsymbol{r}_{\ell}\right\}
$$

Then same (μ, v) at Line 7. But need to generate $\boldsymbol{y}_{\ell+1}$, given $\boldsymbol{x}_{\ell}, \boldsymbol{y}_{\ell}, \boldsymbol{r}_{\ell}$.
$Z=\left[z_{1}, z_{2}, z_{3}\right]$ is B-orthonormal (by MGS), and $z_{1}=x_{\ell}$. Then
$y=Z v=\nu_{1} z_{1}+\nu_{2} z_{2}+\nu_{3} z_{3}=\nu_{1} x_{\ell}+\nu_{2} z_{2}+\nu_{3} z_{3}$.
Set $\boldsymbol{y}_{\ell+1}:=y-\nu_{1} \boldsymbol{x}_{\ell}=\|y\|_{B} \boldsymbol{x}_{\ell+1}-\nu_{1} \boldsymbol{x}_{\ell}=: \xi_{\ell+1,1} \boldsymbol{x}_{\ell+1}-\xi_{\ell+1,2} \boldsymbol{x}_{\ell}$.
Modify Lines 1,6 , and 8 as follows while keeping others the same.

Convergence Theorem for LOCG)

$\boldsymbol{\rho}_{\ell}$ converges to some eigenvalue $\hat{\lambda}$ of $A-\lambda B$ and $\left\|(A-\hat{\lambda} B) \boldsymbol{x}_{\ell}\right\|_{2} \rightarrow 0$ as $\ell \rightarrow \infty$, i.e., \boldsymbol{x}_{ℓ} converges in direction to a corresponding eigenvector.

- Same convergence theorem for SD;
- For CG, PCG, only $\left\|(A-\hat{\lambda} B) x_{\ell_{i}}\right\|_{2} \rightarrow 0$;
- Inclusion of the residual \boldsymbol{r}_{ℓ} makes the difference.

Three ideas for improving SD naturally apply here:
1 Incorporate a preconditioner K : simply modify \boldsymbol{r}_{ℓ} to $K \boldsymbol{r}_{\ell}$;
2 Extend search space from currently

$$
\operatorname{span}\left\{\boldsymbol{x}_{\ell-1}\right\}+\mathcal{K}_{2}\left(A-\rho_{\ell} B, \boldsymbol{x}_{\ell}\right) \quad \text { to } \quad \operatorname{span}\left\{\boldsymbol{x}_{\ell-1}\right\}+\mathcal{K}_{m}\left(A-\rho_{\ell} B, \boldsymbol{x}_{\ell}\right)
$$

3 Use block $X_{0} \in \mathbb{C}^{n \times n_{b}}$.
The ideas can be applied in any combination ($2^{3}=8$ of them): E.g.,

- Locally Optimal Preconditioned CG (LOPCG): $m=2, n_{b}=1, K \neq I$;
- Locally Optimal Block Preconditioned CG (LOBPCG): $m=2, n_{b}>1, K \neq I$;
- Locally Optimal Extended CG (LOECG): $m>2, n_{b}=1, K=I$;
- Locally Optimal Preconditioned Extended CG (LOPECG): $m>2, n_{b}=1$, $K \neq I$;
- Locally Block Optimal Preconditioned Extended CG (LOBPECG): $m>2$, $n_{b}>1, K \neq I$.

Extended Locally Block Optimal Preconditioned CG

Given an initial approximation $X_{0} \in \mathbb{C}^{n \times n_{b}}$ with $\operatorname{rank}\left(X_{0}\right)=n_{b}$, and an integer $m \geq 2$, the algorithm attempts to compute approximate eigenpairs to $\left(\lambda_{j}, u_{j}\right)$ for $1 \leq j \leq n_{b}$.

1: compute the eigen-decomposition: $\left(X_{0}^{\mathrm{H}} A X_{0}\right) W=\left(X_{0}^{\mathrm{H}} B X_{0}\right) W \Omega_{0}$, where
$W^{\mathrm{H}}\left(X_{0}^{\mathrm{H}} B X_{0}\right) W=I, \Omega_{0}=\operatorname{diag}\left(\rho_{0 ; 1}, \rho_{0 ; 2}, \ldots, \rho_{0 ; n_{b}}\right) ;$
$X_{0}=X_{0} W$, and $X_{-1}=0 ;$
for $\ell=0,1, \ldots$ do
test convergence and lock up the converged (detail as in EBPSD);
construct preconditioners $K_{\ell ; j}$ for $1 \leq j \leq n_{b}$;
compute a basis matrix $Z \in \mathbb{C}^{n \times(m+1) n_{b}}$ of the subspace
$\sum_{j=1}^{n_{b}} \mathcal{K}_{m}\left(K_{\ell ; j}\left(A-\rho_{\ell ; j} B\right), x_{\ell ; j}\right)+\mathcal{R}\left(X_{\ell-1}\right) ;$
7: compute the n_{b} smallest eigenvalues and corresponding eigenvectors of $Z^{\mathrm{H}}(A-\lambda B) Z$ to get $\left(Z^{\mathrm{H}} A Z\right) W=\left(Z^{\mathrm{H}} B Z\right) W \Omega_{\ell}$, where $W^{\mathrm{H}}\left(Z^{\mathrm{H}} B Z\right) W=1$, $\Omega_{\ell+1}=\operatorname{diag}\left(\rho_{\ell+1 ; 1}, \rho_{\ell+1 ; 2}, \ldots, \rho_{\ell+1 ; n_{b}}\right)$;

$$
X_{\ell+1}=Z W
$$

end for
return approximate eigenpairs to $\left(\lambda_{j}, u_{j}\right)$ for $1 \leq j \leq n_{b}$.

Implementation

Three important implementation issues earlier for XBPSD essentially apply here, but more need to be said about Z at Line 6 here.
$X_{\ell-1}$ can be replaced by something else, using the idea earlier for LOCG. Specifically, Lines 2, 6, and 8 should be modified to

2: $X_{0}=X_{0} W$, and $Y_{0}=0$;
6: compute a basis matrix $Z \in \mathbb{C}^{n \times(m+1) n_{b}}$ of the subspace

$$
\sum_{j=1}^{n_{b}} \mathcal{K}_{m}\left(K_{\ell ; j}\left(A-\rho_{\ell ; j} B\right), x_{\ell ; j}\right)+\mathcal{R}\left(Y_{\ell}\right) \text { such that } \mathcal{R}\left(Z_{\left(:, 1: n_{b}\right)}\right)=\mathcal{R}\left(X_{\ell}\right) ;
$$

8: $\quad X_{\ell+1}=Z W, Y_{\ell+1}=Z \widehat{W}$, where \widehat{W} is W with its n_{b} rows zeroed;

For $K_{\ell ; j} \equiv K_{\ell}, Z$ is basis matrix of (dropping the subscript ℓ) $\mathcal{K}_{m}(K \mathscr{R}, X)+\mathcal{R}(Y)=\operatorname{span}\left\{X, K \mathscr{R}(X), \ldots,[K \mathscr{R}]^{m-1}(X)\right\}+\mathcal{R}(Y)$.
1 compute a basis matrix $\left[Z_{1}, Z_{2}, \ldots, Z_{m}\right]$ for $\mathcal{K}_{m}(K \mathscr{R}, X)$ by the Block Arnoldi-like process in the B-inner product. In particular, $Z_{1}=X$.
$2 B$-orthogonalize Y against $\left[Z_{1}, Z_{2}, \ldots, Z_{m}\right]$ to get Z_{m+1} satisfying $Z_{m+1}^{\mathrm{H}} B Z_{m+1}=I$.
$3 Z=\left[Z_{1}, Z_{2}, \ldots, Z_{m+1}\right]$.

Precise rates of convergence for various CG methods are scarce and not well understood, especially so for methods of block version. The existing research on the convergence of various SD and CG-type methods, although fragmental and incomplete, should be helpful and provide heuristic insights. Some of the references are
L. Bergamaschi, G. Gambolati, and G. Pini. Asymptotic convergence of conjugate gradient methods for the partial symmetric eigenproblem. Numer. Linear Algebra Appl., 4(2):69-84, 1997.
J. H. Bramble, J. E. Pasciak, and A. V. Knyazev. A subspace preconditioning algorithm for eigenvector/eigenvalue computation. Adv. in Comput. Math., 6:159-189, 1996.

Andrew V. Knyazev and Klaus Neymeyr. A geometric theory for preconditioned inverse iteration III: A short and sharp convergence estimate for generalized eigenvalue problems. Linear Algebra Appl., 358(1-3):95-114, 2003.
D. E. Longsine and S. F. McCormick. Simultaneous Rayleigh-quotient minimization methods for $A x=\lambda B x$. Linear Algebra Appl., 34:195-234, 1980.
S. Oliveira. On the convergence rate of a preconditioned subspace eigensolver. Computing, 63:219-231, 1999.
E. E. Ovtchinnikov. Jacobi correction equation, line search, and conjugate gradients in hermitian eigenvalue computation I: Computing an extreme eigenvalue. SIAM J. Numer. Anal., 46(5):2567-2592, 2008.
E. E. Ovtchinnikov. Jacobi correction equation, line search, and conjugate gradients in hermitian eigenvalue computation II: Computing several extreme eigenvalues. SIAM J. Numer. Anal., 46(5):2593-2619, 2008.
H. Yang. Conjugate gradient methods for the Rayleigh quotient minimization of generalized eigenvalue problems. Computing, 51:79-94, 1993.

Extending Min-Max Principles: Indefinite B

- Early Extensions
- Positive Semi-definite Pencil

Early Extensions

Min-max principles, Cauchy interlace inequalities are Foundations for optimization approaches to solve few extreme eigenpairs of $A-\lambda B$ with $B \succ 0$.

How far can these theoretical results be extended?

Early extensions (before 1982) of Courant-Fischer min-max princples:

- $A x=\lambda x$ with $A \succeq 0$ in an indefinite inner product

R. S. Phillips. A minimax characterization for the eigenvalues of a positive symmetric operator in a space with an indefinite metric. J. Fac. Sci. Univ. Tokyo Sect. I, 17:51-59, 1970.B. Textorius. Minimaxprinzipe zur Bestimmung der Eigenwerte J-nichtnegativer Operatoren. Math. Scand., 35:105-114, 1974.
It turns out to be a special case of $A-\lambda B$ with indefinite and nonsingular B.
- Hyperbolic $Q(\lambda)=A \lambda^{2}+B \lambda+C$:
\square R. Duffin. A minimax theory for overdamped networks. Indiana Univ. Math. J., 4:221-233, 1955.
- More general nonlinear eigenvalue problems:
\square H. Voss and B. Werner. A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems. Math. Meth. Appl. Sci., 4:415-424, 1982.
and references therein.

Will focus on $A-\lambda B$ with indefinite B and hyperbolic $Q(\lambda) \ldots$

Difficulties:

- B is indefinite $-A x=\lambda B x$ not equivalent to standard Hermitian eigenvalue problem;
- $A x=\lambda B x$ may have complex eigenvalues - no min-max for complex eigenvalues;

The case we consider will turn out to have only real eigenvalues.

- $A-\lambda B$ may be a singular pencil: $\operatorname{det}(A-\lambda B) \equiv 0$ for $\lambda \in \mathbb{C}$. Need a definition for eigenvalues.

1 Extending Courant-Fischer for regular Hermitian pencil:

- Nonsingular B: Lancaster \& Ye (1989), Ye's thesis (1989), Najman \& Ye (1991), Binding \& Ye (1995)
- Singular B: Najman \& Ye (1993), Binding \& Najman \& Ye (1999)

Only certain real semi-simple eigenvalues admit a Courant-Fischer type characterization.

2 Extending trace min for positive semi-definite Hermitian pencil (i.e., $A-\lambda_{0} B \succeq 0$ for some $\lambda_{0} \in \mathbb{R}$):

- Nonsingular B: Kovač-Striko \& Veselić (1995)
- (Possibly) singular pencil $A-\lambda B$: Liang \& Li \& Bai (2012)

3 Extending Wielandt's min-max for positive semi-definite Hermitian pencil:

- Nonsingular B: Nakić and Veselić (2003) (actually for regular Hermitian $A-\lambda B$, but beware of inaccurate/incorrect statements/equations there)
- (Possibly) singular pencil $A-\lambda B$: Liang \& Li (2012)

4 Extending trace min for linear response eigenvalue problem: Bai \& Li (2011).

$$
A=A^{\mathrm{H}}, B=B^{\mathrm{H}} \in \mathbb{C}^{n \times n} .
$$

1 Positive semi-definite pencil: $A-\lambda_{0} B \succeq 0$ for some $\lambda_{0} \in \mathbb{R}$; $A-\lambda B$ will be assumed so hereafter.

2 Finite eigenvalue $\mu(\neq \infty)$: $\operatorname{rank}(A-\mu B)<\max _{\lambda \in \mathbb{C}} \operatorname{rank}(A-\lambda B)$; This allows singular pencil $A-\lambda B$.

3 Eigenvector x : $A x=\mu B x$ and $x \notin \mathcal{N}(A) \cap \mathcal{N}(B)$ and.
$4 B$'s Inertia (n_{+}, n_{0}, n_{-}): n_{+}positive, n_{0} zero, and n_{-}negative eigenvalues, respectively.
5 Can prove: positive semi-definite pencil $A-\lambda B$ has only

$$
r:=\operatorname{rank}(B)=n_{+}+n_{-}
$$

finite eigenvalues all of which are real:

$$
\lambda_{n_{-}}^{-} \leq \cdots \leq \lambda_{1}^{-} \leq \lambda_{0} \leq \lambda_{1}^{+} \leq \cdots \leq \lambda_{n_{+}}^{+}
$$

6 In more detail ...

1. There exists a nonsingular $W \in \mathbb{C}^{n \times n}$ such that

$$
W^{\mathrm{H}} A W=\underset{\substack{n_{1} \\
n-n_{1} \\
n-r}}{n_{1}}\left[\begin{array}{ccc}
n_{1} & r-n_{1} & n-r \\
\Lambda_{1} & \Lambda_{0} & \\
& & \Lambda_{\infty}
\end{array}\right], \quad W^{\mathrm{H}} B W=\begin{array}{ccc}
n_{1} \\
n-n_{1} \\
n-r
\end{array}\left[\begin{array}{ccc}
\Omega_{1} & r-n_{1} & n-r \\
& \Omega_{0} & \\
& & 0
\end{array}\right]
$$

$\square \Lambda_{1}=\operatorname{diag}\left(s_{1} \alpha_{1}, \ldots, s_{\ell} \alpha_{\ell}\right), \Omega_{1}=\operatorname{diag}\left(s_{1}, \ldots, s_{\ell}\right), s_{i}= \pm 1$, and $\Lambda_{1}-\lambda_{0} \Omega_{1} \succ 0$;
$\square \Lambda_{0}=\operatorname{diag}\left(\Lambda_{0,1}, \ldots, \Lambda_{0, m+m_{0}}\right), \Omega_{0}=\operatorname{diag}\left(\Omega_{0,1}, \ldots, \Omega_{0, m+m_{0}}\right)$,

$$
\begin{array}{ll}
\Lambda_{0, i}=t_{i} \lambda_{0}, & \Omega_{0, i}=t_{i}= \pm 1, \quad \text { for } 1 \leq i \leq m, \\
\Lambda_{0, i}=\left[\begin{array}{cc}
0 & \lambda_{0} \\
\lambda_{0} & 1
\end{array}\right], \quad \Omega_{0, i}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \text { for } m+1 \leq i \leq m+m_{0}
\end{array}
$$

There are no such pair $\left(\Lambda_{0}, \Omega_{0}\right)$ if $A-\lambda_{0} B \succ 0$.
$\square \Lambda_{\infty}=\operatorname{diag}\left(\alpha_{r+1}, \ldots, \alpha_{n}\right) \succeq 0$ with $\alpha_{i} \in\{1,0\}$ for $r+1 \leq i \leq n$.
$2 A-\lambda B$ has $n_{+}+n_{-}$finite eigenvalues all of which are real. Denote these finite eigenvalues by $\lambda_{i}^{ \pm}$and arrange them

$$
\lambda_{n_{-}}^{-} \leq \cdots \leq \lambda_{1}^{-} \leq \lambda_{1}^{+} \leq \cdots \leq \lambda_{n_{+}}^{+}
$$

$3\{\gamma \in \mathbb{R} \mid A-\gamma B \succeq 0\}=\left[\lambda_{n_{-}}^{-}, \lambda_{1}^{+}\right]$. Moreover, if $A-\lambda B$ is regular, then $A-\lambda B$ is a positive definite pencil if and only if $\lambda_{n_{-}}^{-}<\lambda_{1}^{+}$, in which case $\{\gamma \in \mathbb{R} \mid A-\gamma B \succ 0\}=\left(\lambda_{n_{-}}^{-}, \lambda_{1}^{+}\right)$.

Courant-Fischer type min-max principle

$$
\begin{aligned}
& \lambda_{i}^{+}=\sup _{\operatorname{codim} X=i-1} \inf _{\substack{x \in x}} \frac{x^{\mathrm{H}} A x}{x^{+} \in x>0}<\lambda_{i}^{+}=\inf _{\operatorname{dim} x=i} \sup _{\substack{\mathrm{H} \\
x \in x \\
x^{\mathrm{H}} \\
B x>0}} \frac{x^{\mathrm{H}} A x}{x^{H} B x} \text { for } 1 \leq i \leq n_{+}, \\
& \lambda_{i}^{-}=\inf _{\operatorname{codim} X=i-1} \sup _{\substack{x \in X \\
x^{H} \in x<0}} \frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} B x}, \quad \lambda_{i}^{-}=\sup _{\operatorname{dim} X=i} \inf _{\substack{\mathrm{H} \in X \\
x^{H} B x<0}} \frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} B x} \text { for } 1 \leq i \leq n_{-} . \\
& \text {In particular, } \quad \lambda_{1}^{+}=\inf _{x^{H} B x>0} \frac{x^{\mathrm{H}} A x}{x^{\mathrm{H}} B x}, \quad \lambda_{1}^{-}=\sup _{x^{\mathrm{H}} B x<0} \frac{x^{\mathrm{H}} A x}{x^{H} B x} \text {. }
\end{aligned}
$$

- Lancaster \& Ye (1989), Ye's thesis (1989) for diagonalizable $A-\lambda B$ and B nonsingular. (Actually studied $A-\lambda B$ not necessarily positive semi-definite, but then only some of the eigenvalues can be characterized.)
- Najman \& Ye (1993), Binding \& Najman \& Ye (1999) for regular $A-\lambda B$. (Actually studied $A-\lambda B$ not necessarily positive semi-definite, but then only some of the real eigenvalues can be characterized.)
- Liang \& Li (2012) for allowing singular pencil $A-\lambda B$.

Trace Min Type

$$
k_{+} \leq n_{+}, k_{-} \leq n_{-}, k:=k_{+}+k_{-} \geq 1, \quad J_{k}=\left[\begin{array}{ll}
I_{k_{+}} & \\
& -I_{k_{-}}
\end{array}\right] .
$$

Trace minimization principle

$$
\begin{align*}
& \inf _{\substack{x_{+}=\left[x_{1}, \ldots, x_{k_{+}}\right] \\
x_{-}=\left[y_{1}, \ldots, y_{k_{-}}\right] \\
x=\left[X_{+}, x_{-}\right], \\
\text {subject to }(8)}} \operatorname{trace}\left(X^{\mathrm{H}} A X\right)=\sum_{i=1}^{k_{+}} \lambda_{i}^{+}-\sum_{i=1}^{k_{-}} \lambda_{i}^{-} . \\
& \text {either } X^{H} B X=J_{k} \text {, or } X_{+}^{\mathrm{H}} B X_{+}=I_{k_{+}} \text {and } X_{-}^{\mathrm{H}} B X_{-}=-I_{k_{-}} . \tag{8}
\end{align*}
$$

A converse: $\inf _{X^{H}{ }_{B X}=J_{k}} \operatorname{trace}\left(X^{H} A X\right)>-\infty \Rightarrow A-\lambda B$ positive semi-definite.

- Kovač-Striko \& Veselić (1995) for B nonsingular, subject to $X^{H} B X=J_{k}$.
- Liang \& Li \& Bai (2012) for allowing singular pencil $A-\lambda B$.

Unfortunately no Trace Max in general.

Cauchy Type

Eigenvalues of $A-\lambda B: \lambda_{n_{-}}^{-} \leq \cdots \leq \lambda_{1}^{-} \leq \lambda_{1}^{+} \leq \cdots \leq \lambda_{n_{+}}^{+}$.

$$
k_{+} \leq n_{+}, k_{-} \leq n_{-}, k:=k_{+}+k_{-} \geq 1, \quad J_{k}=\left[\begin{array}{ll}
I_{k_{+}} & \\
& -I_{k_{-}}
\end{array}\right]
$$

$X \in \mathbb{C}^{k \times k}, X^{\mathrm{H}} B X=J_{k}$, or the inertia of $X^{\mathrm{H}} B X$ is $\left(k_{+}, 0, k_{-}\right)$;
Eigenvalues of $X^{\mathrm{H}}(A-\lambda B) X: \mu_{k_{-}}^{-} \leq \cdots \leq \mu_{1}^{-} \leq \mu_{1}^{+} \leq \cdots \leq \mu_{k_{+}}^{+}$.

Cauchy-type interlacing inequality

$$
\begin{aligned}
\lambda_{i}^{+} \leq \mu_{i}^{+} \leq \lambda_{i+n-k}^{+}, & \text {for } 1 \leq i \leq k_{+}, \\
\lambda_{j+n-k}^{-} \leq \mu_{i}^{-} \leq \lambda_{i}^{-}, & \text {for } 1 \leq j \leq k_{-},
\end{aligned}
$$

where undefined $\lambda_{i}^{+}=\infty$ for $i>n_{+}$and undefined $\lambda_{j}^{-}=-\infty$ for $j>n_{-}$.

- Kovač-Striko \& Veselić (1995) for B nonsingular.
- Liang \& Li \& Bai (2012) for allowing singular pencil $A-\lambda B$.

These results potentially lead to optimization approaches to compute 1st few $\lambda_{i}^{ \pm}$ (these are interior eigenvalues!). See Bai \& Li (2011, 2012, 2013 for linear response eigenvalue problem), Kressner, Pandur, \& Shao (2013).

Linear Response Eigenvalue Problem

- Background
- Basic Theory
- Minimization Principles
- 4D SD and 4D CG type Methods

DFT, strictly a ground-state theory, cannot be applied to study the excitations of systems that are involved in Optical Absorption Spectra (OAS) calculations.

Runge and Gross (1984) generalized DFT to Time-Dependent Density Functional Theory (TD-DFT):

$$
\iota \frac{\partial}{\partial t} \phi_{i}(\boldsymbol{r}, t)=[-\frac{1}{2} \nabla^{2}+\underbrace{\int \frac{n\left(\boldsymbol{r}^{\prime}, t\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} d \boldsymbol{r}^{\prime}+\frac{\delta A_{\mathrm{xc}}(n(\boldsymbol{r}, t))}{\delta n(\boldsymbol{r}, t)}+v_{\mathrm{ext}}(\boldsymbol{r}, t)}_{v_{\mathrm{KS}}(\boldsymbol{r}, t)}] \phi_{i}(\boldsymbol{r}, t) .
$$

Now KS operator depends on time t :

$$
\text { electronic density: } n(\boldsymbol{r}, t)=\sum_{i=1}^{N_{v}} \phi_{i}(\boldsymbol{r}, t) \phi_{i}^{*}(\boldsymbol{r}, t)
$$

G. Onida, L. Reining and A. Rubio, Electronic excitations: density-functional versus many-body Green's function approaches, Rev. Mod. Phys. 74, 2002, (59 pages).

$$
\begin{aligned}
\text { DFT: } \quad H_{\mathrm{KS}}^{\mathrm{GS}} \phi_{i}(\boldsymbol{r}) & \equiv\left[-\frac{1}{2} \nabla^{2}+v_{\mathrm{KS}}(\boldsymbol{r})\right] \phi_{i}(\boldsymbol{r})=\lambda_{i} \phi_{i}(\boldsymbol{r}), \\
v_{\mathrm{KS}}(\boldsymbol{r}) & =v_{\mathrm{H}}(\boldsymbol{r})+v_{\times \mathrm{c}}(\boldsymbol{r})+v_{\mathrm{ext}}(\boldsymbol{r}) .
\end{aligned}
$$

Perturb $v_{\text {ext }}(\boldsymbol{r})$ slightly to $v_{\text {ext }}(\boldsymbol{r}, t)=v_{\text {ext }}(\boldsymbol{r})+\dot{v}_{\text {ext }}(\boldsymbol{r}, t)$, which in turn induce perturbations to $v_{H \times c}(\boldsymbol{r}) \equiv v_{H}(\boldsymbol{r})+v_{x c}(\boldsymbol{r})$:

$$
V_{H \times c}(\boldsymbol{r}, t)=V_{H \times c}(\boldsymbol{r})+\dot{\circ}_{H \times c}(\boldsymbol{r}, t)
$$

TD-DFT: $\quad \iota \frac{\partial}{\partial t} \phi_{i}(\boldsymbol{r}, t)=H_{\mathrm{KS}}(t) \phi_{i}(\boldsymbol{r}, t) \equiv\left[-\frac{1}{2} \nabla^{2}+v_{\mathrm{KS}}(\boldsymbol{r}, t)\right] \phi_{i}(\boldsymbol{r}, t)$,

$$
\begin{aligned}
H_{\mathrm{KS}}(t) & =-\frac{1}{2} \nabla^{2}+v_{\mathrm{H}}(\boldsymbol{r}, t)+v_{\mathrm{xc}}(\boldsymbol{r}, t)+v_{\mathrm{ext}}(\boldsymbol{r}, t) \\
& =H_{\mathrm{KS}}^{\mathrm{GS}}+\dot{\circ}_{\mathrm{Hxc}}(\boldsymbol{r}, t)+{\dot{\nu_{\mathrm{ext}}}}(\boldsymbol{r}, t) .
\end{aligned}
$$

Seek information on first order change in $n(\boldsymbol{r}, t)=n(\boldsymbol{r})+\dot{n}(\boldsymbol{r}, t)$:

$$
\begin{aligned}
\phi_{i}(\boldsymbol{r}, t) & =\phi_{i}(\boldsymbol{r})+\grave{\phi}_{i}(\boldsymbol{r}, t) \\
n(\boldsymbol{r}, t) & \equiv n(\boldsymbol{r})+\grave{n}(\boldsymbol{r}, t) \\
& =n(\boldsymbol{r})+\sum_{i=1}^{N_{v}}\left[\grave{\phi}_{i}^{*}(\boldsymbol{r}, t) \phi_{i}(\boldsymbol{r})+\phi_{i}^{*}(\boldsymbol{r}) \dot{\phi}_{i}(\boldsymbol{r}, t)\right] .
\end{aligned}
$$

Better to explain using the single-particle density matrix which reads

$$
\begin{aligned}
\rho(\boldsymbol{r}, t) & =\sum_{i=1}^{N_{V}}\left|\phi_{i}(\boldsymbol{r}, t)\right\rangle\left\langle\phi_{i}(\boldsymbol{r}, t)\right|=\rho(\boldsymbol{r})+\stackrel{\circ}{\rho}(\boldsymbol{r}, t), \\
\rho(\boldsymbol{r}) & =\sum_{i=1}^{N_{V}}\left|\phi_{i}(\boldsymbol{r})\right\rangle\left\langle\phi_{i}(\boldsymbol{r})\right|, \\
\rho(\boldsymbol{r}, t) & =\sum_{i=1}^{N_{V}}\left(\left|\dot{\phi}_{i}(\boldsymbol{r}, t)\right\rangle\left\langle\phi_{i}(\boldsymbol{r})\right|+\left|\phi_{i}(\boldsymbol{r})\right\rangle\left\langle\dot{\phi}_{i}(\boldsymbol{r}, t)\right|\right) .
\end{aligned}
$$

(For Dirac Bra-ket notation, google bra-ket.)

Linear Response Theory

Differentiate $\rho(\boldsymbol{r}, t)$ with respect to t to get

$$
\begin{aligned}
\iota \frac{\partial}{\partial t} \rho(\boldsymbol{r}, t) & =\sum_{i=1}^{N_{v}}\left[H_{\mathrm{KS}}(t)\left|\phi_{i}(\boldsymbol{r}, t)\right\rangle\left\langle\phi_{i}(\boldsymbol{r}, t)\right|-\left|\phi_{i}(\boldsymbol{r}, t)\right\rangle\left\langle\phi_{i}(\boldsymbol{r}, t)\right| H_{\mathrm{KS}}(t)\right] \\
& =\left[H_{\mathrm{KS}}(t), \rho(\boldsymbol{r}, t)\right]
\end{aligned}
$$

Substitute $H_{\mathrm{KS}}(t)=H_{\mathrm{KS}}^{\mathrm{GS}}+{\dot{\nu_{H \times c}}}_{\mathrm{H}_{\mathrm{H}}}(\boldsymbol{r}, t)+\dot{\nu}_{\text {ext }}(\boldsymbol{r}, t)$ and $\rho(\boldsymbol{r}, t)=\rho(\boldsymbol{r})+\stackrel{\circ}{\rho}(\boldsymbol{r}, t)$ to get

$$
\begin{aligned}
\iota \frac{\partial}{\partial t} \rho(\boldsymbol{r}, t) & =\left[H_{\mathrm{KS}}^{\mathrm{GS}}, \rho(\boldsymbol{r}, t)\right]+[\stackrel{\circ}{\mathrm{V} \times \mathrm{c}}(\boldsymbol{r}, t), \rho(\boldsymbol{r})]+[\stackrel{\circ}{\mathrm{i}} \mathrm{ext}(\boldsymbol{r}, t), \rho(\boldsymbol{r})] \\
& =\mathcal{L} \rho(\boldsymbol{r}, t)+[\stackrel{\mathrm{V}}{\mathrm{ext}}(\boldsymbol{r}, t), \rho(\boldsymbol{r})]
\end{aligned}
$$

where \mathcal{L} is the Liouvillian super-operator:

$$
\mathcal{L} \rho(\boldsymbol{r}, t):=\left[H_{\mathrm{KS}}^{\mathrm{GS}}, \stackrel{\rho}{\rho}(\boldsymbol{r}, t)\right]+\left[\mathrm{V}_{\mathrm{Hxc}}(\boldsymbol{r}, t), \rho(\boldsymbol{r})\right]
$$

$$
\begin{aligned}
\iota \frac{\partial}{\partial t} \rho(\boldsymbol{r}, t) & =\left[H_{\mathrm{KS}}^{\mathrm{GS}}, \rho(\boldsymbol{r}, t)\right]+\left[\dot{\nu}_{\mathrm{Hxc}}(\boldsymbol{r}, t), \rho(\boldsymbol{r})\right]+[\stackrel{\nu}{\mathrm{ext}}(\boldsymbol{r}, t), \rho(\boldsymbol{r})] \\
& =\mathcal{L} \rho(\boldsymbol{r}, t)+\left[\dot{v}_{\mathrm{ext}}(\boldsymbol{r}, t), \rho(\boldsymbol{r})\right],
\end{aligned}
$$

Apply the Fourier transformation to get

$$
\begin{aligned}
\omega \rho(\boldsymbol{r}, \omega) & =\left[H_{\mathrm{KS}}^{\mathrm{GS}}, \rho(\boldsymbol{r}, \omega)\right]+[\stackrel{\circ}{\mathrm{Hxc}}(\boldsymbol{r}, \omega), \rho(\boldsymbol{r})]+[\stackrel{1}{\mathrm{Vext}}(\boldsymbol{r}, \omega), \rho(\boldsymbol{r})], \\
& =\mathcal{L} \rho(\boldsymbol{r}, \omega)+[\stackrel{\circ}{\mathrm{ext}}(\boldsymbol{r}, \omega), \rho(\boldsymbol{r})],
\end{aligned}
$$

where $\mathcal{L} \rho(\boldsymbol{r}, \omega)=\left[H_{\mathrm{KS}}^{\mathrm{GS}}, \stackrel{\rho}{\rho}(\boldsymbol{r}, \omega)\right]+\left[{ }^{\circ}{ }_{\mathrm{Hxc}}(\boldsymbol{r}, \omega), \rho(\boldsymbol{r})\right]$. Therefore

$$
(\omega-\mathcal{L}) \rho(\boldsymbol{r}, \omega)=\left[\grave{v}_{\mathrm{ext}}(\boldsymbol{r}, \omega), \rho(\boldsymbol{r})\right] .
$$

Set $\dot{\delta}_{\text {ext }}(\boldsymbol{r}, \omega)=0 \Rightarrow$ an eigenvalue problem; the smallest positive eigenvalues and associated eigenvectors give excitation states.

Can show:

$$
\dot{\rho}(\boldsymbol{r}, t)=\begin{gathered}
\mathcal{R}\left(\phi_{1}(r)\right) \\
0 \\
\mathcal{R}\left(\phi_{1}(r)\right) \\
\vdots \\
\mathcal{R}\left(\phi_{N_{V}}(r)\right) \\
\mathcal{N}(\rho(\boldsymbol{r}))
\end{gathered}\left(\begin{array}{cccc}
\\
\vdots & \cdots & \mathcal{R}\left(\phi_{N_{V}}(r)\right) & \mathcal{N}(\rho(\boldsymbol{r})) \\
0 & \ddots & 0 & \left\langle\dot{\phi}_{1}(\boldsymbol{r}, t)\right| \rho^{\perp}(\boldsymbol{r}) \\
\rho^{\perp}(\boldsymbol{r})\left|\dot{\phi}_{1}(\boldsymbol{r}, t)\right\rangle & \cdots & \rho^{\perp}(\boldsymbol{r})\left|\dot{\phi}_{N_{V}}(\boldsymbol{r}, t)\right\rangle & \vdots \\
0
\end{array}\right) .
$$

Hence basis functions of the "vector space" of all possible $\stackrel{\rho}{\rho}(\boldsymbol{r}, t)$

$$
x_{i}(\boldsymbol{r}, t)=\rho^{\perp}(\boldsymbol{r})\left|\dot{\phi}_{i}(\boldsymbol{r}, t)\right\rangle, \quad y_{i}(\boldsymbol{r}, t)=\left\langle\dot{\phi}_{i}(\boldsymbol{r}, t)\right| \rho^{\perp}(\boldsymbol{r}) .
$$

In the frequency space:

$$
\stackrel{\rho}{\rho}(\boldsymbol{r}, \omega)=\begin{gathered}
\mathcal{R}\left(\phi_{1}(r)\right) \\
\mathcal{R}\left(\phi_{1}(r)\right) \\
\vdots \\
0
\end{gathered} \begin{array}{cccc}
\mathcal{R}\left(\phi_{N_{V}}(r)\right) \\
\mathcal{N}(\rho(\boldsymbol{r}))
\end{array}\left(\begin{array}{cccc}
& \cdots & \mathcal{R}\left(\phi_{N_{V}}(r)\right) & \mathcal{N}(\rho(\boldsymbol{r})) \\
\vdots & \ddots & \vdots & y_{1}(\boldsymbol{r}, \omega) \\
0 & \cdots & 0 & \vdots \\
x_{1}(\boldsymbol{r}, \omega) & \cdots & x_{N_{V}}(\boldsymbol{r}, \omega) & y_{N_{V}}(\boldsymbol{r}, \omega) \\
0
\end{array}\right) .
$$

$$
\begin{aligned}
& \mathcal{L}\left(\begin{array}{c}
x_{1}(\boldsymbol{r}, \omega) \\
\vdots \\
x_{N_{v}}(\boldsymbol{r}, \omega) \\
y_{1}(\boldsymbol{r}, \omega) \\
\vdots \\
y_{N_{v}}(\boldsymbol{r}, \omega)
\end{array}\right)=\left(\begin{array}{cc}
\mathcal{D}+\mathcal{K} & \mathcal{K} \\
-\mathcal{K} & -\mathcal{D}-\mathcal{K}
\end{array}\right)\left(\begin{array}{c}
x_{1}(\boldsymbol{r}, \omega) \\
\vdots \\
x_{N_{v}}(\boldsymbol{r}, \omega) \\
y_{1}(\boldsymbol{r}, \omega) \\
\vdots \\
y_{N_{v}}(\boldsymbol{r}, \omega)
\end{array}\right), \\
& \mathcal{D}=\operatorname{diag}\left(\rho^{\perp}(\boldsymbol{r}) H_{\mathrm{KS}}^{\mathrm{GS}} \rho^{\perp}(\boldsymbol{r})-\epsilon_{1}, \ldots, \rho^{\perp}(\boldsymbol{r}) H_{\mathrm{KS}}^{\mathrm{GS}} \rho^{\perp}(\boldsymbol{r})-\epsilon_{N_{v}}\right), \\
& \mathcal{K}\left(\begin{array}{c}
z_{1}(\boldsymbol{r}) \\
\vdots \\
z_{N_{v}}(\boldsymbol{r})
\end{array}\right)=\left(\begin{array}{c}
\sum_{i=1}^{N_{v}} \rho^{\perp}(\boldsymbol{r}) \int \kappa\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \phi_{i}\left(\boldsymbol{r}^{\prime}\right) z_{i}\left(\boldsymbol{r}^{\prime}\right) d \boldsymbol{r}^{\prime}\left|\phi_{1}(\boldsymbol{r})\right\rangle \\
\vdots \\
\sum_{i=1}^{N_{v}} \rho^{\perp}(\boldsymbol{r}) \int \kappa\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \phi_{i}\left(\boldsymbol{r}^{\prime}\right) z_{i}\left(\boldsymbol{r}^{\prime}\right) d \boldsymbol{r}^{\prime}\left|\phi_{N_{v}}(\boldsymbol{r})\right\rangle
\end{array}\right)
\end{aligned}
$$

First several smallest positive eigenvalues and corresponding eigenvectors of

$$
\begin{aligned}
& \mathscr{H}\left[\begin{array}{l}
u \\
v
\end{array}\right] \equiv\left[\begin{array}{rr}
A & B \\
-B & -A
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\lambda\left[\begin{array}{l}
u \\
v
\end{array}\right], \\
& A^{\top}=A, B^{\top}=B \in \mathbb{R}^{n \times n}, \quad\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right] \succ 0 .
\end{aligned}
$$

Equivalently, $\mathrm{Hz}=\lambda z$:

$$
\begin{gathered}
J=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
I_{n} & I_{n} \\
I_{n} & -I_{n}
\end{array}\right], \quad J^{\top} J=J^{2}=I_{2 n}, \\
J^{\top}\left[\begin{array}{rr}
A & B \\
-B & -A
\end{array}\right] J=\left[\begin{array}{cc}
0 & A-B \\
A+B & 0
\end{array}\right]=:\left[\begin{array}{cc}
0 & K \\
M & 0
\end{array}\right]=: H . \\
K=A-B \succ 0, \quad M=A+B \succ 0 .
\end{gathered}
$$

H non-symmetric, but rich structure to take advantage of.

For Linear Response Eigenvalue Problem in general

G. Onida, L. Reining, and A. Rubio. Electronic excitations: density-functional versus many-body Green's function approaches. Rev. Mod. Phys, 74(2):601-659, 2002.

Dario Rocca. Time-Dependent Density Functional Perturbation Theory: New algorithms with Applications to Molecular Spectra. PhD thesis, The International School for Advanced Studies, Trieste, Italy, 2007.D. J. Thouless. Vibrational states of nuclei in the random phase approximation. Nuclear Physics, 22(1):78-95, 1961.

Material in what follows on Linear Response Eigenvalue Problem largely taken from
Zhaojun Bai and Ren-Cang Li. Minimization principle for linear response eigenvalue problem, I: Theory. SIAM J. Matrix Anal. Appl., 33(4):1075-1100, 2012.

Zhaojun Bai and Ren-Cang Li. Minimization principle for linear response eigenvalue problem, II: Computation. SIAM J. Matrix Anal. Appl., 34(2):392-416, 2013.

D. Rocca, Z. Bai, R.-C. Li, and G. Galli. A block variational procedure for the iterative diagonalization of non-Hermitian random-phase approximation matrices. J. Chem. Phys., 136:034111, 2012.

Linear Response Eigenvalue Problem

First several smallest positive eigenvalues, eigenvectors of

$$
\mathscr{H}\left[\begin{array}{l}
u \\
v
\end{array}\right] \equiv\left[\begin{array}{rr}
A & B \\
-B & -A
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\lambda\left[\begin{array}{l}
u \\
v
\end{array}\right],
$$

$A^{\top}=A, B^{\top}=B \in \mathbb{R}^{n \times n},\left[\begin{array}{ll}A & B \\ B & A\end{array}\right]$ positive definite.

$$
\begin{gathered}
J=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
I_{n} & I_{n} \\
I_{n} & -I_{n}
\end{array}\right], \quad J^{\top} J=J^{2}=I_{2 n}, \\
J^{\top}\left[\begin{array}{rr}
A & B \\
-B & -A
\end{array}\right] J=\left[\begin{array}{cc}
0 & A-B \\
A+B & 0
\end{array}\right]=:\left[\begin{array}{cc}
0 & K \\
M & 0
\end{array}\right]=: H .
\end{gathered}
$$

$K=A-B, M=A+B \in \mathbb{R}^{n \times n}$ definite because

$$
J^{\top}\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right] J=\left[\begin{array}{cc}
A+B & 0 \\
0 & A-B
\end{array}\right] \equiv\left[\begin{array}{ll}
M & \\
& K
\end{array}\right] .
$$

Equivalent Forms

Eigenvalue problem for \mathscr{H} - original LR:

$$
\mathscr{H}\left[\begin{array}{l}
u \\
v
\end{array}\right] \equiv\left[\begin{array}{rr}
A & B \\
-B & -A
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\lambda\left[\begin{array}{l}
u \\
v
\end{array}\right],
$$

Eigenvalue problem for H - transformed LR:

$$
H z \equiv\left[\begin{array}{cc}
0 & K \\
M & 0
\end{array}\right]\left[\begin{array}{l}
y \\
x
\end{array}\right]=\lambda\left[\begin{array}{l}
y \\
x
\end{array}\right] \equiv \lambda z
$$

Eigenvalue Problems for \mathscr{H} and H equivalent:

- Same eigenvalues, and
- Eigenvectors related by

$$
\left[\begin{array}{l}
y \\
x
\end{array}\right]=J^{\top}\left[\begin{array}{l}
u \\
v
\end{array}\right], \quad\left[\begin{array}{l}
u \\
v
\end{array}\right]=J\left[\begin{array}{l}
y \\
x
\end{array}\right]
$$

Problem. $H=\left[\begin{array}{cc}0 & K \\ M & 0\end{array}\right], 0 \prec K^{\top}=K, 0 \prec M^{\top}=M \in \mathbb{R}^{n \times n}$.
$K M$ and $M K$ have positive eigenvalues:

$$
0<\lambda_{1}^{2} \leq \lambda_{2}^{2} \leq \cdots \leq \lambda_{n}^{2}
$$

where $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$, because

$$
\operatorname{eig}(K M)=\operatorname{eig}\left(K^{1 / 2} K^{1 / 2} M\right)=\operatorname{eig}\left(K^{1 / 2} M K^{1 / 2}\right)
$$

$$
\begin{aligned}
H^{2}=\left[\begin{array}{cc}
K M & 0 \\
0 & M K
\end{array}\right] & \Rightarrow H \text { has eigenvalues } \\
& \quad-\lambda_{n} \leq \cdots \leq-\lambda_{1}<+\lambda_{1} \leq \cdots \leq+\lambda_{n}
\end{aligned}
$$

$\exists X=Y^{-\mathrm{T}} \in \mathbb{R}^{n \times n}$ such that

$$
K=Y \Lambda^{2} Y^{\top}, \quad M=X X^{\top}, \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

Critically important later.

Proof.

1) Cholesky decomposition: $M^{-1}=R^{\top} R$.
2) Eigendecomposition: $R^{-\top} K R^{-1}=Q \Lambda^{2} Q^{\top}, Q^{\top} Q=I_{n}$.
3) Finally $Y=R^{\top} Q, X=Y^{-\top}$.
H is diagonalizable with Eigendecomposition:

$$
H\left[\begin{array}{cc}
Y \Lambda & Y \Lambda \\
X & -X
\end{array}\right]=\left[\begin{array}{cc}
Y \Lambda & Y \Lambda \\
X & -X
\end{array}\right]\left[\begin{array}{ll}
\Lambda & \\
& -\Lambda
\end{array}\right]
$$

Eigenvalue problem for \mathscr{H} : special case of Hamiltonian eigenvalue problem.

Eigenvalues appear in $\pm \lambda$ pairs:

$$
-\lambda_{n} \leq \cdots \leq-\lambda_{1}<+\lambda_{1} \leq \cdots \leq+\lambda_{n} .
$$

Thouless' Minimization Principle (1961):

$$
\lambda_{1}=\min _{u, v} \varrho(u, v), \quad \varrho(u, v)=\frac{\left[\begin{array}{c}
u \\
v
\end{array}\right]^{\top}\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]}{\left|u^{\top} u-v^{\top} v\right|}
$$

Many of today's minimization approaches for computing λ_{1} are results of this principle.

Thouless' Minimization Principle

Use $\left[\begin{array}{l}y \\ x\end{array}\right]=J^{\top}\left[\begin{array}{l}u \\ v\end{array}\right], \quad\left[\begin{array}{l}u \\ v\end{array}\right]=J\left[\begin{array}{l}y \\ x\end{array}\right]$ to get

Thouless' Minimization Principle (in different form)

$$
\lambda_{1}=\min _{x, y} \rho(x, y), \quad \rho(x, y) \stackrel{\text { def }}{=} \frac{x^{\top} K x+y^{\top} M y}{2\left|x^{\top} y\right|} .
$$

Will call both $\varrho(u, v)$ and $\rho(x, y)$ Thouless' Functional.

Proof.

Recall $K=Y \Lambda^{2} Y^{\top}, M=X X^{\top}$, and $X=Y^{-\top}$. We have

$$
\begin{aligned}
\min _{x, y} \frac{x^{\top} K x+y^{\top} M y}{2\left|x^{\top} y\right|} & =\min _{x, y} \frac{x^{\top} Y \Lambda^{2} Y^{\top} x+y^{\top} Y^{-\top} Y^{-1} y}{2\left|x^{\top} Y Y^{-1} y\right|} \\
& =\min _{\widetilde{x}, \widetilde{y}} \frac{\widetilde{x}^{\top} \Lambda^{2} \widetilde{x}+\widetilde{y}^{\top} \widetilde{y}}{2\left|\widetilde{x}^{\top} \widetilde{y}\right|} \\
& \geq \min _{\widetilde{x}, \tilde{y}} \frac{2 \sum_{i} \lambda_{i}\left|\widetilde{x}_{(i)} \widetilde{y}_{(i)}\right|}{2\left|\sum_{i} \widetilde{x}_{(i)} \tilde{y}_{(i)}\right|} \geq \lambda_{1} .
\end{aligned}
$$

Careful analysis \Rightarrow equality signs realizable, and optimal argument pair produces eigenvector.

Four decades' researches by computational (quantum) physicists and chemists and numerical analysts.

Following three eigenvalue problems are equivalent:

$$
\begin{gather*}
H z \equiv\left[\begin{array}{cc}
0 & K \\
M & 0
\end{array}\right]\left[\begin{array}{l}
y \\
x
\end{array}\right]=\lambda\left[\begin{array}{l}
y \\
x
\end{array}\right] \equiv \lambda z, \tag{Eig-H}\\
K M y=\lambda^{2} y \tag{Eig-KM}\\
M K x=\lambda^{2} x . \tag{Eig-MK}
\end{gather*}
$$

By computational (quantum) physicists and chemists:

- Chi (1970): solve (Eig-KM) through Symmetric Eigenvalue Problem (SEP) $R K R^{\top}$, where $M=R^{\top} R$ (Cholesky decomposition).
- Davidson-type algorithms (1980s \& 1990s), Lanczos-like algorithms (1990s \& 2000s)
- CG-like algorithms (more recently, based on Thouless' principle)

By numerical analysts:

- Wilkinson (1960s) discussed (Eig-KM) and (Eig-MK). Implemented as LAPACK xSYGVD
- GR algorithm for product eigenvalue problems, generalizing well-known QR algorithm (Watkins, Kressner)
- Krylov-Schur, Jacobi-Davidson, Hamiltonian Krylov-Schur-type, symplectic Lanczos, ...

Trend. Huge size $-n$ in the order 10^{6} or larger; pose tremendous challenge.

Despite four decades' researches, it is still challenging to robustly and efficiently compute first several positive eigenvalues and eigenvectors.

To come:

- New theory for H that parallels Symmetric Eigenvalue Problem (SEP)
- New algorithms capable of computing first several positive eigenvalues and eigenvectors simultaneously.

Deflating Subspaces

$U, \mathcal{V} \subseteq \mathbb{R}^{n}$, subspaces. Call $\{U, \mathcal{V}\}$ a pair of deflating subspaces of $\{K, M\}$ if

$$
K U \subseteq \mathcal{V} \quad \text { and } \quad M \mathcal{V} \subseteq \mathcal{U}
$$

Let $U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times k}$, basis matrices for U and \mathcal{V}, resp.
$\exists K_{\mathrm{R}}, M_{\mathrm{R}} \in \mathbb{R}^{k \times k}$ such that

$$
K U=V K_{\mathrm{R}}, \quad M V=U M_{\mathrm{R}}
$$

In fact, for left generalized inverses U^{\dashv}, V^{\dashv} of U, V, resp.,
For example, $U^{\dashv} U=I$ for $K_{\mathrm{R}}=V^{\dashv} K U, \quad M_{\mathrm{R}}=U^{\dashv} M V$.

$$
\begin{aligned}
& U^{\dashv}=\left(U^{\top} U\right)^{-1} U^{\top}, \quad \text { but we prefer } \\
& U^{\dashv}=\left(V^{\top} U\right)^{-1} V^{\top} \quad \text { if }\left(V^{\top} U\right)^{-1} \text { exists. }
\end{aligned}
$$

Basics: Deflating Subspaces

$K U=V K_{R}, M V=U M_{R} \Rightarrow\left[\begin{array}{cc}0 & K \\ M & 0\end{array}\right]\left[\begin{array}{ll}V & \\ & U\end{array}\right]=\left[\begin{array}{ll}V & \\ & U\end{array}\right]\left[\begin{array}{cc}0 & K_{R} \\ M_{R} & 0\end{array}\right]$
$H_{R}=\left[\begin{array}{cc}0 & K_{R} \\ M_{R} & 0\end{array}\right]$ is a restriction of H onto $\mathcal{V} \oplus \mathcal{U}$.
H_{R} same block structure as H; but lose symmetry in K, M.
Suppose $W \stackrel{\text { def }}{=} U^{\top} V$ nonsingular. Factorize $W=W_{1}^{\top} W_{2}$, where W_{i} nonsingular. Define

$$
H_{\mathrm{SR}}=\left[\begin{array}{cc}
0 & W_{1}^{-\top} U^{\top} K U W_{1}^{-1} \\
W_{2}^{-\top} V^{\top} M V W_{2}^{-1} & 0
\end{array}\right],
$$

another restriction of H onto $\mathcal{V} \oplus \mathcal{U}$, too:

$$
H\left[\begin{array}{ll}
V W_{2}^{-1} & U W_{1}^{-1}
\end{array}\right]=\left[\begin{array}{ll}
V W_{2}^{-1} & \\
& U W_{1}^{-1}
\end{array}\right] H_{\mathrm{SR}} .
$$

H_{SR} same block structure as H and retain symmetry in K, M. Major role to come.

Trace Minimization Principle

Trace Minimization Principle

$$
\sum_{i=1}^{k} \lambda_{i}=\frac{1}{2} \min _{U^{\top} V=I_{k}} \operatorname{trace}\left(U^{\top} K U+V^{\top} M V\right)
$$

If $\lambda_{k}<\lambda_{k+1}$, optimal $\{\operatorname{span}(U), \operatorname{span}(V)\}$ gives deflating subspaces of $\{K, M\}$ corresponding to $\pm \lambda_{i}, 1 \leq i \leq k$.

Quite similar to the Trace Minimization Principle for Symmetric Eigenvalue Problem (SEP) discussed earlier.

A lengthy proof can be found in
R Zhaojun Bai and Ren-Cang Li. Minimization principle for linear response eigenvalue problem, I: Theory. SIAM J. Matrix Anal. Appl., 33(4):1075-1100, 2012.

Cauchy-like Interlacing Inequalities

Cauchy-like Interlacing Inequalities

$U, V \in \mathbb{R}^{n \times k} ; W=U^{\top} V$ nonsingular; $W=W_{1}^{\top} W_{2}, W_{i} \in \mathbb{R}^{k \times k}$ nonsingular; $\mathcal{U}=\operatorname{span}(U), \mathcal{V}=\operatorname{span}(V)$; Eigenvalues of

$$
H_{\mathrm{SR}}=\left[\begin{array}{cc}
0 & W_{1}^{-\top} U^{\top} K U W_{1}^{-1} \\
W_{2}^{-\top} V^{\top} M V W_{2}^{-1} & 0
\end{array}\right] .
$$

are $\pm \mu_{i}(1 \leq i \leq k)$, where $0 \leq \mu_{1} \leq \cdots \leq \mu_{k}$. Then for $1 \leq i \leq k$

$$
\lambda_{i} \leq \mu_{i} \leq \min \left\{\lambda_{i+2(n-k)}, \frac{\sqrt{\min \{\kappa(K), \kappa(M)\}}}{\cos \angle(U, \mathcal{V})} \lambda_{i+n-k}\right\}
$$

where $\lambda_{j}=\infty$ for $j>n$. If either $\mathcal{U}=M \mathcal{V}$ or $\mathcal{V}=K \mathcal{U}$, then $\lambda_{i} \leq \mu_{i} \leq \lambda_{i+n-k}$.

Quite similar to the Cauchy Interlacing Inequalities for Symmetric Eigenvalue Problem (SEP) discussed earlier.

A lengthy proof can be found in Bai and Li (2012) mentioned in the previous slide.

Seeking "best possible" approximations from the suitably built subspaces.
Given $\{\mathcal{U}, \mathcal{V}\}$, a pair of subspaces, $\operatorname{dim}(\mathcal{U})=\operatorname{dim}(\mathcal{V})=n_{b}$.
Minimization principles motivate us to seek

- the best approximation to λ_{1} in the sense of

$$
\min _{x \in \mathcal{U}, y \in \mathcal{V}} \rho(x, y)
$$

and its associated approximate eigenvector;

- the best approximations to $\lambda_{j}(1 \leq j \leq k)$ in the sense of

$$
\frac{1}{2} \min _{\substack{\operatorname{span}(\widehat{U}) \subseteq \leq, \leq \operatorname{span}(\widehat{V}) \subseteq v\\)}} \operatorname{trace}\left(\widehat{U}^{\top} K \widehat{U}+\widehat{V}^{\top} M \widehat{V}\right)
$$

and their associated approximate eigenvectors. Necessarily $k \leq n_{b}$.
$U, V \in \mathbb{R}^{n \times n_{b}}$, basis matrices of \mathcal{U} and \mathcal{V}. Assume $W=U^{\top} V$ nonsingular. Factorize $W=W_{1}^{\top} W_{2}, W_{i} \in \mathbb{R}^{n_{b} \times n_{b}}$ nonsingular.
$x \in \mathcal{U}, y \in \mathcal{V} \Leftrightarrow x=U \hat{u}, y=V \hat{v}$ for $\hat{u}, \hat{v} \in \mathbb{R}^{n_{b}}$.

$$
\begin{aligned}
\rho(x, y) & =\frac{x^{\top} K x+y^{\top} M y}{2\left|x^{\top} y\right|}=\frac{\hat{u}^{\top} U^{\top} K U \hat{u}+\hat{v}^{\top} V^{\top} M V \hat{v}}{2\left|\hat{u}^{\top} W \hat{v}\right|} \\
& =\frac{\hat{x}^{\top} W_{1}^{-\top} U^{\top} K U W_{1}^{-1} \hat{x}+\hat{y}^{\top} W_{2}^{-\top} V^{\top} M V W_{2}^{-1} \hat{y}}{2\left|\hat{x}^{\top} \hat{y}\right|}
\end{aligned}
$$

where $\hat{x}=W_{1} \hat{u}$ and $\hat{y}=W_{2} \hat{v}$.

$$
\min _{x \in \mathcal{U}, y \in \mathcal{V}} \rho(x, y)=\min _{\hat{x}, \hat{y}} \frac{\hat{x}^{\top} W_{1}^{-\top} U^{\top} K U W_{1}^{-1} \hat{x}+\hat{y}^{\top} W_{2}^{-\top} V^{\top} M V W_{2}^{-1} \hat{y}}{2\left|\hat{x}^{\top} \hat{y}\right|}
$$

which is the smallest positive eigenvalue of

$$
H_{\mathrm{SR}}=\left[\begin{array}{cc}
0 & W_{1}^{-\top} U^{\top} K U W_{1}^{-1} \\
W_{2}^{-\top} V^{\top} M V W_{2}^{-1} & 0
\end{array}\right] .
$$

$$
\begin{aligned}
& \left\{\operatorname{span}(\widehat{U}) \subseteq \mathcal{U}, \operatorname{span}(\widehat{V}) \subseteq \mathcal{V}, \quad\left\{\begin{array}{c}
\widehat{U}=U W_{1}^{-1} \widehat{X}, \widehat{V}=V W_{2}^{-1} \widehat{Y}, \\
\widehat{X}, \widehat{Y} \in \mathbb{R}^{n_{b} \times k}, \widehat{X}^{\top} \widehat{Y}=I_{k}
\end{array}\right\}\right. \\
& \widehat{U}^{\top} K \widehat{U}+\widehat{V}^{\top} M \widehat{V}=\widehat{X}^{\top} W_{1}^{-\top} U^{\top} K U W_{1}^{-1} \widehat{X}+\widehat{Y}^{\top} W_{2}^{-\top} V^{\top} M V W_{2}^{-1} \widehat{Y} .
\end{aligned}
$$

$$
\begin{aligned}
& =\min _{\widehat{X} \widehat{Y}=I_{k}} \operatorname{trace}\left(\widehat{X}^{\top} W_{1}^{-\top} U^{\top} K U W_{1}^{-1} \widehat{X}+\widehat{Y}^{\top} W_{2}^{-\top} V^{\top} M V W_{2}^{-1} \widehat{Y}\right) .
\end{aligned}
$$

which is the sum of 1st k smallest positive eigenvalue of

$$
H_{\mathrm{SR}}=\left[\begin{array}{cc}
0 & W_{1}^{-\top} U^{\top} K U W_{1}^{-1} \\
W_{2}^{-\top} V^{\top} M V W_{2}^{-1} & 0
\end{array}\right] .
$$

Best Approximation: Eigenvectors

Positive eigenvalues of $H_{S R}: 0 \leq \rho_{1} \leq \cdots \leq \rho_{n_{b}}$. Associated eigenvectors \hat{z}_{j}.

$$
H_{\mathrm{SR}} \hat{z}_{j}=\rho_{j} \hat{z}_{j}, \quad \hat{z}_{j}=\left[\begin{array}{c}
\hat{y}_{j} \\
\hat{x}_{j}
\end{array}\right] .
$$

Then $\rho\left(U W_{1}^{-1} \hat{x}_{j}, V W_{2}^{-1} \hat{y}_{j}\right)=\rho_{j}$ for $j=1, \ldots, n_{b}$.
Naturally, take $\lambda_{j} \approx \rho_{j}$, and corresponding approximate eigenvectors of H :

$$
\widetilde{z}_{j} \equiv\left[\begin{array}{l}
\widetilde{y}_{j} \\
\widetilde{x}_{j}
\end{array}\right]=\left[\begin{array}{l}
V W_{2}^{-1} \hat{y}_{j} \\
U W_{1}^{-1} \hat{x}_{j}
\end{array}\right] \quad \text { for } j=1, \ldots, n_{b}
$$

What if $U^{\top} V$ is singular? Still can do, just more complicated
R Zhaojun Bai and Ren-Cang Li. Minimization principle for linear response eigenvalue problem, II: Computation. SIAM J. Matrix Anal. Appl., 34(2):392-416, 2013.

Perturb x, y to $\hat{x}=x+p, \hat{y}=y+q, p$ and q tiny. Assume $x^{\top} y \neq 0$.
Up to the first order in p and q,

$$
\begin{aligned}
\rho(\hat{x}, \hat{y}) & =\frac{(x+p)^{\top} K(x+p)+(y+q)^{\top} M(y+q)}{2\left|(x+p)^{\top}(y+q)\right|} \\
& =\frac{x^{\top} K x+2 p^{\top} K x+y^{\top} M y+2 q^{\top} M y}{2\left|x^{\top} y+p^{\top} y+q^{\top} x\right|} \\
& =\frac{x^{\top} K x+2 p^{\top} K x+y^{\top} M y+2 q^{\top} M y}{2\left|x^{\top} y\right|}\left[1-\frac{p^{\top} y+q^{\top} x}{x^{\top} y}\right] \\
& =\rho(x, y)+\frac{1}{x^{\top} y} p^{\top}[K x-\rho(x, y) y]+\frac{1}{x^{\top} y} q^{\top}[M y-\rho(x, y) x] .
\end{aligned}
$$

Partial gradients: $\nabla_{x} \rho=\frac{1}{x^{\top} y}[K x-\rho(x, y) y], \nabla_{y} \rho=\frac{1}{x^{\top} y}[M y-\rho(x, y) x]$.
Closely related to residual:

$$
H z-\rho(x, y) z \equiv\left[\begin{array}{cc}
0 & K \\
M & 0
\end{array}\right]\left[\begin{array}{c}
y \\
x
\end{array}\right]-\rho(x, y)\left[\begin{array}{c}
y \\
x
\end{array}\right]=x^{\top} y\left[\begin{array}{c}
\nabla_{x} \rho \\
\nabla_{y} \rho
\end{array}\right]
$$

Interested in solving $\min _{x, y} \rho(x, y)=\min _{x, y} \frac{x^{\top} K x+y^{\top} M y}{2\left|x^{\top} y\right|}$ to compute λ_{1}.
Standard line search: Given current position $\left[\begin{array}{l}y \\ x\end{array}\right]$, search direction $\left[\begin{array}{l}q \\ p\end{array}\right]$, seek to minimize ρ along line

$$
\left\{\left[\begin{array}{l}
y \\
x
\end{array}\right]+t\left[\begin{array}{l}
q \\
p
\end{array}\right]: t \in \mathbb{R}\right\}
$$

Doable via Calculus. But not flexible enough to have subspace extensions. We will do differently.

Minimize ρ within the 4-dimensional subspace

$$
\left\{\left[\begin{array}{l}
\beta y+t q \\
\alpha x+s p
\end{array}\right] \quad \text { for all scalars } \alpha, \beta, s, \text { and } t\right\}
$$

to get

$$
\min _{\alpha, \beta, s, t} \rho(\alpha x+s p, \beta y+t q)=\min _{u \in \operatorname{span}(U), v \in \operatorname{span}(V)} \rho(u, v),
$$

where $U=[x, p]$ and $V=[y, q]$. Returned to Best Approximation.

Naturally take

$$
\left[\begin{array}{l}
q \\
p
\end{array}\right]=\left[\begin{array}{c}
\nabla_{y} \rho \\
\nabla_{x} \rho
\end{array}\right],
$$

as in the standard steepest descent (SD) algorithm.

- Lead to plain 4-D SD algorithm for H
- Can design block versions for computing several eigenpairs
- Can incorporate pre-conditioners

All can be viewed as variants of locally optimal 4-D CG algorithms which we will discuss.

Locally Optimal 4-D CG

Notation: ℓ iteration index; j eigenpair index. Standard: search next approximations within

$$
\operatorname{span}\left\{\left[\begin{array}{l}
y_{j}^{(\ell)} \\
x_{j}^{(\ell)}
\end{array}\right],\left[\begin{array}{l}
y_{j}^{(\ell-1)} \\
x_{j}^{(\ell-1)}
\end{array}\right],\left[\begin{array}{l}
q_{j} \\
p_{j}
\end{array}\right], \quad j=1: k\right\},
$$

where

$$
\left[\begin{array}{l}
q_{j} \\
p_{j}
\end{array}\right]=\left.\Phi\left[\begin{array}{l}
\nabla_{x} \rho \\
\nabla_{y} \rho
\end{array}\right]\right|_{(x, y)=\left(x_{j}^{(\ell)}, y_{j}^{(\ell)}\right)},
$$

and Φ is a preconditioner to be discussed later.
We do differently: search next approximations within

$$
\operatorname{span}\left\{\left[\begin{array}{c}
y_{j}^{(\ell)} \\
0
\end{array}\right],\left[\begin{array}{c}
y_{j}^{(\ell-1)} \\
0
\end{array}\right],\left[\begin{array}{c}
q_{j} \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
x_{j}^{(\ell)}
\end{array}\right],\left[\begin{array}{c}
0 \\
x_{j}^{(\ell-1)}
\end{array}\right],\left[\begin{array}{c}
0 \\
p_{j}
\end{array}\right] \quad j=1: k\right\} .
$$

Breaking vectors into two this way is a common technique today in developing structure-preserving alg.:
\square Kevin J. Kerns and Andrew T. Yang. Preservation of passivity during RLC network reduction via split congruence transformations. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 17(7):582-591, July 1998.R. W. Freund. SPRIM: Structure-preserving reduced-order interconnect macromodeling. In Proc. Int. Conf. Computer Aided Design, pages 80-87, Nov. 2004.
\square Ren-Cang Li and Zhaojun Bai. Structure-preserving model reductions using a Krylov subspace projection formulation. Commun. Math. Sciences, 3(2):179-199, 2005.

Locally Optimal Block Preconditioned 4-D CG

Locally Optimal Block Preconditioned 4-D CG

Given an initial approximation $Z_{0}=\left[X_{0}^{T}, Y_{0}^{T}\right]^{T} \in \mathbb{C}^{2 n \times n_{b}}$ with $\operatorname{rank}\left(X_{0}\right)=\operatorname{rank}\left(Y_{0}\right)=n_{b}$, the algorithm attempts to compute approximate eigenpair to $\left(\lambda_{j}, z_{j}\right)$ for $1 \leq j \leq n_{b}$.
1: If j th column of Z_{0} isn't an approximation to z_{j} already, compute initial approximation with $\{\mathcal{U}, \mathcal{V}\}:=\left\{\mathcal{R}\left(X_{0}\right), \mathcal{R}\left(Y_{0}\right)\right\}$ to give a new Z_{0};
2: for $\ell=0,1, \ldots$ do
3: test convergence and lock up the converged (to discuss later)
4: construct a preconditioner Φ_{ℓ};
5: $\quad\left[\begin{array}{c}Q_{\ell} \\ P_{\ell}\end{array}\right] \leftarrow \Phi_{\ell}\left[\begin{array}{c}K X_{\ell}-Y_{\ell} \Omega_{\ell} \\ \left.M Y_{\ell}-X_{\ell} \Omega_{\ell}\right)\end{array}\right]$, where $\Omega_{\ell}=\operatorname{diag}\left(\rho_{\ell ; j}\right)$;
6: $\quad U=\left(X_{\ell}, X_{\ell-1}, P_{\ell}\right), V=\left(Y_{\ell}, Y_{\ell-1}, Q_{\ell}\right)\left(\operatorname{drop} X_{\ell-1}\right.$ and $Y_{\ell-1}$ for $\left.\ell=0\right)$;
7: orthogonalize the columns of U and V and decompose $W=U^{\top} V=W_{1}^{\top} W_{2}$;
8: construct $H_{S R}$ (assume W is nonsingular);
9: compute n_{b} smallest positive eigenvalues $\rho_{\ell+1 ; j}$ of $H_{\text {SR }}$, and associated eigenvectors \hat{z}_{j};
10: $\quad Z_{\ell+1}:=\left[\begin{array}{l}Y_{\ell+1} \\ X_{\ell+1}\end{array}\right]=\left[\begin{array}{l}V W_{2}^{-1}\left[\hat{y}_{1}, \ldots, \hat{y}_{k}\right] \\ U W_{1}^{-1}\left[\hat{x}_{1}, \ldots, \hat{x}_{k}\right]\end{array}\right]$ (normalize each column).
11: end for
12: return approximate eigenpairs to $\left(\lambda_{j}, z_{j}\right)$ for $1 \leq j \leq n_{b}$.

For convenience, drop iteration index ℓ.
To compute eigenvalues close to $\mu: \Phi=\left(H-\mu l_{2 n}\right)^{-1}$, and

$$
\left[\begin{array}{l}
Q \\
P
\end{array}\right]=\Phi R, \quad R=H Z-Z \Omega=\left[\begin{array}{l}
K X-Y \Omega \\
M Y-X \Omega
\end{array}\right]
$$

one step of the inverse power iteration on the residual.
Interested in the smallest positive eigenvalues, naturally $\mu=0$:

$$
\Phi R=\left[\begin{array}{cc}
0 & M^{-1} \\
K^{-1} & 0
\end{array}\right] R=\left[\begin{array}{c}
M^{-1}\left[M Y-X \operatorname{diag}\left(\rho_{j}\right)\right] \\
K^{-1}\left[K X-Y \operatorname{diag}\left(\rho_{j}\right)\right]
\end{array}\right] .
$$

Both P and Q computable (column-by-column) by (linear) CG.
In general for $\mu \neq 0$, multiplying by Φ involves solving linear system: $\left(H-\mu I_{2 n}\right) z=b$. Next slides consider this for $0<\mu<\lambda_{1}$.

Generic Pre-conditioner: $\left(H-\mu /_{2 n}\right) z=b$

Can verify

$$
\left[\begin{array}{cc}
I & 0 \\
M & \mu I
\end{array}\right](H-\mu I)=\left[\begin{array}{cc}
I & 0 \\
M & \mu I
\end{array}\right]\left[\begin{array}{cc}
-\mu I & K \\
M & -\mu I
\end{array}\right]=\left[\begin{array}{cc}
-\mu I & K \\
0 & M K-\mu^{2} I
\end{array}\right]
$$

to get

$$
\left(H-\mu I_{2 n}\right)^{-1}=\left[\begin{array}{cc}
-\mu I & K \\
0 & M K-\mu^{2} I
\end{array}\right]^{-1}\left[\begin{array}{cc}
I & 0 \\
M & \mu I
\end{array}\right]
$$

Write $b=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ and $z=\left[\begin{array}{l}y \\ x\end{array}\right] \cdot\left(H-\mu l_{2 n}\right) z=b$ can be solved as

$$
\text { solve }\left(M K-\mu^{2} I\right) x=M b_{1}-\mu b_{2} \text { for } x, \text { and then } y=\frac{1}{-\mu}\left(b_{1}-K x\right)
$$

Remain to solve $\left(M K-\mu^{2} I\right) x=c$ efficiently. Write $A=M K-\mu^{2} I$, and symbolically

$$
A=M^{1 / 2} \underbrace{\left(M^{1 / 2} K M^{1 / 2}-\mu^{2} I\right)}_{=: \widehat{A}} M^{-1 / 2}=M^{1 / 2} \widehat{A} M^{-1 / 2}
$$

$A x=c$ is equivalent to $M^{1 / 2} \widehat{A} M^{-1 / 2} x=c \Leftrightarrow \hat{A} \underbrace{M^{-1 / 2} x}_{=: \hat{x}}=\underbrace{M^{-1 / 2} c}_{=: \hat{c}}$.
\widehat{A} is SPD because $0<\mu<\lambda_{1}$. Can apply linear CG to $\widehat{A} \hat{x}=\hat{c}$ symbolically first and then translate to $A x=c$.

Transform to $\widehat{A} \hat{x}=\hat{c}, \widehat{A}=M^{-1 / 2} A M^{1 / 2}, \hat{x}=M^{-1 / 2} x, \hat{c}=M^{-1 / 2} x$.
Linear CG to $\widehat{A} \hat{x}=\hat{c}: \hat{r}_{0}=\widehat{A} \hat{x}_{0}-\hat{c}, \hat{p}_{0}=-\hat{r}_{0}$, and for $i \geq 0$

$$
\hat{x}_{i+1}=\hat{x}_{i}+\alpha_{i} \hat{p}_{i}, \hat{r}_{i+1}=\hat{r}_{i}+\alpha_{i} \widehat{A}_{\hat{p}} \hat{p}_{i}, \hat{p}_{i+1}=-\hat{r}_{i+1}+\beta_{i} \hat{p}_{i}
$$

where $\alpha_{i}=-\frac{\hat{p}_{i}^{T} \hat{r}_{i}}{\hat{p}_{i}^{\top} \widehat{A} \hat{p}_{i}}=\frac{\hat{r}_{i}^{T} \hat{r}_{i}}{\hat{p}_{i}^{T} \widehat{A} \hat{p}_{i}}, \beta_{i}=\frac{\hat{p}_{i}^{T} \widehat{\hat{A}} \hat{r}_{i+1}}{\hat{p}_{i}^{T} \hat{A}_{i}}=\frac{\hat{r}_{i+1}^{T} \hat{r}_{i+1}}{\hat{r}_{i}^{T} \hat{r}_{i}}$.
To convert them back to x-space (so-to-speak): Note $\hat{r}:=\widehat{A} \hat{x}-\hat{c}=M^{-1 / 2}(A x-c)=: M^{-1 / 2} r$. So $M^{1 / 2} \hat{p}_{0}=-r_{0}$, and for $i \geq 0$,
$x_{i+1}=x_{i}+\alpha_{i} M^{1 / 2} \hat{p}_{i}, \quad r_{i+1}=r_{i}+\alpha_{i} A M^{1 / 2} \hat{p}_{i}, \quad M^{1 / 2} \hat{p}_{i+1}=-r_{i+1}+\beta_{i} M^{1 / 2} \hat{p}_{i}$.
Two possible choices for p-vectors (drop subscripts):

$$
\begin{array}{ll}
p=M^{1 / 2} \hat{p} & \text { (natural) } \\
p=M^{-1 / 2} \hat{p} & \text { (not-so-natural) }
\end{array}
$$

Difference in new formulas for α_{i} and β_{i}.

Take $p=M^{1 / 2} \hat{p}$ (natural). Already $\hat{r}=M^{-1 / 2} r, \widehat{A}=M^{-1 / 2} A M^{1 / 2}$. So $\hat{p}^{T} \hat{r}=p^{T} M^{-1} r, \quad \hat{p}^{T} \widehat{A} \hat{p}=p^{T} M^{-1} A p, \quad \hat{r}^{T} \hat{r}=r^{T} M^{-1} r, \quad \hat{p}^{T} \widehat{A} \hat{r}=p^{T} M^{-1} A r$.

Therefore

$$
\alpha_{i}=-\frac{p_{i}^{T} M^{-1} r_{i}}{p_{i}^{T} M^{-1} A p_{i}}=\frac{r_{i}^{T} M^{-1} r_{i}}{p_{i}^{T} M^{-1} A p_{i}}, \quad \beta_{i}=\frac{p_{i}^{T} M^{-1} A r_{i+1}}{p_{i}^{T} M^{-1} A p_{i}}=\frac{r_{i+1}^{T} M^{-1} r_{i+1}}{r_{i}^{T} M^{-1} r_{i}}
$$

$C G(I)$ for $A x \equiv\left(M K-\mu^{2} I\right) x=c$

Given an initial approximation x_{0}, a relative tolerance rtol, the algorithm solves $A x \equiv\left(M K-\mu^{2} I\right) x=c$.

1: $r_{0}=A x_{0}-c, p_{0}=-r_{0}$;
2: for $i=0,1, \ldots$ do
3: $\quad q_{i}=M^{-1} p_{i}$ by (linear) CG;
4: $\quad \alpha_{i}=-\left(q_{i}^{T} r_{i}\right) /\left(q_{i}^{T} A p_{i}\right), x_{i+1}=x_{i}+\alpha_{i} p_{i}, r_{i+1}=r_{i}+\alpha_{i} A p_{i}$;
5: if $\left\|r_{i+1}\right\|_{1} /\|c\|_{1} \leq r$ rtol, BREAK;
6: $\quad \beta_{i}=\left(q_{i}^{T} A r_{i+1}\right) /\left(q_{i}^{T} A p_{i}\right), p_{i+1}=-r_{i+1}+\beta_{i} p_{i}$;
7: end for
8: return last x_{i} as an approximate solution.

$C G(I I)$ for $A x \equiv\left(M K-\mu^{2} I\right) x=c$

Take $p=M^{-1 / 2} \hat{p}$ (not-so-natural). Already $\hat{r}=M^{-1 / 2} r, \widehat{A}=M^{-1 / 2} A M^{1 / 2}$. So

$$
\hat{p}^{T} \hat{r}=p^{T} r, \quad \hat{p}^{T} \widehat{A} \hat{p}=p^{T} A M p, \quad \hat{r}^{T} \hat{r}=r^{T} M^{-1} r, \quad \hat{p}^{T} \widehat{A} \hat{r}=p^{T} A r
$$

Therefore

$$
\begin{equation*}
\alpha_{i}=-\frac{p_{i}^{T} r_{i}}{p_{i}^{T} A M p_{i}}=\frac{r_{i}^{T} M^{-1} r_{i}}{p_{i}^{T} A M p_{i}}, \quad \beta_{i}=\frac{p_{i}^{T} A r_{i+1}}{p_{i}^{T} A M p_{i}}=\frac{r_{i+1}^{T} M^{-1} r_{i+1}}{r_{i}^{T} M^{-1} r_{i}} . \tag{9}
\end{equation*}
$$

$C G(I I)$ for $A x \equiv\left(M K-\mu^{2} I\right) x=c$

Given an initial approximation x_{0}, a relative tolerance rtol, the algorithm solves $A x \equiv\left(M K-\mu^{2} I\right) x=c$.

1: $r_{0}=A x_{0}-c, q_{0}=M^{-1} r_{0}$ (by linear CG), $p_{0}=-q_{0}$;
2: for $i=0,1, \ldots$ do
3: compute α_{i} by (9), $x_{i+1}=x_{i}+\alpha_{i} p_{i}, r_{i+1}=r_{i}+\alpha_{i} A M p_{i}$;
4: if $\left\|r_{i+1}\right\|_{1} /\|c\|_{1} \leq r t o l$, BREAK;
5: $\quad q_{i+1}=M^{-1} r_{i+1}$ by (linear) CG;
6: \quad compute β_{i} by (9), $p_{i+1}=-q_{i+1}+\beta_{i} p_{i}$;
7: end for
8: return last x_{i} as an approximate solution.

Both CG require solving $M q=p$ in the inner iteration.
Another alternative is to rewrite symbolically

$$
A=K^{-1 / 2} \underbrace{\left(K^{1 / 2} M K^{1 / 2}-\mu^{2} I\right)}_{=: \widehat{A}} K^{1 / 2}=K^{-1 / 2} \widehat{A} K^{1 / 2}
$$

$A x=c$ is equivalent to $K^{-1 / 2} \widehat{A} K^{1 / 2} x=c \quad \Leftrightarrow \quad \widehat{A} \underbrace{K^{1 / 2} x}_{=: \hat{x}}=\underbrace{K^{1 / 2} c}_{=: \hat{c}}$.
\widehat{A} is SPD because $0<\mu<\lambda_{1}$. Can apply linear CG to $\widehat{A} \hat{x}=\hat{c}$ symbolically first and then translate to $A x=c$.

Detail is omitted.
$\left(\rho_{\ell ; j}, z_{\ell ; j}\right)$ is considered acceptable if $\frac{\left\|H z_{\ell ; j}-\rho_{\ell ; j} z_{\ell ; j}\right\|_{2}}{\left\|H z_{\ell ; j}\right\|_{2}+\left|\rho_{\ell ; j}\right|\left\|z_{\ell ; j}\right\|_{2}} \leq$ rtol.
Usually λ_{j} are converged to in order, i.e., the smallest eigenvalues emerge first.
Lock all acceptable approximate eigenpairs in $k_{\text {cvgd }} \times k_{\text {cvgd }}$ diagonal matrix \boldsymbol{D} for eigenvalues and $2 n \times k_{\text {cvgd }}$ tall matrix \boldsymbol{Z} for eigenvectors.

Every time a converged eigenpair is detected, delete the converged $\rho_{\ell ; j}$ and $z_{\ell ; j}$ from Ω_{ℓ} and Z_{ℓ}, respectively, and expand \boldsymbol{D} and \boldsymbol{Z} to lock up the pair, accordingly.

At the same time, either reduce n_{b} by 1 or append a new column to Z to maintain n_{b} unchanged. The latter can be done by computing more than n_{b} eigenpairs at Line 9 .
Deflate to avoid recomputing converged eigenpairs: Write $\boldsymbol{Z}=\left[\begin{array}{l}\boldsymbol{Y} \\ \boldsymbol{X}\end{array}\right]$ and suppose $\boldsymbol{X}^{T} \boldsymbol{Y}=\boldsymbol{I}_{k_{\text {cvgd }}}$.

- Modify K and M in form, but not explicitly, to $K+\zeta \boldsymbol{Y} \boldsymbol{Y}^{T}$ and $M+\zeta \boldsymbol{X} \boldsymbol{X}^{\top}$, where ζ should be selected such that $\zeta+\lambda_{1} \geq \lambda_{k_{\text {cvgd }}+n_{b}+1}$. Here we pre-assume the $k_{\text {cvgd }}$ converged eigenpairs are indeed those for $\left(\lambda_{j}, z_{j}\right)$ for $1 \leq j \leq k_{\text {cvgd }}$. This is usually so, but with no guarantee, of course.

Hyperbolic Quadratic Eigenvalue Problem

- Basics
- Rayleight Quotients
- Min-Max Principles
- SD and CG type Method
$0 \prec A=A^{H} \in \mathbb{C}^{n \times n}$, and $B=B^{H}, C=C^{H} \in \mathbb{C}^{n \times n}$.
$Q(\lambda)$ is hyperbolic if

$$
\left(x^{H} B x\right)^{2}-4\left(x^{H} A x\right)\left(x^{H} C x\right)>0 \quad \text { for } 0 \neq x \in \mathbb{C}^{n}
$$

This type Q arises, e.g., from dynamical systems that are overly damped.
Quadratic Eigenvalue Problem (QEP):

$$
\text { find } \lambda \in \mathbb{C}, 0 \neq x \in \mathbb{C}^{n} \text { such that } Q(\lambda) x=0
$$

λ : quadratic eigenvalue; x : quadratic eigenvector.
All quadratic eigenvalues of hyperbolic $Q(\lambda)$ are real:

$$
\lambda_{n}^{-} \leq \cdots \leq \lambda_{1}^{-}<\lambda_{1}^{+} \leq \cdots \leq \lambda_{n}^{+}
$$

For more basic properties of Hyperbolic QEP, see
C.-H. Guo and P. Lancaster. Algorithms for hyperbolic quadratic eigenvalue problems. Math. Comp., 74:1777-1791, 2005.
(Ticholas J. Higham, Françoise Tisseur, and Paul M. Van Dooren. Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems. Linear Algebra Appl., 351-352:455-474, 2002.
A.S. Markus. Introduction to the spectral theory of polynomial operator pencils. Translations of mathematical monographs, vol. 71. AMS, Providence, RI, 1988.

Given $x \neq 0$, consider

$$
f(\lambda, x):=x^{\mathrm{H}} Q(\lambda) x=\lambda^{2}\left(x^{\mathrm{H}} A x\right)+\lambda\left(x^{\mathrm{H}} B x\right)+\left(x^{\mathrm{H}} C x\right)=0 .
$$

Always has two distinct real roots (as functions of x)

$$
\rho_{ \pm}(x)=\frac{-\left(x^{\mathrm{H}} B x\right) \pm\left[\left(x^{\mathrm{H}} B x\right)^{2}-4\left(x^{\mathrm{H}} A x\right)\left(x^{\mathrm{H}} C x\right)\right]^{1 / 2}}{2\left(x^{\mathrm{H}} A x\right)} .
$$

Can show

$$
\rho_{+}(x) \in\left[\lambda_{1}^{+}, \lambda_{n}^{+}\right], \quad \rho_{-}(x) \in\left[\lambda_{n}^{-}, \lambda_{1}^{-}\right] .
$$

Reasonable to define $\rho_{ \pm}(x)$ as the Rayleigh quotients for the problem.

Courant-Fischer Type

Courant-Fischer type min-max principle (Duffin, 1955)

$$
\begin{array}{ll}
\lambda_{i}^{+}=\max _{\operatorname{codim} X=i-1} \min _{x \in X} \rho_{+}(x), & \lambda_{i}^{+}=\min _{\operatorname{dim} X=i} \max _{x \in X} \rho_{+}(x), \\
\lambda_{i}^{-}=\min _{\operatorname{codim} X=i-1} \max _{x \in X} \rho_{-}(x), & \lambda_{i}^{-}=\max _{\operatorname{dim} X=i} \min _{x \in X} \rho_{-}(x) .
\end{array}
$$

In particular,

$$
\begin{array}{ll}
\lambda_{1}^{+}=\min _{x} \rho_{+}(x), & \lambda_{n}^{+}=\max _{x} \rho_{+}(x), \\
\lambda_{n}^{-}=\min _{x} \rho_{-}(x), & \lambda_{1}^{-}=\max _{x} \rho_{-}(x) .
\end{array}
$$

- Duffin (1955) (though stated for hyperbolic Q with $B \succ 0, C \succ 0$, Duffin's proof works for the general hyperbolic case.)
- Also Markus (1988) (mostly about hyperbolic matrix polynomial of any degree), Voss (1982) (about certain nonlinear Q).
$Q(\lambda)=A \lambda^{2}+B \lambda+C$ hyperbolic. Its quadratic eigenvalues:

$$
\lambda_{n}^{-} \leq \cdots \leq \lambda_{1}^{-}<\lambda_{1}^{+} \leq \cdots \leq \lambda_{n}^{+}
$$

$k \leq n, X \in \mathbb{C}^{n \times k}, \operatorname{rank}(X)=k . \quad X^{H} Q(\lambda) X$ also hyperbolic.
Quadratic eigenvalues of $X^{H} Q(\lambda) X$:

$$
\lambda_{k, x}^{-} \leq \cdots \leq \lambda_{1, x}^{-} \leq \lambda_{1, x}^{+} \leq \cdots \leq \lambda_{k, x}^{+}
$$

Trace Min/Max type principle

$$
\begin{array}{r}
\inf _{\operatorname{rank}(X)=k} \sum_{j=1}^{k} \lambda_{j, X}^{+}=\sum_{j=1}^{k} \lambda_{j}^{+}, \quad \sup _{\operatorname{rank}(X)=k} \sum_{j=1}^{k} \lambda_{j, X}^{+}=\sum_{j=1}^{k} \lambda_{n-k+j}^{+}, \\
\sup _{\operatorname{rank}(X)=k} \sum_{j=1}^{k} \lambda_{j, X}^{-}=\sum_{j=1}^{k} \lambda_{j}^{-}, \quad \inf _{\operatorname{rank}(X)=k} \sum_{j=1}^{k} \lambda_{j, X}^{-}=\sum_{j=1}^{k} \lambda_{n-k+j}^{-} .
\end{array}
$$

Corollary of a more general Wielandt type max/max principle (Liang \& Li, 2013).

Cauchy Type

$Q(\lambda)=A \lambda^{2}+B \lambda+C$ hyperbolic. Its quadratic eigenvalues:

$$
\lambda_{n}^{-} \leq \cdots \leq \lambda_{1}^{-}<\lambda_{1}^{+} \leq \cdots \leq \lambda_{n}^{+}
$$

$k \leq n ; X \in \mathbb{C}^{k \times k}, \operatorname{rank}(X)=k ;$
Quadratic eigenvalues of $X^{H} Q(\lambda) X$:

$$
\mu_{k}^{-} \leq \cdots \leq \mu_{1}^{-}<\mu_{1}^{+} \leq \cdots \leq \mu_{k}^{+} .
$$

Cauchy-type interlacing inequality

$$
\begin{array}{rlr}
\lambda_{i}^{+} \leq \mu_{i}^{+} \leq \lambda_{i+n-k}^{+}, & i=1, \cdots, k, \\
\lambda_{j+n-k}^{-} \leq \mu_{j}^{-} \leq \lambda_{j}^{-}, & j=1, \cdots, k .
\end{array}
$$

- Veselić (2010).
- Also derivable from Wielandt type min-max principles (not presented here) (Liang \& Li, 2013).

Rayleigh-Ritz Procedure for Hyperbolic Q

Recall two most important aspects in solving large scale eigenvalue problems: building good subspaces and seeking "best possible" approximations.

Given $y \in \mathbb{C}^{n}$ and $\operatorname{dim} y=m$, find the "best possible" approximations to some of $Q(\cdot)$'s quadratic eigenpairs "using y ".

Can be done by a new "Rayleigh-Ritz" procedure. Let Y be y 's basis matrix.

Rayleigh-Ritz Procedure

1 Solve the QEP for $Y^{\mathrm{H}} Q(\lambda) Y: Y^{\mathrm{H}} Q\left(\mu_{i}^{ \pm}\right) Y y_{i}^{ \pm}=0$, where

$$
\mu_{m}^{-} \leq \cdots \leq \mu_{1}^{-}<\mu_{1}^{+} \leq \cdots \leq \mu_{m}^{+}
$$

2 Approximate quadratic eigenvalues: $\mu_{i}^{ \pm} \approx \lambda_{i}^{ \pm}$, approximate quadratic eigenvectors: $Y y_{i}^{ \pm}$.

But in what sense and why are those $\mu_{i}^{ \pm}$and $Y_{y_{i}}^{ \pm}$"best possible"?

Rayleigh-Ritz procedure for Hyperbolic Q (cont'd)

Trace Min/Max principle: $\inf _{\operatorname{rank}(X)=k} \sum_{j=1}^{k} \lambda_{j, X}^{+}=\sum_{j=1}^{k} \lambda_{j}^{+}$suggests that best possible approximations to $\lambda_{i}^{+}(1 \leq i \leq k)$ should be gotten so that

$$
\sum_{j=1}^{k} \lambda_{j, X}^{+} \text {is minimized, subject to } \operatorname{span}(X) \subset y, \operatorname{rank}(X)=k
$$

The optimal value is $\sum_{j=1}^{k} \mu_{j}^{+}$.
Consequently, first few $\mu_{i}^{+} \approx \lambda_{i}^{+}$are "best possible". Surprise: "interior" eigenvalues are usually hard to compute but this is not the case here.

Similarly to argue for last few $\mu_{j}^{+} \approx \lambda_{j+n-k}^{+}$are "best possible".

Similarly to argue for first few $\mu_{i}^{-} \approx \lambda_{i}^{-}$are "best possible". Surprise: "interior" eigenvalues are usually hard to compute but this is not the case here.

Similarly to argue for last few $\mu_{j}^{-} \approx \lambda_{j+n-k}^{-}$are "best possible".

Use $\rho(x)$ for either $\rho_{+}(x)$ or $\rho_{-}(x)$, and perturb x to $x+p,\|p\|$ tiny. $\rho(x)$ is changed to $\rho(x+p)=\rho(x)+\eta+O\left(\|p\|^{2}\right)$. Then
$[\rho(x)+\eta]^{2}(x+p)^{\mathrm{H}} A(x+p)+[\rho(x)+\eta](x+p)^{\mathrm{H}} B(x+p)+(x+p)^{\mathrm{H}} C(x+p)=0$
which gives, upon noticing $x^{H} Q(\rho(x)) x=0$, that

$$
\begin{aligned}
{\left[2 \rho(x) x^{\mathrm{H}} A x+x^{\mathrm{H}} B x\right] \eta } & +p^{\mathrm{H}}\left[\rho(x)^{2} A x+\rho(x) B x+C x\right] \\
& +\left[\rho(x)^{2} A x+\rho(x) B x+C x\right]^{\mathrm{H}} p+O\left(\|p\|^{2}\right)=0
\end{aligned}
$$

and thus

$$
\eta=-\frac{p^{\mathrm{H}}\left[\rho(x)^{2} A x+\rho(x) B x+C x\right]+\left[\rho(x)^{2} A x+\rho(x) B x+C x\right]^{\mathrm{H}} p}{2 \rho(x) x^{\mathrm{H}} A x+x^{\mathrm{H}} B x} .
$$

Therefore the gradient of $\rho(x)$ at x is

$$
\nabla \rho(x)=-\frac{2\left[\rho(x)^{2} A+\rho(x) B+C\right] x}{2 \rho(x) x^{H} A x+x^{H} B x} .
$$

Important to notice that $\nabla \rho(x)$ is parallel to the residual vector

$$
r_{ \pm}(x):=\left[\rho_{ \pm}(x)^{2} A+\rho_{ \pm}(x) B+C\right] x=Q\left(\rho_{ \pm}(x)\right) x
$$

Steepest descent/ascent method for computing one of $\lambda_{1}^{ \pm}$can be readily given.
Fix two parameters "typ" and ℓ with varying ranges as

$$
\operatorname{typ} \in\{+,-\}, \quad \ell \in\{1, n\}
$$

to mean that we are to compute the quadratic eigenpair $\left(\lambda_{\ell}^{\text {typ }}, u_{\ell}^{\text {typ }}\right)$.
A key step of the method is the following line-search problem

$$
t_{\mathrm{opt}}=\underset{t \in \mathbb{C}}{\operatorname{argopt}} \rho_{\mathrm{typ}}(x+t p), \quad \text { argopt }= \begin{cases}\arg \min , & \text { for }(\operatorname{typ}, \ell) \in\{(-, n),(+, 1)\}, \\ \arg \max , & \text { for }(\operatorname{typ}, \ell) \in\{(-, 1),(+, n)\} .\end{cases}
$$

where x is the current approximation to $u_{\ell}^{\text {typ }}, p$ is the search direction.
Not easy to do: Rayleigh quotient $\rho_{\text {typ }}$ too complicated, unlike for (linear) eigenvalue problems.

Better way to solve by using min-max principle.

Line Search is equivalent to find the best possible approximation within the subspace $\operatorname{span}([x, p])$.
Suppose x and p are linearly independent and let $Y=[x, p]$.
Solve the 2-by-2 hyperbolic QEP for $Y^{\mathrm{H}} Q(\lambda) Y$ to get its quadratic eigenvalues

$$
\mu_{2}^{-} \leq \mu_{1}^{-}<\mu_{1}^{+} \leq \mu_{2}^{+}
$$

and corresponding quadratic eigenvector $y_{j}^{ \pm}$.
Table for selecting the next approximate quadratic eigenpair:

(typ, $\ell)$	current approx.	next approx.
$(+, 1)$	$\left(\rho_{+}(\boldsymbol{x}), \boldsymbol{x}\right)$	$\left(\mu_{1}^{+}, Y y_{1}^{+}\right)$
$(+, n)$	$\left(\rho_{+}(\boldsymbol{x}), \boldsymbol{x}\right)$	$\left(\mu_{2}^{+}, Y y_{2}^{+}\right)$
$(-, 1)$	$\left(\rho_{-}(\boldsymbol{x}), \boldsymbol{x}\right)$	$\left(\mu_{1}^{-}, Y y_{1}^{-}\right)$
$(-, n)$	$\left(\rho_{-}(\boldsymbol{x}), \boldsymbol{x}\right)$	$\left(\mu_{2}^{-}, Y y_{2}^{-}\right)$

Basically it is Line Search along gradient direction.

Steepest Descent/Ascent method

Given an initial approximation \boldsymbol{x}_{0} to $u_{\ell}^{\text {typ }}$, and a relative tolerance rtol, the algorithm attempts to compute an approximate pair to $\left(\lambda_{\ell}^{\text {typ }}, u_{\ell}^{\text {typ }}\right)$ with the prescribed rtol.
1: $\boldsymbol{x}_{0}=\boldsymbol{x}_{0} /\left\|\boldsymbol{x}_{0}\right\|, \boldsymbol{\rho}_{0}=\rho_{\mathrm{typ}}\left(\boldsymbol{x}_{0}\right), \boldsymbol{r}_{0}=r_{\mathrm{typ}}\left(\boldsymbol{x}_{0}\right)$;
2: for $i=0,1, \ldots$ do
3: if $\left\|\boldsymbol{r}_{i}\right\| /\left(\left|\boldsymbol{\rho}_{i}\right|^{2}\left\|A \boldsymbol{x}_{i}\right\|+\left|\boldsymbol{\rho}_{i}\right|\left\|B \boldsymbol{x}_{i}\right\|+\left\|C x_{i}\right\|\right) \leq$ rtol then
4: BREAK;
5: else
6: \quad solve QEP for $Y_{i}^{H} Q(\lambda) Y_{i}$, where $Y_{i}=\left[\boldsymbol{x}_{i}, \boldsymbol{r}_{i}\right]$;
7: \quad select the next approximate quadratic eigenpair $(\mu, y)=\left(\mu_{j}^{\text {typ }}, Y_{i} y_{j}^{\text {typ }}\right)$ according to the table; $\boldsymbol{x}_{i+1}=y /\|y\|, \boldsymbol{\rho}_{i+1}=\mu, \boldsymbol{r}_{i+1}=r_{\text {typ }}\left(\boldsymbol{x}_{i+1}\right)$;
end if
end for
11: return $\left(\boldsymbol{\rho}_{i}, \boldsymbol{x}_{i}\right)$ as an approximate eigenpair to $\left(\lambda_{\ell}^{\text {typ }}, u_{\ell}^{\text {typ }}\right)$.

Extended Steepest Descent/Ascent method

In Steepest Descent/Ascent method, the search space is spanned by

$$
\boldsymbol{x}_{i}, \boldsymbol{r}_{i}=Q\left(\boldsymbol{\rho}_{i}\right) \boldsymbol{x}_{i}
$$

It is the second order Krylov subspace $\mathcal{K}_{2}\left(Q\left(\boldsymbol{\rho}_{i}\right), \boldsymbol{x}_{i}\right)$ of $Q\left(\boldsymbol{\rho}_{i}\right)$ on \boldsymbol{x}_{i}.
One way to improve the method is to use a higher order Krylov subspace

$$
\mathcal{K}_{m}\left(Q\left(\boldsymbol{\rho}_{i}\right), \boldsymbol{x}_{i}\right)=\operatorname{span}\left\{\boldsymbol{x}_{i}, Q\left(\boldsymbol{\rho}_{i}\right) \boldsymbol{x}_{i}, \ldots,\left[Q\left(\boldsymbol{\rho}_{i}\right)\right]^{m-1} \boldsymbol{x}_{i}\right\}
$$

Let Y_{i} be a basis matrix of $\mathcal{K}_{m}\left(Q\left(\boldsymbol{\rho}_{i}\right), \boldsymbol{x}_{i}\right)$. Solve m-by- m hyperbolic QEP for $Y_{i}^{\mathrm{H}} Q(\lambda) Y_{i}$ to get its quadratic eigenvalues

$$
\mu_{m}^{-} \leq \cdots \leq \mu_{1}^{-}<\mu_{1}^{+} \leq \cdots \leq \mu_{m}^{+}
$$

and corresponding quadratic eigenvectors $y_{j}^{ \pm}$.
Table for selecting the next approximate quadratic eigenpair:

(typ, $\ell)$	current approx.	next approx.
$(+, 1)$	$\left(\rho_{+}(\boldsymbol{x}), \boldsymbol{x}\right)$	$\left(\mu_{1}^{+}, Y_{i} y_{1}^{+}\right)$
$(+, n)$	$\left(\rho_{+}(\boldsymbol{x}), \boldsymbol{x}\right)$	$\left(\mu_{m}^{+}, Y_{i} y_{m}^{+}\right)$
$(-, 1)$	$\left(\rho_{-}(\boldsymbol{x}), \boldsymbol{x}\right)$	$\left(\mu_{1}^{-}, Y_{i} y_{1}^{-}\right)$
$(-, n)$	$\left(\rho_{-}(\boldsymbol{x}), \boldsymbol{x}\right)$	$\left(\mu_{m}^{-}, Y_{i} y_{m}^{-}\right)$

Extended Steepest Descent/Ascent method

Given an initial approximation x_{0} to $u_{\ell}^{\text {typ }}$, and a relative tolerance rtol, and the search space dimension m, the algorithm attempts to compute an approximate pair to
$\left(\lambda_{\ell}^{\text {typ }}, u_{\ell}^{\text {typ }}\right)$ with the prescribed rtol.
$: \boldsymbol{x}_{0}=\boldsymbol{x}_{0} /\left\|\boldsymbol{x}_{0}\right\|, \boldsymbol{\rho}_{0}=\rho_{\mathrm{typ}}\left(\boldsymbol{x}_{0}\right), \boldsymbol{r}_{0}=r_{\text {typ }}\left(\boldsymbol{x}_{0}\right)$;
for $i=0,1, \ldots$ do
if $\left\|\boldsymbol{r}_{i}\right\| /\left(\left|\boldsymbol{\rho}_{i}\right|^{2}\left\|A \boldsymbol{x}_{i}\right\|+\left|\boldsymbol{\rho}_{i}\right|\left\|B \boldsymbol{x}_{i}\right\|+\left\|C x_{i}\right\|\right) \leq$ rtol then BREAK;
else
compute a basis matrix Y_{i} for $\mathcal{K}_{m}\left(Q\left(\boldsymbol{\rho}_{i}\right), \boldsymbol{x}_{i}\right)$;
solve QEP for $Y_{i}^{\mathrm{H}} Q(\lambda) Y_{i}$ to get its quadratic eigenvalues $\mu_{j}^{ \pm}$and eigenvectors $y_{j}^{ \pm}$;
8: \quad select the next approximate quadratic eigenpair $(\mu, y)=\left(\mu_{j}^{\text {typ }}, Y y_{j}^{\text {typ }}\right)$ according to the table;

9: $\boldsymbol{x}_{i+1}=y /\|y\|, \boldsymbol{\rho}_{i+1}=\mu, \boldsymbol{r}_{i+1}=r_{\text {typ }}\left(\boldsymbol{x}_{i+1}\right) ;$
10: end if
11: end for
12: return $\left(\boldsymbol{\rho}_{i}, \boldsymbol{x}_{i}\right)$ as an approximate eigenpair to $\left(\lambda_{\ell}^{\text {typ }}, u_{\ell}^{\text {typ }}\right)$.

Rate of Convergence

Rate of Convergence (Liang \& Li, 2013)

$$
\left|\boldsymbol{\rho}_{i+1}-\lambda_{\ell}^{\mathrm{typ}}\right| \leq \varepsilon_{m}^{2}\left|\boldsymbol{\rho}_{i}-\lambda_{\ell}^{\mathrm{typ}}\right|+O\left(\varepsilon_{m}\left|\boldsymbol{\rho}_{i}-\lambda_{\ell}^{\mathrm{typ}}\right|^{3 / 2}+\left|\boldsymbol{\rho}_{i}-\lambda_{\ell}^{\mathrm{typ}}\right|^{2}\right),
$$

where

$$
\varepsilon_{m}=\min _{g \in \mathbb{P}_{m-1}, g\left(\sigma_{1}\right) \neq 0} \max _{i \neq 1} \frac{\left|g\left(\sigma_{i}\right)\right|}{\left|g\left(\sigma_{1}\right)\right|},
$$

and σ_{j} for $1 \leq j \leq n$ are eigenvalues of $Q\left(\boldsymbol{\rho}_{i}\right)$ arranged as in

$$
\begin{array}{ll}
\sigma_{1}>0>\sigma_{2} \geq \cdots \geq \sigma_{n} & \text { if }(\operatorname{typ}, \ell) \in\{(+, 1),(-, 1)\}, \quad \text { or, } \\
\sigma_{1}<0<\sigma_{2} \leq \cdots \leq \sigma_{n} & \text { if }(\operatorname{typ}, \ell) \in\{(+, n),(-, n)\} .
\end{array}
$$

- While the result is similar to the one for $A-\lambda B(B \succ 0)$, it is much much more complicated to prove.
- Important: rate depends on eigenvalue distribution of $Q\left(\boldsymbol{\rho}_{i}\right)$. Shed light to preconditioning:

$$
Q\left(\boldsymbol{\rho}_{i}\right) \approx L_{i} D_{i} L_{i}^{H}, \quad D_{i}=\operatorname{diag}(\pm 1)
$$

and use Extended Steepest Descent/Ascent method on $L^{-1} Q(\lambda) L^{-H}$.
Should reformulate for implementation sake. Detail omitted.

CG methods, Block Variations

Straightforward applications of ideas presented for $A-\lambda B$ earlier. Left as exercises ...

