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Overview

Overview

Motivating Examples

Hermitian Eigenvalue Problem – Basics

Steep Descent/Ascent Type Methods

Conjugate Gradient Type Methods

Extending Min-Max Principles: Indefinite B

Linear Response Eigenvalue Problem

Quadratic Hyperbolic Eigenvalue Problem



Motivating Examples

Density Functional Theory – Kohn-Sham Equation

Data Mining – Trace Ratio Maximization

More in Chapter 10 of

Y. Saad. Numerical Methods for Large Eigenvalue Problems.
SIAM, 2011.



Density Functional Theory (DFT)

Kohn-Sham Equation (Hohenberg and Kohn’64, Kohn and Sham’65):

[
− 1

2
∇2 +

∫
n(rrr ′)

|rrr − rrr ′| dr
rr ′ +

δExc(n(rrr))

δn(rrr )
+ vext(rrr)

︸ ︷︷ ︸
vKS[n](rrr)

]
φi (rrr) = λiφi (rrr),

a remarkably successful theory to describe ground-state properties of condensed
matter systems.

A nonlinear eigenvalue problem: Kohn-Sham (KS) operator depends on electronic

density n(rrr ) =

Nv∑

i=1

φi (rrr)φ
∗
i (rrr) which depends on eigen-functions φi (rrr).

Usually solved by Self-Consistent-Field (SCF) iteration:

1) initial n0(rrr) =
∑Nv

i=1 φ
(0)
i

(rrr)φ
(0)
i

∗
(rrr), and

2) repeat
[
−∇2/2 + vKS[nj ](rrr)

]
φ
(j+1)
i

= λ
(j+1)
i

φ
(j+1)
i

(rrr).
Each inner-iteration is an eigenvalue problem.



Discretized Kohn-Sham Equation

Ways of discretizations: plane waves, finite differences, finite elements, localized
orbitals, and wavelets.

Discretized Kohn-Sham Equation: H(X )X = SXΛ, XHSX = INv
.

H(X ) is symmetric, depends on X , eigenvalue matrix Λ is diagonal, and S ≻ 0. Some
discretizations: S = I .

Nonlinear eigenvalue problem, dependent on eigenvectors, as oppose to usually on the
eigenvalues.

Usually solved by Self-Consistent-Field (SCF) iteration:
1) initial X0, and
2) repeat H(Xj )Xj+1 = SXj+1Λj for j = 0, 1, . . . until convergence.

Each inner-iteration is a symmetric eigenvalue problem.

References more accessible to numerical analysts:

Yousef Saad, James R. Chelikowsky, Suzanne M. Shontz, Numerical Methods for Electronic Structure

Calculations of Materials, SIAM Rev. 52:1 (2010), 3-54.

C. Yang, J. C. Meza, B. Lee, and L.-W. Wang. KSSOLV—a MATLAB toolbox for solving the Kohn-Sham

equations. ACM Trans. Math. Software, 36(2):1–35, 2009.



Trace Optimization

In Fisher linear discriminant analysis (LDA) for supervised learning, need to
solve

max
VTV=Ik

trace(V TAV )

trace(V TBV )
,

where A,B ∈ R
n×n symmetric, B positive semidefinite and rank(B) > n − k .

trace(V TAV ) represents the in-between scatter, while trace(V TBV ) represents
the within scatter. Maximizer V is used to project n-dimensional vectors (data)
into k-dimensional vectors that best separates n-dimensional datasets into two
or more datasets.

KKT condition for Maximizers:
[
A− trace(V TAV )

trace(V TBV )
B

]

︸ ︷︷ ︸
=:E (V )

V = V [V T
E(V )V ]

such that eigenvalues of V TE(V )V are the k largest eigenvalues of E(V ).

Can be solved via SCF-like iteration; each inner iteration is a symmetric
eigenvalue problem.



Trace Optimization

References for trace ratio problem:

T. Ngo, M. Bellalij, and Y. Saad. The trace ratio optimization problem for
dimensionality reduction. SIAM J. Matrix Anal. Appl., 31(5):2950–2971,
2010.

L.-H. Zhang, L.-Z. Liao, and M. K. Ng. Fast algorithms for the
generalized Foley-Sammon discriminant analysis. SIAM J. Matrix Anal.

Appl., 31(4):1584–1605, 2010.

More eigenvalues arising from Data mining can be found in chapter 2 of

S. Yu, L.-C. Tranchevent, B. De Moor, and Y. Moreau. Kernel-based Data

Fusion for Machine Learning: Methods and Applications in Bioinformatics

and Text Mining. Springer, Berlin, 2011.



Basic Theory

Hermitian Ax = λx

Hermitian Ax = λBx (B ≻ 0)

Justifying Rayleigh-Ritz



Hermitian Ax = λx

Hermitian A = AH ∈ Cn×n.

Eigenvalues λi and eigenvectors ui ∈ Cn.

λ1 ≤ λ2 ≤ · · · ≤ λn, uHi uj = δij , Aui = λiui .

Rich, elegant, and well-developed theories in “every” aspect ...

Popular References

R. Bhatia. Matrix Analysis. Springer, New York, 1996.

R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,

Maryland, 3rd edition, 1996.

B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998.

Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

G. W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.



Courant-Fischer Theorem

Hermitian A = AH ∈ Cn×n. Eigenvalues: λ1 ≤ λ2 ≤ · · · ≤ λn.

Rayleigh quotient: ρ(x) =
xHAx

xHx
.

Courant (1920) and Fischer (1905)

λi = min
dimX=i

max
x∈X

ρ(x), λi = max
codimX=i−1

min
x∈X

ρ(x).

In particular,
λ1 = min

x
ρ(x), λn = max

x
ρ(x). (1)

Can be used to justify Rayleigh-Ritz approximations for computational purposes.

(1) is the foundation for using optimization techniques: steepest descent/ascent,
CG type, for computing λ1 and, with the help of deflation, other λj .



Trace Min/Trace Max

A = AH ∈ Cn×n. Eigenvalues: λ1 ≤ λ2 ≤ · · · ≤ λn.

Trace Min/Trace Max

k∑

j=1

λj = min
XHX=Ik

trace(XHAX ),

k∑

j=1

λn−j+1 = max
XHX=Ik

trace(XHAX ).

Can be used to justify Rayleigh-Ritz approximations for computational purposes.

Rayleigh quotient matrix: XHAX , assuming XHX = Ik .



Cauchy Interlacing Theorem

Hermitian A = AH ∈ Cn×n. Eigenvalues: λ1 ≤ λ2 ≤ · · · ≤ λn.

X ∈ Cn×k , k ≤ n, XHX = Ik . Eigenvalue of XHAX : µ1 ≤ µ2 ≤ · · · ≤ µk .

Cauchy (1829)

λj ≤ µj ≤ λj+n−k for 1 ≤ j ≤ k.

Numerical implication: Pick X to “push” each µj down to λj or up to λj+n−k .



Hermitian Ax = λBx (B ≻ 0)

A = AH,B = BH ∈ Cn×n, and B positive definite.

Equivalency: Ax = λBx ⇔ B−1/2AB−1/2
︸ ︷︷ ︸

=:Â

x̂ = λx̂, x̂ = B1/2x .

so same eigenvalues, and eigenvectors related by x̂ = B1/2x .

Eigenvalues λi and eigenvectors ui ∈ Cn.

λ1 ≤ λ2 ≤ · · · ≤ λn, uHi Buj = δij , Aui = λiBui .

Rayleigh quotient: ρ(x) :=
xHAx

xHBx
≡ x̂HÂx̂

x̂Hx̂
.

Verbatim translation of theoretical results for Âx̂ = λx̂ to ones for Ax = λBx .



Hermitian Ax = λBx (B ≻ 0)

Courant (1920) and Fischer (1905)

λi = min
dimX=i

max
x∈X

ρ(x), λi = max
codimX=i−1

min
x∈X

ρ(x).

In particular, λ1 = min
x

ρ(x), and λn = max
x

ρ(x).

Trace Min/Trace Max

k∑

j=1

λj = min
XHBX=Ik

trace(XHAX ),
k∑

j=1

λn−j+1 = max
XHBX=Ik

trace(XHAX ).

Cauchy (1829)

X ∈ Cn×k , k ≤ n, rank(X ) = k. Eigenvalues of XHAX − λXHBX :
µ1 ≤ µ2 ≤ · · · ≤ µk .

λj ≤ µj ≤ λj+n−k for 1 ≤ j ≤ k.



Why Rayleigh-Ritz?

Two most important aspects in solving large scale eigenvalue problems:

1 building subspaces close to the desired eigenvectors (or invariant subspaces).
E.g., Krylov subspaces.

2 seeking “best possible” approximations from the suitably built subspaces.

For 2nd aspect: given Y ∈ Cn and dim Y = m, find the “best possible” approximations
to some of the eigenvalues of A− λB using Y.

Usually done by Rayleigh-Ritz Procedure. Let Y be Y’s basis matrix.

Rayleigh-Ritz Procedure

1 Solve the eigenvalue problem for Y HAY − λY HBY : Y HAYyi = µiY
HBYyi ;

2 Approximate eigenvalues (Ritz values): µi (≈ λi );
approximate eigenvectors (Ritz vectors): Yyi .

But in what sense and why are those approximations “best possible”?



Why Rayleigh-Ritz? (cont’d)

Courant-Fischer: λi = min
dimX=i

max
x∈X

ρ(x) suggests that best possible approximation to

λi should be taken as
µi = min

X⊂Y, dimX=i
max
x∈X

ρ(x)

which is the ith eigenvalue of Y HAY − λY HBY .

Trace min principle:
k∑

j=1

λj = min
XHBX=Ik

trace(XHAX ) suggests that best possible

approximations to λi (1 ≤ i ≤ k) should be gotten so that

trace(XHAX ) is minimized, subject to span(X ) ⊂ Y, XHBX = Ik .

The optimal value is the sum of 1st k eigenvalues µi of Y
HAY − λY HBY .

Consequently, µi ≈ λi are “best possible”.



Steepest Descent Methods

Standard Steepest Descent Method

Extended Steepest Descent Method

Convergence Analysis

Preconditioning Techniques

Deflation



Problem: Hermitian Ax = λBx (B ≻ 0)

A = AH,B = BH ∈ Cn×n, and B positive definite.

Eigenvalues λi and eigenvectors ui ∈ Cn.

λ1 ≤ λ2 ≤ · · · ≤ λn, uHi Buj = δij , Aui = λiBui .

Rayleigh quotient: ρ(x) :=
xHAx

xHBx
.

Interested in computing 1st eigenpair (λ1, u1). Later: Other eigenpairs with the help
of deflation.

Largest eigenpairs: through considering (−A)− λB instead.



SD in general

SD method: a general technique to solve min f (x).

Steepest descent direction: at given x0, along which direction p, f decreases fastest?

min
p

d

dt
f (x0 + tp)

∣∣∣∣
t=0

= min
p

pT∇f (x0) = −‖∇f (x0)‖2 (2)

optimal p is in the opposite direction of the gradient ∇f (x0).

Plain SD: Given x0, for i = 0, 1, . . . until convergence

ti = argmin
t

f (xi + t∇f (xi )), xi+1 = xi + ti∇f (xi ). (3)

Major work: solve min
t

f (xi + tp), so-called line search.

Food for thought. Derivation in (2) not quite right for real-valued function f of complex vector x .
In (3): t ∈ R or t ∈ C makes difference. t ∈ C potentially much more complicated!



Application to ρ(x) = xHAx/xHBx

Recall λ1 = min
x

ρ(x).

Gradient: ∇ρ(x) =
2

xHBx
[Ax − ρ(x)Bx ] =:

2

xHBx
r(x). Note: xHr(x) ≡ 0.

‖q‖ tiny, up to 1st order:

ρ(x + q) =
(x + q)HA(x + q)

(x + q)HB(x + q)
=

xHAx + qHAx + xHAq

xHBx + qHBx + xHBq

=
xHAx + qHAx + xHAq

xHBx
·

[
1 −

qHBx + xHBq

xHBx

]
= ρ(x) +

qHr(x) + r(x)Hq

xHBx
.

Steepest descent direction: ∇ρ(x) parallel to residual r(x) = A− ρ(x)Bx .

Plain SD: Given x0, for i = 0, 1, . . . until convergence

ti = arg inf
t

ρ(xi + t r(xi )), xi+1 = xi + ti r(xi ).

Major work: solve inf
t
ρ(xi + tp), so-called line search.

When to stop?



Line Search inft ρ(xi + t p)

Can show inf
t∈C

ρ(x + tp) = min
|ξ|2+|ζ|2>0

ρ(ξx + ζp)

which is smaller eigenvalue µ of 2× 2 pencil XHAX − λXHBX , where X = [x , p].

Let v =

[
ν1
ν2

]
be the eigenvector. Then ρ(Xv) = µ, and Xv = ν1x + ν2p. So

arg inf
t∈C

ρ(x + tp) =: topt =

{
ν2/ν1, if ν1 6= 0,

∞, if ν1 = 0.

Interpret topt = ∞ in the sense lim
t→∞

ρ(x + tp) = ρ(p).

ρ(y) = inf
t∈C

ρ(x + tp), y =

{
x + toptp if topt is finite,

p otherwise



A Theorem for Line Search

Line Search

Suppose x , p are linearly independent. Then xHr(y) = 0 and pHr(y) = 0.

Proof

pHr(y) = 0: True if y = p, i.e., topt = ∞. Otherwise

y = x + toptp, ρ(y) = min
t∈C

ρ(x + tp) = min
s∈C

ρ(y + sp).

Optimal at s = 0. ρ(y + sp) = ρ(y) + 2
yHBy

ℜ(spHr(y)) + O(s2) implies pHr(y) = 0.

xHr(y) = 0: True if y = x , topt = 0. and thus xHr(y) = xHr(x) = 0. Otherwise

y = arg inf
s∈C

ρ(p + sx).

Therefore xHr(y) = 0.



Stopping Criteria

Common one: check if ‖r(x)‖ tiny enough. Reason: Easy to use and available.

if
‖r(xxx)‖2

‖Axxx‖2 + |ρ(xxx)| ‖Bxxx‖2
≤ rtol.

Implication: (ρ(xxx),xxx) is an exact eigenpair of (A+ E)− λB for some Hermitian
matrix E .

Can prove that (suppose ‖xxx‖2 = 1)

min ‖E‖2 = ‖r(xxx)‖2, min ‖E‖F =
√
2‖r(xxx)‖2.

More can be found in Chapter 5 of:

Zhaojun Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (editors).
Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide.
SIAM, Philadelphia, 2000.



Framework of SD

Steepest Descent method

Given an initial approximation xxx0 to u1, and a relative tolerance rtol, the algorithm
attempts to compute an approximate eigenpair to (λ1, u1) with the prescribed rtol.

1: xxx0 = xxx0/‖xxx0‖B , ρρρ0 = xxxH0 Axxx0, rrr0 = Axxx0 − ρρρ0Bxxx0;
2: for ℓ = 0, 1, . . . do
3: if ‖rrr ℓ‖2/(‖Axxxℓ‖2 + |ρρρℓ| ‖Bxxxℓ‖2) ≤ rtol then

4: BREAK;
5: else

6: compute the smaller eigenvalue µ and corresponding eigenvector v of
ZH(A − λB)Z , where Z = [xxxℓ, rrrℓ];

7: x̂ = Zv , xxxℓ+1 = x̂/‖x̂‖B ;
8: ρρρℓ+1 = µ, rrr ℓ+1 = Axxxℓ+1 − ρρρℓ+1Bxxxℓ+1;
9: end if

10: end for

11: return (ρρρℓ,xxxℓ) as an approximate eigenpair to (λ1, u1).

Note: At Line 6, rank(Z) = 2 always unless rrrℓ = 0 because xxxHℓ rrr ℓ = 0.



SD: Pros and Cons

Pros: Easy to implement; low memory requirement.
Cons: Possibly slow to converge, sometimes unbearably slow.

Well-known: SD slowly moves in zigzag towards an optimal point when the contours
near the point are extremely flat.

Ways to rescue:

Extended the search space: “line search” to “subspace search”

Modify the search direction: move away from the steepest descent direction
−∇ρ(x)

Combination



Extended SD Method

Seek to extend the search space naturally.

SD search space span{x , r(x)}. Note r(x) = Ax − ρ(x)Bx = [A− ρ(x)B]x .

span{x , r(x)} = span{x , [A− ρ(x)B]x} = K2([A− ρ(x)B], x)

the 2nd Krylov subspace of A− ρ(x)B on x .

Naturally extend K2([A− ρ(x)B], x) to

Km([A− ρ(x)B], x) = span{x , [A− ρ(x)B]x , . . . , [A− ρ(x)B]m−1x},

the mth Krylov subspace of A− ρ(x)B on x .

Call resulting method extended steepest descent method (ESD). It is in fact the
inverse free Krylov subspace method of Golub and Ye (2002).



Framework of ESD

Extended Steepest Descent method

Given an initial approximation xxx0 to u1, a relative tolerance rtol, and an integer
m ≥ 2, the algorithm attempts to compute an approximate eigenpair to (λ1, u1) with
the prescribed rtol.

1: xxx0 = xxx0/‖xxx0‖B , ρρρ0 = xxxH0 Axxx0, rrr0 = Axxx0 − ρρρ0Bxxx0;
2: for ℓ = 0, 1, . . . do
3: if ‖rrr ℓ‖2/(‖Axxxℓ‖2 + |ρρρℓ| ‖Bxxxℓ‖2) ≤ rtol then

4: BREAK;
5: else

6: compute a basis matrix Z ∈ Cn×m of Krylov subspace Km(A− ρρρℓB,xxxℓ);
7: compute the smallest eigenvalue µ and corresponding eigenvector v of

ZH(A − λB)Z ;
8: y = Zv , xxxℓ+1 = y/‖y‖B ;
9: ρρρℓ+1 = µ, rrr ℓ+1 = Axxxℓ+1 − ρρρℓ+1Bxxxℓ+1;
10: end if

11: end for

12: return (ρρρℓ,xxxℓ) as an approximate eigenpair to (λ1, u1).

Note: If B = I , it is equivalent to Restarted Lanczos



Basis of Km(A− ρρρB ,xxx)

C = A− ρρρB is Hermitian.

Lanczos process

1: z1 = xxx/‖xxx‖2, β0 = 0; z0 = 0;
2: for j = 1, 2, . . . , k do

3: z = Czj , αj = zH
j
z ;

4: z = z − αj zj − βj−1zj−1, βj = ‖z‖2;
5: if βj = 0 then

6: BREAK;
7: else

8: zj+1 = z/βj ;
9: end if

10: end for

Keep Azj and Bzj for projecting A and B later. Or, just zj but solve

ZHCZ − λZHBZ instead

Implemented as is, Z = [z1, . . . , zm] may lose orthogonality — partial or full
re-orthogonalization should be used. Pose little problem since usually m is
modest.

Possibly dimKm(A − ρρρB,xxx) < m. Pose no problem — Z has fewer than m

columns



Global Convergence

Convergence

For SD and ESD, ρρρℓ converges to some eigenvalue λ̂ of A− λB and
‖(A − λ̂B)xxxℓ‖2 → 0.

Proof.

1) {ρρρℓ} monotonically decreasing and ρρρℓ ≥ λ1 ⇒ ρρρℓ → λ̂.
2) {xxxℓ} bounded in Cn ⇒ convergent {xxxnℓ}, xxxnℓ → x̂ .

3) xxxHnℓ(A − ρρρnℓB)xxxnℓ = 0 ⇒ x̂H r̂ = x̂H(A − λ̂B)x̂ = 0.
4) Claim r̂ = 0. Otherwise r̂ 6= 0, rank([x̂, r̂ ]) = 2, and

Â− λ̂B̂ :=

[
x̂H

r̂H

]
A[x̂, r̂ ]− λ̂

[
x̂H

r̂H

]
B[x̂, r̂ ] =

[
0 r̂H r̂

r̂H r̂ r̂H(A− λ̂B)r̂

]
is indefinite.

Smaller eigenvalue µ of Â− λB̂: µ < λ̂. Let

Âℓ = [xxxℓ, rrrℓ]
HA[xxxℓ, rrr ℓ], B̂ℓ = [xxxℓ, rrrℓ]

HB[xxxℓ, rrrℓ],

µℓ+1 smaller eigenvalue of Âℓ − λB̂ℓ. Then

(i) Ânℓ → Â, B̂nℓ → B̂ ⇒ µnℓ+1 → µ,

(ii)ρnℓ+1 ≤ µnℓ+1 ⇒ λ̂ = limi→∞ ρnℓ+1 ≤ limi→∞ µnℓ+1 = µ,
a contradiction! So r̂ = 0.



Digression: Chebyshev Polynomial

The jth Chebyshev polynomial of the first kind Tj(t)

Tj(t) = cos(j arccos t) for |t| ≤ 1,

=
1

2

[(
t +

√
t2 − 1

)j
+
(
t +

√
t2 − 1

)−j
]

for t ≥ 1.

Or, T0(t) = 1, T1(t) = t, and Tj (t) = 2Tj−1(t) − Tj−2(t) for j ≥ 2.
Numerous optimal properties among polynomials

deg(p) ≤ j , |p(t)| ≤ 1 for t ∈ [−1, 1] ⇒ |p(t)| ≤ |Tj (t)| for t 6∈ [−1, 1].

I.e., |Tj(t)| ≤ 1 for |t| ≤ 1 and |Tj(t)| grows fastest. (Sample plots next slide.)

∣∣∣∣Tj

(
1 + t

1− t

)∣∣∣∣ =
∣∣∣∣Tj

(
t + 1

t − 1

)∣∣∣∣ =
1

2

[
∆j

t +∆−j
t

]
for 1 6= t > 0,

where ∆t :=

√
t + 1

|
√
t − 1|

for t > 0.

Frequently show up in numerical analysis and computations: Chebyshev acceleration in
iterative methods, convergence of CG and Lanczos methods.



Chebyshev Polynomial (sample plots)
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Chebyshev Polynomial: typical use

Problem Given [α, β] and γ 6∈ [α, β], seek a polynomial p with deg(p) ≤ m such that
p(γ) = 1 and max

x∈[α,β]
|p(x)| is minimized.

Define 1-1 mapping x ∈ [α, β] → t ≡ t(x) := 2
β−α

(
x − α+β

2

)
∈ [−1, 1],

t(γ) = −
1 + α−γ

β−γ

1− α−γ
β−γ

for γ < α, and
1 + γ−β

γ−α

1− γ−β
γ−α

for β < γ.

Optimal p(x) =
Tm(t(x))

Tm(t(γ))
:

p(γ) = 1, max
x∈[α,β]

|p(x)| = 1

|Tm(t(γ))|
= 2

[
∆j

η +∆−j
η

]−1
,

∆η =
1 +

√
η

1−√
η
, η =

α− γ

β − γ
for γ < α, and η =

γ − β

γ − α
for β < γ.



Convergence Rate

Theorem on Convergence Rate (Golub & Ye, 2002)

Suppose λ1 is simple, i.e., λ1 < λ2, and λ1 < ρρρℓ < λ2. Let

ω1 < ω2 ≤ · · · ≤ ωn

be the eigenvalues of A− ρρρℓB and v1 be an eigenvector corresponding to ω1. Then

ρρρℓ+1 − λ1 ≤ (ρρρℓ − λ1)ǫ
2
m + 2(ρρρℓ − λ1)

3/2ǫm

(‖B‖2
ω2

)1/2

+ δℓ

where

0 ≤ δℓ := ρρρℓ − λ1 + ω1
vH
1 v1

vH
1 Bv1

= O(|ρρρℓ − λ1|2),

ǫm := min
f∈Pm−1,f (ω1)=1

max
j>1

|f (ωj )|.



Discussion

ǫm := min
f∈Pm−1,f (ω1)=1

maxj>1 |f (ωj )| usually unknown, except,

1 m = 2 for which the optimal fopt is

fopt(t) =
t − (ω2 + ωn)/2

ω1 − (ω2 + ωn)/2
∈ Pm−1, fopt(ω1) = 1, max

j>1
|fopt(ωj )| = |fopt(ω2)| < 1.,

ǫ2 =
1− η

1 + η
, η =

ω2 − ω1

ωn − ω1
.

2 ω2 = · · · = ωn for which fopt(t) = (t − ω2)/(ω1 − ω2) and ǫm = 0 for all m ≥ 2.

In general ǫm can be bounded by using the Chebyshev polynomial

f (t) = Tm−1

(
2t − (ωn + ω2)

ωn − ω2

)/
Tm−1

( 1 + η

1− η

)
, f (ω1) = 1,

ǫm ≤ max
ω2≤tωn

|f (t)| =
[
Tm−1

( 1 + η

1− η

)]−1

= 2
[
∆m−1

η +∆
−(m−1)
η

]−1
.



Discussion (cont’d)

ρρρℓ+1 − λ1 ≤ (ρρρℓ − λ1)ǫ
2
m + 2(ρρρℓ − λ1)

3/2ǫm

(‖B‖2
ω2

)1/2

+ O(|ρρρℓ − λ1|2).

Ignoring high order terms,
ρρρℓ+1 − λ1

ρρρℓ − λ1
/ ǫ2m.

If ǫm = 0 (unlikely, however), then ρρρℓ+1 − λ1 = O(|ρρρℓ − λ1|2), quadratic convergence.

Locally, ρρρℓ ≈ λ1, eig(A− ρρρℓB) ≈ eig(A − λ1B) = {0 = γ1 < γ2 ≤ · · · ≤ γn}. So

ǫm ≈ min
f∈Pm−1,f (γ1)=1

max
j>1

|f (γj )| ≤ 2
[
∆m−1

η +∆
−(m−1)
η

]−1
,

∆η =
1 +

√
η

1−√
η
, η =

γ2 − γ1

γn − γ1
.

Observation. ǫm depends on eig(A− ρρρℓB), not on eig(A,B). This is the Key for
preconditioning later: transforming A− λB to preserve eig(A,B) but make
eig(A− ρρρℓB) more preferable.



Key Lemma

Lemma (Golub & Ye, 2002)

Let (ω1, v1) be the smallest eigenvalue of A− ρρρℓB, i.e.. Then

− ω1
vH
1 v1

vH
1 Bv1

≤ ρρρℓ − λ1 ≤ −ω1
uH1 u1

uH1 Bu1
. (4)

Asymptotically, if λ1 is a simple eigenvalue of A− λB, then as ρρρℓ → λ1,

ω1
vH
1 v1

vH
1 Bv1

= (λ1 − ρρρℓ) + O(|λ1 − ρρρℓ|2). (5)

Importance. Relate λ1 − ρρρℓ to ω1. Special case: B = I , ω1 = λ1 − ρρρℓ.



Proof of Key Lemma

1) ρρρℓ ≥ λ1 always. If ρρρℓ = λ1, then ω1 = 0. No proof needed.
2) Suppose ρρρℓ > λ1. A− ρρρℓB is indefinite and hence ω1 < 0. We have

(A− ρρρℓB)v1 = ω1v1, (A − ω1I − ρρρℓB)v1 = 0, A− ω1I − ρρρℓB � 0.

Therefore (ρρρℓ, v1) is the smallest eigenpair of (A − ω1I )− λB.
3) Note also (λ1, u1) is the smallest eigenpair of A− λB.

ρρρℓ =
vH
1 (A− ω1I )v1

vH
1 Bv1

=
vH
1 Av1

vH
1 Bv1

+
−ω1v

H
1 v1

vH
1 Bv1

≥ min
x

xHAx

xHBx
+

−ω1v
H
1 v1

vH
1 Bv1

= λ1 +
−ω1v

H
1 v1

vH
1 Bv1

,

λ1 =
uH1 Au1

uH1 Bu1
=

uH1 (A− ρρρℓB)u1

uH1 u1
· uH1 u1

uH1 Bu1
+ ρρρℓ

≥ min
x

xH(A− ρρρℓB)x

xHx
· uH1 u1

uH1 Bu1
+ ρρρℓ = ω1 ·

uH1 u1

uH1 Bu1
+ ρρρℓ.

Together yielding −ω1
vH
1 v1

vH
1 Bv1

≤ ρρρℓ − λ1 ≤ −ω1
uH1 u1

uH1 Bu1
.



Proof of Key Lemma

4) ω1(t) = λmin(A − tB), for t near λ1. Then ω1(λ1) = 0 and ω1(ρρρℓ) = ω1.
5) ω1(λ1) = 0 is a simple eigenvalue of A− λ1B. So ω1(t) is differentiable in a
neighborhood of λ1.

6) Expand ω1(t) at ρρρℓ, sufficiently close to λ1. Can prove ω′
1(ρρρℓ) = − vH1 Bv1

vH1 v1
. Hence

ω1(t) = ω1(ρρρℓ) + σ′
1(ρρρℓ)(t − ρρρℓ) + O(|t − ρρρℓ|2)

= ω1 −
vH
1 Bv1

vH
1 v1

(t − ρρρℓ) + O(|t − ρρρℓ|2).

Setting t = λ1,

0 = ω1(λ1) = ω1 −
vH
1 Bv1

vH
1 v1

(λ1 − ρρρℓ) + O(|λ1 − ρρρℓ|2),

from which ω1
vH
1 v1

vH
1 Bv1

= (λ1 − ρρρℓ) + O(|λ1 − ρρρℓ|2).



Convergence Rate

Theorem on Convergence Rate (Golub & Ye, 2002)

Suppose λ1 is simple, i.e., λ1 < λ2, and λ1 < ρρρℓ < λ2. Let

ω1 < ω2 ≤ · · · ≤ ωn

be the eigenvalues of A− ρρρℓB and v1 be an eigenvector corresponding to ω1. Then

ρρρℓ+1 − λ1 ≤ (ρρρℓ − λ1)ǫ
2
m + 2(ρρρℓ − λ1)

3/2ǫm

(‖B‖2
ω2

)1/2

+ δℓ

where

0 ≤ δℓ := ρρρℓ − λ1 + ω1
vH
1 v1

vH
1 Bv1

= O(|ρρρℓ − λ1|2),

ǫm := min
f∈Pm−1,f (ω1)=1

max
j>1

|f (ωj )|.



Proof

1) C = A− ρρρℓB = VΩVH (eigen-decomposition), V = [v1, v2, · · · , vn] (orthogonal),
Ω = diag(ω1, ω2, · · · , ωn).
2) Km ≡ Km(C ,xxxℓ) = {f (C)xxxℓ, f ∈ Pm−1}, and

ρρρℓ+1 = min
x∈Km

xHAx

xHBx
= ρρρℓ + min

x∈Km

xH(A− ρρρℓB)x

xHBx

= ρρρℓ + min
f∈Pm−1

xxxHℓ f (C)Cf (C)xxxℓ

xxxHℓ f (C)Bf (C)xxxℓ

. (6)

3) Let fopt ∈ Pm−1 be the minimizing polynomial that defines ǫm. Then fopt(ω1) = 1
by the definition, and also ǫm = max

j>1
|fopt(ωj )| < 1 because

f (t) =
t − (ω2 + ωn)/2

ω1 − (ω2 + ωn)/2
∈ Pm−1, f (ω1) = 1, max

j>1
|f (ωj )| = |f (ω2)| < 1.

4) xxxHℓ (A− ρρρℓB)xxxℓ = 0 ⇒ that vH
1 xxxℓ 6= 0 and hence fopt(C)xxxℓ 6= 0 (why?). Thus

ρρρℓ+1 ≤ ρρρℓ +
xxxHℓ fopt(C)Cfopt(C)xxxℓ

xxxHℓ fopt(C)Bfopt(C)xxxℓ
= ρρρℓ +

xxxHℓ Vf
2
opt(Ω)ΩVHxxxℓ

xxxHℓ Vfopt(Ω)B1fopt(Ω)VHxxxℓ

= ρρρℓ +
yHf 2opt(Ω)Ωy

yHfopt(Ω)B1 fopt(Ω)y
, where B1 = VHBV , y = VHxxxℓ.



Proof

5) Write y = [ξ1, ξ2, . . . , ξn]
T = ξ1e1 + ŷ , ŷ = [0, ξ2, . . . , ξn]

T. We have

yHfopt(Ω)B1fopt(Ω)y = (ξ1e1 + ŷ)Hfopt(Ω)B1fopt(Ω)(ξ1e1 + ŷ)

= ξ21 fopt(ω1)
2eH1 B1e1 + 2ξ1fopt(ω1)e

H
1 B1fopt(Ω)ŷ

+ ŷHfopt(Ω)B1fopt(Ω)ŷ

= ξ21β
2
1 + 2ξ1β2 + β2

3 ,

where

β2
1 = eH1 B1e1 = vH

1 Bv1,

β2
3 = ŷHfopt(Ω)B1fopt(Ω)ŷ ≤ max

j>1
fopt(ωj )

2‖B1‖2‖ŷ‖22 = ǫ2m‖B‖2‖ŷ‖22,

|β2| = |eH1 B1fopt(Ω)ŷ | ≤ β1β3.

Note
∑

j ωjξ
2
j = yHΩy = xxxHℓ (A− ρρρℓB)xxxℓ = 0 ⇒ |ω1|ξ21 =

∑
j>1 ωjξ

2
j ≥ ω2‖ŷ‖22.

Hence

β3 ≤ ǫm‖B‖1/22

( |ω1|
ω2

)1/2

|ξ1|.



Proof

6) yHf 2opt(Ω)Ωy = ξ21ω1 + ŷHfopt(Ω)2Ωŷ , and

yHf 2opt(Ω)Ωy =
∑

j

ωj f
2
opt(ωj )ξ

2
ℓ ≤

∑

j

ωjξ
2
j = yHΩy = 0,

ŷHf 2opt(Ω)Ωŷ =
∑

j>1

ωj f
2
opt(ωj )ξ

2
ℓ ≤ ǫ2m

∑

j>1

ωjξ
2
j = ǫ2m|ω1|ξ21 .

yHf 2opt(Ω)Ωy

yHfopt(Ω)B1fopt(Ω)y
≤ ξ21ω1 + ŷHfopt(Ω)2Ωŷ

ξ21β
2
1 + 2|ξ1|β1β3 + β2

3

=
ω1

β2
1

− ω1

β2
1

· 2|ξ1|β1β3 + β2
3

ξ21β
2
1 + 2|ξ1|β1β3 + β2

3

+
ŷHfopt(Ω)2Ωŷ

ξ21β
2
1 + 2|ξ1|β1β3 + β2

3

≤ ω1

β2
1

− ω1

β2
1

· 2|ξ1|β1β3

ξ21β
2
1

+
ŷHfopt(Ω)2Ωŷ

ξ21β
2
1

≤ ω1

β2
1

+ 2

( |ω1|
β2
1

)3/2

ǫm

(‖B‖2
ω2

)1/2

+
|ω1|
β2
1

ǫ2m.



Proof

7) We have proved

yHf 2opt(Ω)Ωy

yHfopt(Ω)B1fopt(Ω)y
≤ ω1

β2
1

+ 2

( |ω1|
β2
1

)3/2

ǫm

(‖B‖2
ω2

)1/2

+
|ω1|
β2
1

ǫ2m.

Note ω1

β2
1

= ω1
vH1 v1

vH1 Bv1
= (λ1 − ρρρℓ) + O(|λ1 − ρρρℓ|2) by the lemma. Therefore

ρρρℓ+1 − λ1 ≤ ρρρℓ − λ1 +
yHf 2opt(Ω)Ωy

yHfopt(Ω)B1fopt(Ω)y

≤ ρρρℓ − λ1 +
ω1

β2
1︸ ︷︷ ︸

δℓ

+2

( |ω1|
β2
1

)3/2

ǫm

(‖B‖2
ω2

)1/2

+
|ω1|
β2
1

ǫ2m

≤ δℓ + 2(ρρρℓ − λ1)
3/2ǫm

(‖B‖2
ω2

)1/2

+ (ρρρℓ − λ1)ǫ
2
m,

as expected.



What is Preconditioning?

Preconditioning. Transforming a problem that is “easier” (e.g., taking less time) to
solve iteratively.

Preconditioning natural for linear systems: transform Ax = b to KAx = Kb which is
“easier” than before. Extreme case: KA = I , i.e., K = A−1, then x = Kb. But this is
impractical!

A comprise: make KA ≈ I as much as practical. Here KA ≈ I is understood either
‖KA− I‖ is relatively small or KA− I is near a low rank matrix.

Preconditioning not so natural for eigenvalue problems: transform A− λB to
KA− λKB or LHAL− λLHBL which is “easier” than before.

No straightforward explanation as to what K makes KA− λKB “easier”

No straightforward explanation as to what L makes LHAL− λLHBL “easier”,
except L being the eigenvector matrix that is unknown. No easy way to
approximate the unknown eigenvector matrix either.

Will present two ways to understand eigen-problem preconditioning and construct
preconditioners.



Eigen-problem preconditioning, I

Ideal search direction p: starting at xxxℓ, p points to the optimum, i.e., the optimum is
on the line {xxxℓ + tp : t ∈ C}. How can it be done with unknown optimum?

Expand xxxℓ as a linear combination of uℓ

xxxℓ =
n∑

j=1

αjuj =: α1u1 + vvv , vvv =
n∑

j=2

αjuj⊥B u1.

Then ideal p = αu1 + βvvv , β 6= 0 such that α1β − α 6= 0 (otherwise p = βxxxℓ).

Ideal p has to be approximated to be practical. One such approximate p is

p = (A− σB)−1rrr ℓ = (A− σB)−1 [A− ρρρℓB]xxxℓ,

where ρρρℓ 6= σ ≈ λ1, also reasonably we assume σ 6= λj for all j > 1. Why so?

p =
n∑

j=1

µjαjuj , µj :=
λj − ρρρℓ

λj − σ
.

Now if λ1 ≤ ρρρℓ < λ2 and if the gap λ2 − λ1 is reasonably modest, then

µj ≈ 1 for j > 1

to give a p ≈ αv1 + vvv , resulting in fast convergence.



µj = (λj − ρρρℓ)/(λj − σ)
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Eigen-problem preconditioning, I

Preconditioner (A− σB)−1

Let xxxℓ =
∑n

j=1 αjuj , and suppose α1 6= 0. If σ 6= ρρρℓ such that

either µ1 < µj for 2 ≤ j ≤ n or µ1 > µj for 2 ≤ j ≤ n,

where µj =
λj−ρρρℓ
λj−σ

, then

tan θB (u1,Km) ≤ 2
[
∆m−1

η +∆
−(m−1)
η

]−1
tan θB (u1,xxxℓ),

0 ≤ ρρρℓ+1 − λ1 ≤ 4
[
∆m−1

η +∆
−(m−1)
η

]−2
tan θB (u1,xxxℓ),

where Km := Km([A− σB]−1[A− ρρρℓB],xxxℓ), and

η =






λn − σ

λn − λ1
· λ2 − λ1

λ2 − σ
, if µ1 < µj for 2 ≤ j ≤ n,

λ2 − σ

λ2 − λ1
· λn − λ1

λn − σ
, if µ1 > µj for 2 ≤ j ≤ n.



Discussion

η ≈ 1 (fast convergence) if σ ≈ λ1. In fact η = 1 (implying ∆η = ∞) if σ = λ1.

But shift σ needs to make µ1 either smallest or biggest among all µj . Three
interesting cases:

σ < λ1 ≤ ρ < λ2, µ1 smallest

λ1 < σ < ρ < λ2, µ1 biggest

λ1 < ρ < σ < λ2, µ1 smallest.

(A− σB)−1 realized through linear system solving, but cost is high if solved
accurately, thus only approximately, such as

incomplete decompositions LDLH of A− σB with/without an iterative method

CG, MINRES

(more from Sherry Li’s lectures.)



Eigen-problem preconditioning, II

Use Golub and Ye’s Theorem (2002) as starting point:

ρρρℓ+1 − λ1 ≤ (ρρρℓ − λ1)ǫ
2
m + 2(ρρρℓ − λ1)

3/2ǫm

(‖B‖2
ω2

)1/2

+ O(|ρρρℓ − λ1|2),

ǫm := min
f∈Pm−1,f (ω1)=1

max
j>1

|f (ωj )|,

where ω1 < ω2 ≤ · · · ≤ ωn are the eigenvalues of A− ρρρℓB.

Idea: Transform A− λB to L−1(A− λB)L− H so that L−1(A−ρρρℓB)L− H has “better”
eigenvalue distribution, i.e., much smaller ǫm.

Ideal: ω2 = · · · = ωn, then ǫm = 0 for m ≥ 2 and thus ρρρℓ+1 − λ1 = O(|ρρρℓ − λ1|2),
quadratic convergence.

A− ρρρℓB = LDLH ⇒ L−1(A− ρρρℓB)L− H = D = diag(±1). Ideal but not practical:

1 A− ρρρℓB = LDLH may not exist at all. It exists if all leading principle
submatrices are nonsingular.

2 A− ρρρℓB = LDLH may not be numerically stable to compute, especially when
ρρρℓ ≈ λ1.

3 L significantly denser than A and B combined. Ensuing computations are too
expensive.



Eigen-problem preconditioning, II

Compromise. A− ρρρℓB ≈ LDLH with a good chance that

one smallest isolated eigenvalue ω1, and the rest ωj (2 ≤ j ≤ n)
a few tight clusters.

Here A− ρρρℓB ≈ LDLH includes not only the usual “approximately equal”, but also
when (A− ρρρℓB) − LDLH approximately of a low rank.

L varies from one iterative step to another; Can be expensive; Possible to use constant
preconditioner, i.e., one L for all steps or change it every few steps.

Constant preconditioner: Use a shift σ ≈ λ1, and perform an incomplete LDLH

decomposition of A− σB ≈ LDLH. Then

Ĉℓ = L−1(A− σB)L− H + (σ − ρρρℓ)L
−1BL−H ≈ D

would have a better spectral distribution so long as (σ − ρρρℓ)L
−1BL−H is small relative

to Ĉℓ.

Insisted so far about applying ESD straightforwardly to the transformed problem
L−1(A− λB)L− H. But there is alternative, perhaps better, way.



Eigen-problem preconditioning, II
A− λB to Âℓ − λB̂ℓ := L−1

ℓ (A− λB)L− H
ℓ . Typical step of ESD for Âℓ − λB̂ℓ:

compute the smallest eigenvalue µ and corresponding eigenvector v of
ẐH(Âℓ − λB̂ℓ)Ẑ , where Ẑ ∈ Cn×m is a basis matrix of Krylov subspace

Km(Âℓ − ρ̂ρρℓB̂ℓ, x̂xxℓ).

Notice
[
Âℓ − ρ̂ρρℓB̂ℓ

]j
x̂xxℓ = LHℓ

[
(LℓL

H
ℓ )

−1(A− ρ̂ρρℓB)
]j
(L−H

ℓ x̂xxℓ) to see

L−H
ℓ ·Km(Âℓ − ρ̂ρρℓB̂ℓ, x̂xxℓ) = Km(Kℓ(A− ρ̂ρρℓB),xxxℓ), xxxℓ = L−H

ℓ x̂xxℓ, Kℓ = (LℓL
H
ℓ )

−1.

So Z = L−H
ℓ Ẑ is a basis matrix of Krylov subspace Km(Kℓ(A− ρ̂ρρℓB),xxxℓ). Also

ẐH(Âℓ − λB̂ℓ)Ẑ = (L− H
ℓ Ẑ)H(A− λB)(L− H

ℓ Ẑ) = ZH(A− λB)Z ,

ρ̂ρρℓ =
x̂xxHℓ Âℓx̂xxℓ

x̂xxHℓ B̂ℓx̂xxℓ
=

xxxHℓ Axxxℓ

xxxHℓ Bxxxℓ
= ρρρℓ.

The typical step can be reformulated equivalently to

compute the smallest eigenvalue µ and corresponding eigenvector v of
ZH(A − λB)Z , where Z ∈ Cn×m is a basis matrix of Krylov subspace
Km(Kℓ(A− ρρρℓB),xxxℓ), where Kℓ = (LℓL

H
ℓ )

−1.



Extended Preconditioned SD

Extended Preconditioned Steepest Descent method

Given an initial approximation xxx0 to u1, a relative tolerance rtol, and an integer
m ≥ 2, the algorithm attempts to compute an approximate eigenpair to (λ1, u1) with
the prescribed rtol.

1: xxx0 = xxx0/‖xxx0‖B , ρρρ0 = xxxH0 Axxx0, rrr0 = Axxx0 − ρρρ0Bxxx0;
2: for ℓ = 0, 1, . . . do
3: if ‖rrr ℓ‖2/(‖Axxxℓ‖2 + |ρρρℓ| ‖Bxxxℓ‖2) ≤ rtol then

4: BREAK;
5: else

6: construct a preconditioner Kℓ;
7: compute a basis matrix Z ∈ Cn×m of Krylov subspace

Km(Kℓ(A− ρρρℓB),xxxℓ);
8: compute the smallest eigenvalue µ and corresponding eigenvector v of

ZH(A − λB)Z ;
9: y = Zv , xxxℓ+1 = y/‖y‖B ;
10: ρρρℓ+1 = µ, rrrℓ+1 = Axxxℓ+1 − ρρρℓ+1Bxxxℓ+1;
11: end if

12: end for

13: return (ρρρℓ,xxxℓ) as an approximate eigenpair to (λ1, u1).

It actually includes Eigen-problem preconditioning, I & II.



Convergence Rate

Theorem on Convergence Rate (Golub & Ye, 2002)

Suppose λ1 is simple, i.e., λ1 < λ2, and λ1 < ρρρℓ < λ2, and preconditioner Kℓ ≻ 0. Let

ω1 < ω2 ≤ · · · ≤ ωn

be the eigenvalues of Kℓ(A− ρρρℓB) and v1 be an eigenvector corresponding to ω1.
Then

ρρρℓ+1 − λ1 ≤ (ρρρℓ − λ1)ǫ
2
m + 2(ρρρℓ − λ1)

3/2ǫm

(
‖L−1

ℓ BL−H
ℓ ‖2

ω2

)1/2

+ δℓ

where

0 ≤ δℓ := ρρρℓ − λ1 + ω1
vH
1 K−1

ℓ v1

vH
1 Bv1

= O(|ρρρℓ − λ1|2),

ǫm := min
f∈Pm−1,f (ω1)=1

max
j>1

|f (ωj )|.



Discussion

ǫm := min
f∈Pm−1,f (ω1)=1

maxj>1 |f (ωj )| usually unknown, except,

1 m = 2 for which the optimal fopt is

f (t) =
t − (ω2 + ωn)/2

ω1 − (ω2 + ωn)/2
∈ Pm−1, f (ω1) = 1, max

j>1
|f (ωj )| = |f (ω2)| < 1.,

ǫ2 =
1− η

1 + η
, η =

ω2 − ω1

ωn − ω1
.

2 ω2 = · · · = ωn for which fopt(t) = (t − ω2)/(ω1 − ω2) and ǫm = 0 for all m ≥ 2.

In general ǫm can be bounded by using the Chebyshev polynomial

f (t) = Tm−1

(
2t − (ωn + ω2)

ωn − ω2

)/
Tm−1

( 1 + η

1− η

)
, f (ω1) = 1,

ǫm ≤ max
ω2≤tωn

|f (t)| =
[
Tm−1

( 1 + η

1− η

)]−1

= 2
[
∆m−1

η +∆
−(m−1)
η

]−1
.



Discussion (cont’d)

ρρρℓ+1 − λ1 ≤ (ρρρℓ − λ1)ǫ
2
m + 2(ρρρℓ − λ1)

3/2ǫm

(
‖L−1

ℓ BL−H
ℓ ‖2

ω2

)1/2

+ O(|ρρρℓ − λ1|2).

Ignoring high order terms,
ρρρℓ+1 − λ1

ρρρℓ − λ1
/ ǫ2m.

If ǫm = 0 (unlikely, however), then ρρρℓ+1 − λ1 = O(|ρρρℓ − λ1|2), quadratically
convergence.

Locally, ρρρℓ ≈ λ1, eig(Kℓ(A− ρρρℓB)) ≈ eig(Kℓ(A− λ1B)) = {0 = γ1 < γ2 ≤ · · · ≤ γn},
and

ǫm ≈ min
f∈Pm−1,f (γ1)=1

max
j>1

|f (γj )| ≤ 2
[
∆m−1

η +∆
−(m−1)
η

]−1
,

∆η =
1 +

√
η

1−√
η
, η =

γ2 − γ1

γn − γ1
.



Convergence Rate: Samokish Theorem

Theorem on Convergence Rate (Samokish, 1958)

m = 2, eig(Kℓ(A− λ1B)) = {0 = γ1 < γ2 ≤ · · · ≤ γn}. Suppose λ1 is simple, i.e.,
λ1 < λ2, and λ1 < ρρρℓ < λ2,

δ =

√
‖B1/2KℓB

1/2‖2 [ρρρℓ − λ1], τ =
2

γ2 + γn
.

If τ
(√

γn + δ
)
δ < 1, then

ρρρℓ+1 − λ1 ≤
[

ǫ2 + τ
√
γn δ

1− τ(
√
γn + δ)δ

]2
[ρρρℓ − λ1], (7)

where

η =
γ2 − γ1

γn − γ1
, ǫ2 = 2

[
∆η +∆−1

η

]−1
=

1− η

1 + η
.

Asymptotically ρρρℓ+1 − λ1 / ǫ22 (ρρρℓ − λ1), same as Golub & Ye (2002), but (7) is strict.



Proof

1) topt = argmint ρ(xxxℓ + tKℓrrrℓ), y = xxxℓ + toptKℓrrrℓ. Thus ρρρℓ+1 = ρ(y).

2) Drop subscript ℓ to xxx , rrr , and K : rrr ℓ = r(xxx), ρρρℓ = ρ(xxx).

3) z = xxx − τKr(xxx). Then λ1 ≤ ρ(y) ≤ ρ(z), thus ρ(y)− λ1 ≤ ρ(z)− λ1.

4) Suffices to show ρ(z)− λ1 ≤ RHS of (7).

5) A− λ1B is symmetric positive semidefinite. ‖ · ‖A−λ1B is a semi-norm.

‖w‖2A−λ1B
= [ρ(w) − λ1]‖w‖2B ,

‖[I − τK(A− λ1B)]w‖A−λ1B ≤ ǫ2‖w‖A−λ1B .

6) Write z = [I − τK(A− λ1B)]xxx + τ [ρ(xxx)− λ1]KBxxx , and assume ‖xxx‖B = 1.

‖z‖A−λ1B =
√

ρ(z)− λ1‖z‖B ,
‖z‖A−λ1B ≤ ‖[I − τK(A− λ1B)]xxx‖A−λ1B + τ [ρ(xxx) − λ1]‖KBxxx‖A−λ1B

≤ ǫ2‖xxx‖A−λ1B + τ [ρ(xxx)− λ1]
√
γn‖Bxxx‖K

≤ ǫ2
√

ρ(xxx)− λ1 + τ [ρ(xxx)− λ1]
√

γn ‖B1/2KB1/2‖2
= (ǫ2 + τ

√
γn δ)

√
ρ(xxx)− λ1.



Proof (cont’d)

7) z = xxx − τKr(xxx), and ‖xxx‖B = 1.

‖z‖B ≥ ‖xxx‖B − τ‖Kr(xxx)‖B = 1− τ‖Kr(xxx)‖B ,
‖Kr(xxx)‖B = ‖K(A− λ1B)xxx − [ρ(xxx)− λ1]KBxxx‖B

≤ ‖K(A− λ1B)xxx‖B + [ρ(xxx)− λ1]‖KBxxx‖B

≤
√

‖K 1/2BK 1/2‖2γn ‖xxx‖A−λ1B + [ρ(xxx)− λ1]‖B1/2KB1/2‖2‖xxx‖B
=

√
γnδ + δ2.

8) Finally use

ρ(z)− λ1 =
‖z‖2

A−λ1B

‖z‖2
B

≤
‖z‖2

A−λ1B

[1− τ‖Kr(xxx)‖B ]2

to complete the proof.



Deflation

So far computing (λ1, u1) by single-vector steepest descent type methods.

To compute any following eigenpairs, must incorporate deflation techniques.

Or use a multi-vector/block method (not discussed yet). Deflation is also a necessary
tool to make a block method more efficient.

Assume acceptable approximations to (λi , ui ) for 1 ≤ j ≤ k known.
Diagonal DDD ∈ Rk×k holds known approximations of λi ,
UUU ∈ Rn×k holds known approximations of ui .
Assume UUUHBUUU = Ik .

Deflation: avoid computing (λi , ui ) for 1 ≤ j ≤ k, and seek approximation to
(λk+1, uk+1). Will discuss two deflation techniques.



Through orthogonalizing against UUU

When the basis matrix Z is computed, make sure that Z is B-orthogonal to UUU. E.g.,
build a basis matrix Z for Km(K(A− ρB), x) such that UUUH⊥BZ = 0. Suppose
x⊥B UUU = 0 already.

Arnoldi-like process

1: Z(:,1) = x/‖x‖B , ρ = xHAx/‖x‖2
B
;

2: for i = 2 to m do

3: q = K(AZ(:,i−1) − ρBZ(:,i−1));

4: q = q −UUU(UUUH(Bq));
5: for j = 1 to i − 1 do

6: t = ZH
(:,i−1)

Bq, q = q − Z(:,i−1)t;

7: end for

8: t = ‖q‖B ;
9: if t > 0 then

10: Z(:,i) = q/t;
11: else

12: BREAK;
13: end if

14: end for

Note: Keep AZ for later use.



Through shifting λi away

Lemma

Let U1 = U(:,1:k) = [u1, . . . , uk ]. (A+ ζBU1U
H
1 B)− λB and A− λB share same

eigenvectors ui , but the eigenvalues of (A + ζBU1U
H
1 B) − λB are

λi + ζ for 1 ≤ i ≤ k and λi for k + 1 ≤ i ≤ n.

Modify A− λB in form, but not explicitly, to (A + ζBUUUUUUHB) − λB, where ζ should
be selected such that ζ + λ1 ≥ λk+2.

But λk+2 is unknown. What we can do in practice to pick ζ a sufficiently large
number.



Block Steepest Descent Method

Block Steepest Descent Method

Block Extended Steepest Descent Method

Block Preconditioned Extended Steepest Descent Method



Why block versions

Single-vector SD and variations:

compute (λ1, u1), and, with deflations, other (λi , ui ), one pair at a time. Most
computations are of matrix-vector type.

Slow convergence if (γ2 − γ1)/(γn − γ1) tiny; usually happens when λ2 very
close to λ1. (γi are eigenvalues of K(A− λ1B).)

Often in practice, there are needs to compute the first few eigenpairs, not just
the first one.

Block versions:

Can simultaneously compute the first k eigenpairs (λj , uj );

Run more efficiently on modern computer architecture: more computations in
matrix-matrix multiplication type;

Better rates of convergence; can save overall cost by using a block size that is
slightly bigger than the number of asked eigenpairs.

In summary, the benefits of using a block variation are similar to those of using the
simultaneous subspace iteration vs. the power method.



Block SD

Start with X0 ∈ Cn×nb , rank(X0) = nb ≥ k, instead of just one vector xxx0 ∈ Cn.

May assume jth column of X0 approximates uj ; otherwise R(X0) approximates
span{u1, . . . , unb}. In the latter, preprocessing X0:

1 compute eigen-decomposition (XH
0 AX0)W = (XH

0 BX0)WΩ, where
Ω = diag(ρ0;1, ρ0;2, . . . , ρ0;nb );

2 Reset X0 := X0W .

Can always assume jth column of X0 approximates uj .

Typical ℓth iterative step: already have

Xℓ = [xℓ;1, xℓ;2, . . . , xℓ;nb ] ∈ C
n×nb , jth column xℓ;j approximates uj ,

Ωℓ = diag(ρℓ;1, ρℓ;2, . . . , ρℓ;nb ), ρℓ,j = ρ(xℓ;j) ≈ λj .

To compute new approximations as follows.

1 Compute a basis matrix Z of R([Xℓ,Rℓ]) by, e.g., MGS in the B-inner product,
keeping in mind that Xℓ is B-orthonormal already;

2 Find the first nb eigenpairs of ZHAZ − λZHBZ to get
(ZHAZ)W = (ZHBZ)WΩℓ+1, Ωℓ+1 = diag(ρℓ+1;1, ρℓ+1;2, . . . , ρℓ+1;nb );

3 Set Xℓ+1 = ZW .



Block Extended SD

Block SD (previous slide) is is the stronger version of Simultaneous Rayleigh

Quotient Minimization Method of Longsine and McCormick (1980).

Note that r(xℓ;j) = (A− ρℓ;jB)xℓ;j and thus

R([Xℓ,Rℓ]) =

nb∑

j=1

R([xℓ;j , (A− ρℓ;jB)xℓ;j ]) =

nb∑

j=1

K2(A− ρℓ;jB, xℓ;j).

Naturally, as before, to expand search space, R([Xℓ,Rℓ]) through extending each
K2(Axℓ;j − ρℓ;jB, xℓ;j) to a high order one. The new extended search subspace now is

nb∑

j=1

Km(A − ρℓ;jB, xℓ;j) = span{Xℓ,Rℓ(Xℓ), . . . ,R
m−1
ℓ (Xℓ)} =: Km(Rℓ,Xℓ),

where the linear operator Rℓ : X ∈ Cn×nb → Rℓ(X ) = AX − BXΩℓ ∈ Cn×nb .

Ri
ℓ( · ) = R

i−1
ℓ (Rℓ( · )), e.g., R2

ℓ (X ) = Rℓ(Rℓ(X )).

Block Extended SD: make Z basis matrix of Km(Rℓ,Xℓ).



Incorporate Preconditioners

In light of extensive discussions on preconditioning, natural to modify the search
subspace to

nb∑

j=1

Km(Kℓ;j (A− ρℓ;jB), xℓ;j),

where Kℓ;j is the preconditioner intended to move (ρℓ;j , xℓ;j) towards (λj , uj ) faster for
each j .

Two ways to construct Kℓ;j :

Kℓ;j ≈ (A − ρ̃ℓ;jB)−1 for some ρ̃ℓ;j 6= ρℓ;j , ideally closer to λj than to any other
eigenvalue of A− λB.

Since the eigenvalues of A− λB are unknown, practically make ρ̃ℓ;j closer but
not equal to ρℓ;j than to any other ρℓ;k .

Perform incomplete LDLH factorization: A− ρℓ;jB ≈ Lℓ;jDℓ;jL
H
ℓ;j , where “≈”

includes not only the usual “aproximately equal”, but also the case when
(A− ρℓ;jB) − Lℓ;jDℓ;jL

H
ℓ;j is approximately a low rank matrix, and

Dℓ;j = diag(±1).

Finally, Ki :j = Lℓ;jL
H
ℓ;j .



Block Preconditioned Extended SD

Block Preconditioned Extended Steepest Descent method

Given an initial approximation X0 ∈ Cn×nb with rank(X0) = nb , and an integer m ≥ 2,
the algorithm attempts to compute approximate eigenpair to (λj , uj ) for 1 ≤ j ≤ nb.

1: compute the eigen-decomposition: (XH
0 AX0)W = (XH

0 BX0)WΩ0,

where W H(XH
0 BX0)W = I , Ω0 = diag(ρ0;1, ρ0;2, . . . , ρ0;nb );

2: X0 = X0W ;
3: for ℓ = 0, 1, . . . do
4: test convergence and lock up the converged (detail to come later);
5: construct preconditioners Kℓ;j for 1 ≤ j ≤ nb;

6: compute a basis matrix Z ∈ Cn×mnb of

nb∑

j=1

Km(Kℓ;j (A− ρℓ;jB), xℓ;j);

7: compute the nb smallest eigenvalues and corresponding eigenvectors of
ZH(A− λB)Z to get (ZHAZ)W = (ZHBZ)WΩℓ, where W H(ZHBZ)W = I ,
Ωℓ+1 = diag(ρℓ+1;1, ρℓ+1;2, . . . , ρℓ+1;nb );

8: Xℓ+1 = ZW ;
9: end for

10: return approximate eigenpairs to (λj , uj ) for 1 ≤ j ≤ nb.



Implementation Issue, I

Different preconditioner Kℓ;j for each different approximate eigenpair (ρℓ;j , xℓ;j) good
for convergence rates, but may not reduce overall time:

expensive to construct all preconditioners

cannot compute Z mostly by matrix-matrix multiplications (more later)

Use Kℓ;j ≡ Kℓ, one preconditioner for all speeding up the convergence of (ρℓ;1, xℓ;1).
At the same time other (ρℓ;j , xℓ;j) are making progress, too, but at a slower speed.

Usually (ρℓ;1, xℓ;1) converges first and quickly.

Once (ρℓ;1, xℓ;1) (or the first few in the case of a tight cluster) is determined to be
sufficiently accurate, the converged eigenpair is locked up and deflated.

A new preconditioner is computed to aim at the next non-converged eigenpair, and
the process continues.



Implementation Issue, II

Need to compute basis matrix Z ∈ Cn×mnb of

nb∑

j=1

Km(Kℓ;j (A− ρℓ;jB), xℓ;j).

Z can be gotten by packing the basis matrices of all Km(Kℓ;j (A− ρℓ;jB), xℓ;j) for
1 ≤ j ≤ nb together. Two drawbacks:

Such a Z could be ill-conditioned, i.e., columns of Z may not be sufficiently
numerically linearly independent; Possible cure: re-orthogonalize packed Z – too
costly.

Building basis for each Km(Kℓ;j (A− ρℓ;jB), xℓ;j) uses mostly BLAS-2
operations. Have to be this way if Kℓ;j are different.

Different situation if Kℓ;j ≡ K (drop iteration step index ℓ). Then

nb∑

j=1

Km(K(A− ρℓ;jB), xℓ;j) = Km(KR,X )

≡ span{X ,KR(Xℓ), . . . , [KR]m−1(X )},

where R(X ) = AX − BXΩ, [KR]i ( · ) = [KR]i (KR( · )), e.g.,
[KR]2(X ) = KRℓ(KR(X )).



Implementation Issue, II (cont’d)

Z = [Z1,Z2, . . . ,Zm] can be computed by the following block Arnoldi-like process in
the B-inner product.

Arnoldi-like process for Z

1: Z1 = X (recall XHBX = Inb already);
2: for i = 2 to m do

3: Y = K(AZi−1 − BΩZi−1);
4: for j = 1 to i − 1 do

5: T = ZH
j
BY ; Y = Y − ZjT ;

6: end for

7: ZiT = Y (MGS in the B-inner product);
8: end for

Note: At Line 7, Y may not be numerically of full column rank – not a problem.

Anytime if a column is deemed linearly dependent on previous columns, that column
should be deleted, along with corresponding ρj from Ω.

At completion of MGS, Zj+1 will have fewer columns than Y and the size of Ω is
shrunk accordingly.



Implementation Issue, III

(ρℓ;j , xℓ;j) is considered acceptable if
‖rℓ;j‖2

‖Axℓ;j‖2 + |ρℓ;j | ‖Bxℓ;j‖2
≤ rtol.

Usually λj are converged to in order, i.e., the smallest eigenvalues emerge first.

Lock all acceptable approximate eigenpairs in kcvgd × kcvgd diagonal matrix DDD for
eigenvalues and n × kcvgd tall matrix UUU for eigenvectors.

Every time a converged eigenpair is detected, delete the converged ρℓ;j and xℓ;j from
Ωℓ and Xℓ, respectively, and expand DDD and UUU to lock up the pair, accordingly.

At the same time, either reduce nb by 1 or append a (random) B-orthogonal column
to X to maintain nb unchanged.

Deflate to avoid recomputing converged eigenpairs:

1 At Line 7 in the Arnoldi-like process, each column of Zj+1 is B-orthogonalized
against UUU.

2 Modify A− λB in form, but not explicitly, to (A+ ζBUUUUUUHB) − λB, where ζ
should be selected such that ζ + λ1 ≥ λkcvgd+nb+1. Here we pre-assume the

kcvgd converged eigenpairs are indeed those for (λj , uj ) for 1 ≤ j ≤ kcvgd. This is
usually so, but with no guarantee, of course.



Conjugate Gradient Methods

Digression: CG for Linear System Ax = b

Conjugate Gradient Method

Preconditioned Conjugate Gradient Method

Locally Optimal Conjugate Gradient Method

Locally Optimal Extended Conjugate Gradient Method

Locally Optimal Block Preconditioned Extended Conjugate
Gradient Method



CG for Linear System Ax = b

A is n × n, symmetric, and positive definite. Let

φ(x) =
1

2
xTAx − xTb,

quadratic in x , convex, a unique local and global minimum at x = A−1b,
∇φ(x) = r(x) ≡ Ax − b.

CG Algorithm (Hestenes and Stiefel, 1950s):

1 Given x0, compute r0 = Ax0 − b, and set p0 = −r0;

2 For i = 0, 1, . . ., do

αi = argmin
α

φ(xi + αpi ), xi+1 = xi + αipi ,

ri+1 = ri + αiApi , pi+1 = −ri+1 + βipi .

βi chosen so that pT
i+1Api = 0; equivalent expressions:

βi =
pTi Ari+1

pT
i
Api

=
rT
i+1ri+1

rT
i
ri

=
rT
i+1(ri+1 − ri )

rT
i
ri

.



Nonlinear CG

Verbatim translations of Hestenes’ and Stiefel’s CG to solve

min
x

φ(x), φ(x) not necessarily quadratic,

replacing all r(xi ) by ∇φ(xi ).

Nonlinear CG Algorithm (Fletcher and Reeves, 1964):

1 Given x0, compute ∇φ0 = ∇φ(x0), and set p0 = −∇φ0;

2 For i = 0, 1, . . ., do

αi = argmin
α

φ(xi + αpi ), xi+1 = xi + αipi ,

evaluate ∇φi+1 = ∇φ(xi+1), pi+1 = −∇φi+1 + βipi .

Several choices for βi :

βi =
∇φT

i+1∇φi+1

∇φT
i
∇φi

, βi =
∇φT

i+1(∇φi+1 −∇φi )

∇φT
i
∇φi

.



Locally Optimal CG

Linear CG: choices of βi make

search directions pi conjugate, i.e., p
T
i
Apj = 0 for i 6= j .

CG method terminates in at most n steps.

Nonlinear CG: many nice properties no longer hold for any choice of βi .

Observe

xi+2 = xi+1 + αi+1(−∇φi+1 + βipi )

∈ span{xi+1,∇φi+1, pi} = span{xi+1,∇φi+1, xi}.

Since many nice properties in linear CG are lost anyway in the nonlinear case, why not
pick βi , implicitly, such that (Takahashi, 1965)

xi+2 = argmin
y∈span{xi+1,∇φi+1,xi}

φ(y).

This gives locally optimal CG. But search over y ∈ span{xi+1,∇φi+1, xi} harder than
before.



CG for Ax = λBx

Minimize ρ(x) to compute (λ1, u1):

ρ(x) =
xHAx

xHBx
, ∇ρ(x) =

2

xHBx
r(x), r(x) := Ax − ρ(x)Bx .

Line-search ρ(y) = inf
t∈C

ρ(x + tp)

1: compute the smaller eigenvalue µ of XHAX − λXHBX , where X = [x ,p], and
eigenvector v = [ν1, ν2]T ;

2: arg inf
t∈C

ρ(x + tp) =: topt =

{
ν2/ν1, if ν1 6= 0,

∞, if ν1 = 0;

3: y =

{
x + toptp if topt is finite,

p otherwise.

CG for Ax = λBx : in nonlinear CG simply replace ∇φ(x) by r(x) := Ax − ρ(x)Bx .



CG for Ax = λBx

CG for Ax = λBx

Given an initial approximation xxx0 to u1, and a relative tolerance rtol, the algorithm
attempts to compute an approximate eigenpair to (λ1, u1) with the prescribed rtol.

1: xxx0 = xxx0/‖xxx0‖B , ρρρ0 = xxxH0 Axxx0, rrr0 = Axxx0 − ρρρ0Bxxx0, ppp0 = −rrr0;
2: for ℓ = 0, 1, . . . do
3: if ‖rrr ℓ‖2/(‖Axxxℓ‖2 + |ρρρℓ| ‖Bxxxℓ‖2) ≤ rtol then

4: BREAK;
5: else

6: compute αℓ = topt := inf
t∈C

ρ(xxxℓ + tpppℓ), and then

y =

{
xxxℓ + αℓpppℓ if αℓ is finite,

pppℓ otherwise.

7: xxxℓ+1 = y/‖y‖B ;
8: set ρρρℓ+1 = xxxHℓ+1Axxxℓ+1, rrrℓ+1 = Axxxℓ+1 − ρρρℓ+1Bxxxℓ+1, pppℓ+1 = −rrrℓ+1 + βℓpppℓ,

where βℓ =
rrrHℓ+1rrrℓ+1

rrrH
ℓ
rrrℓ

or
rrrHℓ+1(rrrℓ+1−rrrℓ)

rrrH
ℓ
rrrℓ

9: end if

10: end for

11: return (ρρρℓ,xxxℓ) as an approximate eigenpair to (λ1, u1).



A Convergence Theorem

Convergence Theorem (Yang, 1993)

With βℓ =
rrrHℓ+1rrrℓ+1

rrrH
ℓ
rrrℓ

, ρρρℓ converges to some eigenvalue λ̂ of A− λB and there is a

convergent subsequence {xxxℓi } of {xxxℓ} such that

‖(A − λ̂B)xxxℓi ‖2 → 0 as i → ∞,

i.e., xxxℓi converges in direction to a corresponding eigenvector.

If λ̂ = λ1, then ‖(A − λ̂B)xxxℓ‖2 → 0 as ℓ → ∞, i.e., xxxℓ converges in direction to a
corresponding eigenvector. (seem new)

First part due to (Yang, 1993); second part seems new.

Only for βℓ =
rrrHℓ+1rrrℓ+1

rrrH
ℓ
rrrℓ

, however.

Proof much more complicated than for SD.

Rate of convergence: mostly heuristic, none rigorous proven.



Preconditioned CG for Ax = λBx

As in SD, Preconditioned CG = vanilla CG on L−HAL−1 − λL−HBL−1.

Let Ã− λB̃ := L−HAL−1 − λL−HBL−1. Adopt notation convention for Ã− λB̃:
same symbols but with tildes. E.g., x̃ = Lx ,

ρ̃(x̃) =
x̃HL−HAL−1x̃

x̃HL−HBL−1x̃
≡ ρ(x), r̃(x̃) = L−HAL−1x̃ − ρ̃(x̃)L−HBL−1x̃ ≡ L−Hr(x).

Key CG step:

α̃ℓ = argmin
α̃

ρ̃(x̃xxℓ + α̃p̃ppℓ), x̃xxℓ+1 = x̃xxℓ + α̃ℓp̃ppℓ,

r̃rrℓ+1 = L−HAL−1x̃xxℓ+1 − ρ̃(x̃xxℓ+1)L
−HBL−1x̃xxℓ+1, p̃ppℓ+1 = −r̃rrℓ+1 + β̃ℓp̃ppℓ.

Perform substitutions x̃xxℓ = Lxxxℓ and r̃rrℓ = L−Hrrrℓ:

α̃ℓ = argmin
α̃

ρ(xxxℓ + α̃ L−1p̃ppℓ︸ ︷︷ ︸
=:pppℓ

), xxxℓ+1 = xxxℓ + α̃ℓL
−1p̃ppℓ,

rrrℓ+1 = Axxxℓ+1 − ρ(xxxℓ+1)Bxxxℓ+1, L−1p̃ppℓ+1︸ ︷︷ ︸
=:pppℓ+1

= − (LHL)−1

︸ ︷︷ ︸
=:K

rrrℓ+1 + β̃ℓ L
−1p̃ppℓ︸ ︷︷ ︸
=:pppℓ

.



Preconditioned CG for Ax = λBx

Preconditioned CG for Ax = λBx

Given an initial approximation xxx0 to u1, a (positive definite) preconditioner K , and a
relative tolerance rtol, the algorithm attempts to compute an approximate pair to
(λ1, u1) with the prescribed rtol.

1: xxx0 = xxx0/‖xxx0‖B , ρρρ0 = xxxH0 Axxx0, rrr0 = Axxx0 − ρρρ0Bxxx0, ppp0 = −Krrr0;
2: for ℓ = 0, 1, . . . do
3: if ‖rrr ℓ‖2/(‖Axxxℓ‖2 + |ρρρℓ| ‖Bxxxℓ‖2) ≤ rtol then

4: BREAK;
5: else

6: compute αℓ = topt := inf
t∈C

ρ(xxxℓ + tpppℓ), and then

y =

{
xxxℓ + αℓpppℓ if αℓ is finite,

pppℓ otherwise.

7: xxxℓ+1 = y/‖y‖B ;
8: set ρρρℓ+1 = xxxHℓ+1Axxxℓ+1, rrrℓ+1 = Axxxℓ+1 − ρρρℓ+1Bxxxℓ+1,

pppℓ+1 = −Krrrℓ+1 + βℓpppℓ, where βℓ =
rrrHℓ+1Krrrℓ+1

rrrH
ℓ
Krrrℓ

or
rrrHℓ+1K (rrrℓ+1−rrrℓ)

rrrH
ℓ
Krrrℓ

.

9: end if

10: end for

11: return (ρρρℓ,xxxℓ) as an approximate eigenpair to (λ1, u1).



Convergence

Earlier discussions on selecting a good preconditioner for PSD should apply:

A− σB = LDLH, D = diag(±1), K = (LHL)−1.

Various heuristics on the convergence rates of the preconditioned CG, but none is
rigorously proved. Even less can be said about the theoretical analysis of block (or
subspace) versions of the preconditioned CG method (to come soon).

But since preconditioned CG is CG for L−HAL−1 − λL−HBL−1, previous convergence
theorem for CG remains valid.



Locally Optimal CG for Ax = λBx

In writing down CG for Ax = λBx , we did

gradient-to-residual replacement: replacing the gradient by the eigen-residual
r(x) = Ax − ρ(x)Bx which differs by a scalar factor 2/xHBx from the gradient
∇ρ(x) = 2

xHBx
[Ax − ρ(x)Bx ];

also normalizing xxxℓ. No theory around as to why we should normalize xxxℓ, beside
that they are some eigenvector approximations.

We made a couple of “arbitrary choices”. Their effects on the rate of convergence are
not clear.

Locally optimal CG eliminates the “arbitrariness” altogether: compute xxxℓ+1 from the
subspace span{xxxℓ−1,xxxℓ, rrr ℓ} by

min
x∈ span{xxxℓ−1,xxxℓ,rrrℓ}

ρ(x),

which is solvable through the Rayleigh-Ritz procedure.



Locally Optimal CG

Locally Optimal CG for Ax = λBx

Given an initial approximation xxx0 to u1, and a relative tolerance rtol, the algorithm
attempts to compute an approximate eigenpair to (λ1, u1) with the prescribed rtol.

1: xxx0 = xxx0/‖xxx0‖B , ρρρ0 = xxxH0 Axxx0, rrr0 = Axxx0 − ρρρ0Bxxx0, xxx−1 = 0;
2: for ℓ = 0, 1, . . . do
3: if ‖rrr ℓ‖2/(‖Axxxℓ‖2 + |ρρρℓ| ‖Bxxxℓ‖2) ≤ rtol then

4: BREAK;
5: else

6: compute a basis matrix Z ∈ Cn×k (k = 2 or 3) of the subspace
span{xxxℓ,xxxℓ−1, rrr ℓ};

7: compute the smallest eigenvalue µ and corresponding eigenvector v of
ZH(A − λB)Z ;

8: y = Zv , xxxℓ+1 = y/‖y‖B ;
9: ρρρℓ+1 = µ, rrr ℓ+1 = Axxxℓ+1 − ρρρℓ+1Bxxxℓ+1;
10: end if

11: end for

12: return (ρρρℓ,xxxℓ) as an approximate eigenpair to (λ1, u1).



Implementation

xxxℓ moves closer and closer to u1; xxxℓ, xxxℓ−1 increasingly move towards being linearly
dependent.

Line 6: Z contaminated more and more by rounding errors. How to mitigate that?

To replace xxxℓ−1 by some yyyℓ := ξℓ,1xxxℓ − ξℓ,2xxxℓ−1 such that

span{xxxℓ,xxxℓ−1, rrrℓ} = span{xxxℓ,yyyℓ, rrrℓ}.

Then same (µ, v) at Line 7. But need to generate yyyℓ+1, given xxxℓ, yyyℓ, rrrℓ.

Z = [z1, z2, z3] is B-orthonormal (by MGS), and z1 = xxxℓ. Then
y = Zv = ν1z1 + ν2z2 + ν3z3 = ν1xxxℓ + ν2z2 + ν3z3.

Set yyyℓ+1 := y − ν1xxxℓ = ‖y‖B xxxℓ+1 − ν1xxxℓ =: ξℓ+1,1xxxℓ+1 − ξℓ+1,2xxxℓ.

Modify Lines 1, 6, and 8 as follows while keeping others the same.

1: xxx0 = xxx0/‖xxx0‖B , ρρρ0 = xxxH0 Axxx0, rrr0 = Axxx0 − ρρρ0Bxxx0, yyy0 = 0;

6: compute a basis matrix Z ∈ Cn×k (k = 2 or 3) of the subspace
span{xxxℓ,yyyℓ, rrr ℓ};

8: y = Zv , xxxℓ+1 = y/‖y‖B , yyyℓ+1 = Zv̂ , where v̂ is v with its 1st entry zeroed;



Convergence

Convergence Theorem for LOCG)

ρρρℓ converges to some eigenvalue λ̂ of A− λB and ‖(A− λ̂B)xxxℓ‖2 → 0 as ℓ → ∞, i.e.,
xxxℓ converges in direction to a corresponding eigenvector.

Same convergence theorem for SD;

For CG, PCG, only ‖(A− λ̂B)xxxℓi ‖2 → 0;

Inclusion of the residual rrrℓ makes the difference.



Improve LOCG

Three ideas for improving SD naturally apply here:

1 Incorporate a preconditioner K : simply modify rrrℓ to Krrrℓ;

2 Extend search space from currently

span{xxxℓ−1}+K2(A− ρℓB,xxxℓ) to span{xxxℓ−1}+Km(A− ρℓB,xxxℓ);

3 Use block X0 ∈ Cn×nb .

The ideas can be applied in any combination (23 = 8 of them): E.g.,

Locally Optimal Preconditioned CG (LOPCG): m = 2, nb = 1, K 6= I ;

Locally Optimal Block Preconditioned CG (LOBPCG): m = 2, nb > 1, K 6= I ;

Locally Optimal Extended CG (LOECG): m > 2, nb = 1, K = I ;

Locally Optimal Preconditioned Extended CG (LOPECG): m > 2, nb = 1,
K 6= I ;

Locally Block Optimal Preconditioned Extended CG (LOBPECG): m > 2,
nb > 1, K 6= I .



Locally Optimal CG

Extended Locally Block Optimal Preconditioned CG

Given an initial approximation X0 ∈ Cn×nb with rank(X0) = nb , and an integer m ≥ 2,
the algorithm attempts to compute approximate eigenpairs to (λj , uj ) for 1 ≤ j ≤ nb .

1: compute the eigen-decomposition: (XH
0 AX0)W = (XH

0 BX0)WΩ0, where

W H(XH
0 BX0)W = I , Ω0 = diag(ρ0;1, ρ0;2, . . . , ρ0;nb );

2: X0 = X0W , and X−1 = 0;
3: for ℓ = 0, 1, . . . do
4: test convergence and lock up the converged (detail as in EBPSD);
5: construct preconditioners Kℓ;j for 1 ≤ j ≤ nb;

6: compute a basis matrix Z ∈ Cn×(m+1)nb of the subspace
nb∑

j=1

Km(Kℓ;j (A− ρℓ;jB), xℓ;j) + R(Xℓ−1);

7: compute the nb smallest eigenvalues and corresponding eigenvectors of
ZH(A− λB)Z to get (ZHAZ)W = (ZHBZ)WΩℓ, where W H(ZHBZ)W = I ,
Ωℓ+1 = diag(ρℓ+1;1, ρℓ+1;2, . . . , ρℓ+1;nb );

8: Xℓ+1 = ZW ;
9: end for

10: return approximate eigenpairs to (λj , uj ) for 1 ≤ j ≤ nb.



Implementation

Three important implementation issues earlier for XBPSD essentially apply here, but
more need to be said about Z at Line 6 here.

Xℓ−1 can be replaced by something else, using the idea earlier for LOCG. Specifically,
Lines 2, 6, and 8 should be modified to

2: X0 = X0W , and Y0 = 0;
6: compute a basis matrix Z ∈ Cn×(m+1)nb of the subspace

nb∑

j=1

Km(Kℓ;j(A − ρℓ;jB), xℓ;j) + R(Yℓ) such that R(Z(:,1:nb)
) = R(Xℓ);

8: Xℓ+1 = ZW , Yℓ+1 = ZŴ , where Ŵ is W with its nb rows zeroed;

For Kℓ;j ≡ Kℓ, Z is basis matrix of (dropping the subscript ℓ)
Km(KR,X ) + R(Y ) = span{X ,KR(X ), . . . , [KR]m−1(X )} + R(Y ).

1 compute a basis matrix [Z1,Z2, . . . ,Zm] for Km(KR,X ) by the Block
Arnoldi-like process in the B-inner product. In particular, Z1 = X .

2 B-orthogonalize Y against [Z1,Z2, . . . ,Zm] to get Zm+1 satisfying
ZH
m+1BZm+1 = I .

3 Z = [Z1,Z2, . . . ,Zm+1].
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Extending Min-Max Principles: Indefinite B

Early Extensions

Positive Semi-definite Pencil



Early Extensions

Min-max principles, Cauchy interlace inequalities are Foundations for optimization
approaches to solve few extreme eigenpairs of A− λB with B ≻ 0.

How far can these theoretical results be extended?

Early extensions (before 1982) of Courant-Fischer min-max princples:

Ax = λx with A � 0 in an indefinite inner product

R. S. Phillips. A minimax characterization for the eigenvalues of a positive symmetric operator in a

space with an indefinite metric. J. Fac. Sci. Univ. Tokyo Sect. I, 17:51–59, 1970.

B. Textorius. Minimaxprinzipe zur Bestimmung der Eigenwerte J-nichtnegativer Operatoren. Math.

Scand., 35:105–114, 1974.

It turns out to be a special case of A− λB with indefinite and nonsingular B.

Hyperbolic Q(λ) = Aλ2 + Bλ+ C :

R. Duffin. A minimax theory for overdamped networks. Indiana Univ. Math. J., 4:221–233, 1955.

More general nonlinear eigenvalue problems:

H. Voss and B. Werner. A minimax principle for nonlinear eigenvalue problems with applications to

nonoverdamped systems. Math. Meth. Appl. Sci., 4:415–424, 1982.

and references therein.

Will focus on A− λB with indefinite B and hyperbolic Q(λ) ...



Hermitian Ax = λBx with Indefinite B

Difficulties:

B is indefinite — Ax = λBx not equivalent to standard
Hermitian eigenvalue problem;

Ax = λBx may have complex eigenvalues — no min-max for
complex eigenvalues;

The case we consider will turn out to have only real

eigenvalues.

A− λB may be a singular pencil: det(A− λB) ≡ 0 for λ ∈ C.
Need a definition for eigenvalues.



History

1 Extending Courant-Fischer for regular Hermitian pencil:

Nonsingular B: Lancaster & Ye (1989), Ye’s thesis (1989), Najman & Ye
(1991), Binding & Ye (1995)
Singular B: Najman & Ye (1993), Binding & Najman & Ye (1999)

Only certain real semi-simple eigenvalues admit a Courant-Fischer type
characterization.

2 Extending trace min for positive semi-definite Hermitian pencil (i.e.,

A− λ0B � 0 for some λ0 ∈ R):

Nonsingular B: Kovač-Striko & Veselić (1995)
(Possibly) singular pencil A− λB: Liang & Li & Bai (2012)

3 Extending Wielandt’s min-max for positive semi-definite Hermitian pencil:

Nonsingular B: Nakić and Veselić (2003) (actually for regular Hermitian A − λB,

but beware of inaccurate/incorrect statements/equations there)

(Possibly) singular pencil A− λB: Liang & Li (2012)

4 Extending trace min for linear response eigenvalue problem: Bai & Li (2011).



Positive Semi-definite Pencil

A = AH, B = BH ∈ Cn×n.

1 Positive semi-definite pencil: A− λ0B � 0 for some λ0 ∈ R;

A− λB will be assumed so hereafter.

2 Finite eigenvalue µ(6= ∞): rank(A− µB) < max
λ∈C

rank(A − λB); This allows

singular pencil A− λB.

3 Eigenvector x : Ax = µBx and x 6∈ N(A) ∩ N(B) and .

4 B’s Inertia (n+, n0, n−): n+ positive, n0 zero, and n− negative eigenvalues,
respectively.

5 Can prove: positive semi-definite pencil A− λB has only

r := rank(B) = n+ + n−

finite eigenvalues all of which are real:

λ−
n−

≤ · · · ≤ λ−
1 ≤ λ0 ≤ λ+

1 ≤ · · · ≤ λ+
n+

.

6 In more detail ...



Canonical Form of Positive Semi-definite Pencil

1 There exists a nonsingular W ∈ C
n×n such that

W
H
AW =




n1 r−n1 n−r

n1 Λ1
r−n1 Λ0
n−r Λ∞


, W

H
BW =




n1 r−n1 n−r

n1 Ω1
r−n1 Ω0
n−r 0


,

Λ1 = diag(s1α1, . . . , sℓαℓ), Ω1 = diag(s1, . . . , sℓ), si = ±1, and Λ1 − λ0Ω1 ≻ 0;
Λ0 = diag(Λ0,1, . . . , Λ0,m+m0

), Ω0 = diag(Ω0,1, . . . , Ω0,m+m0
),

Λ0,i = tiλ0, Ω0,i = ti = ±1, for 1 ≤ i ≤ m,

Λ0,i =

[
0 λ0
λ0 1

]
, Ω0,i =

[
0 1
1 0

]
, for m + 1 ≤ i ≤ m + m0.

There are no such pair (Λ0, Ω0) if A − λ0B ≻ 0.
Λ∞ = diag(αr+1, . . . , αn) � 0 with αi ∈ {1, 0} for r + 1 ≤ i ≤ n.

2 A − λB has n+ + n− finite eigenvalues all of which are real. Denote these finite eigenvalues by λ±
i

and
arrange them

λ
−
n−

≤ · · · ≤ λ
−
1 ≤ λ

+
1 ≤ · · · ≤ λ

+
n+

.

3 {γ ∈ R | A − γB � 0} = [λ−
n−

, λ+
1 ]. Moreover, if A − λB is regular, then A − λB is a positive

definite pencil if and only if λ−
n−

< λ+
1 , in which case {γ ∈ R |A − γB ≻ 0} = (λ−

n−
, λ+

1 ).

(Proof in Liang, Li, & Bai, Linear Algebra and its Applications, 438 (2013), 3085-3106)



Courant-Fischer Type

Courant-Fischer type min-max principle

λ+
i
= sup

codimX=i−1
inf
x∈X

xHBx>0

xHAx

xHBx
, λ+

i
= inf

dimX=i
sup
x∈X

xHBx>0

xHAx

xHBx
for 1 ≤ i ≤ n+,

λ−
i

= inf
codimX=i−1

sup
x∈X

xHBx<0

xHAx

xHBx
, λ−

i
= sup

dimX=i

inf
x∈X

xHBx<0

xHAx

xHBx
for 1 ≤ i ≤ n−.

In particular, λ+
1 = inf

xHBx>0

xHAx

xHBx
, λ−

1 = sup
xHBx<0

xHAx

xHBx
.

Lancaster & Ye (1989), Ye’s thesis (1989) for diagonalizable A− λB and B

nonsingular. (Actually studied A − λB not necessarily positive semi-definite, but then only some of

the eigenvalues can be characterized.)

Najman & Ye (1993), Binding & Najman & Ye (1999) for regular A− λB.
(Actually studied A − λB not necessarily positive semi-definite, but then only some of the real eigenvalues

can be characterized.)

Liang & Li (2012) for allowing singular pencil A− λB.



Trace Min Type

k+ ≤ n+, k− ≤ n−, k := k+ + k− ≥ 1, Jk =

[
Ik+

−Ik−

]
.

Trace minimization principle

inf
X+=[x1,...,xk+

]

X−=[y1,...,yk−
]

X=[X+,X− ],

subject to (8)

trace(XHAX ) =

k+∑

i=1

λ+
i
−

k−∑

i=1

λ−
i
.

either XHBX = Jk , or X
H
+BX+ = Ik+ and XH

−BX− = −Ik− . (8)

A converse: infXHBX=Jk
trace(XHAX ) > −∞ ⇒ A− λB positive semi-definite.

Kovač-Striko & Veselić (1995) for B nonsingular, subject to XHBX = Jk .

Liang & Li & Bai (2012) for allowing singular pencil A− λB.

Unfortunately no Trace Max in general.



Cauchy Type

Eigenvalues of A− λB: λ−
n− ≤ · · · ≤ λ−

1 ≤ λ+
1 ≤ · · · ≤ λ+

n+
.

k+ ≤ n+, k− ≤ n−, k := k+ + k− ≥ 1, Jk =

[
Ik+

−Ik−

]
;

X ∈ Ck×k , XHBX = Jk , or the inertia of XHBX is (k+, 0, k−);

Eigenvalues of XH(A− λB)X : µ−
k−

≤ · · · ≤ µ−
1 ≤ µ+

1 ≤ · · · ≤ µ+
k+

.

Cauchy-type interlacing inequality

λ+
i
≤µ+

i
≤ λ+

i+n−k
, for 1 ≤ i ≤ k+,

λ−
j+n−k

≤µ−
i

≤ λ−
i
, for 1 ≤ j ≤ k−,

where undefined λ+
i
= ∞ for i > n+ and undefined λ−

j
= −∞ for j > n−.

Kovač-Striko & Veselić (1995) for B nonsingular.

Liang & Li & Bai (2012) for allowing singular pencil A− λB.

These results potentially lead to optimization approaches to compute 1st few λ±
i

(these are interior eigenvalues!). See Bai & Li (2011, 2012, 2013 for linear response
eigenvalue problem), Kressner, Pandur, & Shao (2013).



Linear Response Eigenvalue Problem

Background

Basic Theory

Minimization Principles

4D SD and 4D CG type Methods



TD-DFT

DFT, strictly a ground-state theory, cannot be applied to study the excitations
of systems that are involved in Optical Absorption Spectra (OAS) calculations.

Runge and Gross (1984) generalized DFT to Time-Dependent Density
Functional Theory (TD-DFT):

ι
∂

∂t
φi (rrr , t) =

[
− 1

2
∇2 +

∫
n(rrr ′, t)

|rrr − rrr ′| drrr
′ +

δAxc(n(rrr , t))

δn(rrr , t)
+ vext(rrr , t)

︸ ︷︷ ︸
vKS(rrr,t)

]
φi (rrr , t).

Now KS operator depends on time t:

electronic density:n(rrr , t) =

Nv∑

i=1

φi(rrr , t)φ
∗
i (rrr , t).

G. Onida, L. Reining and A. Rubio, Electronic excitations: density-functional versus many-body Green’s

function approaches, Rev. Mod. Phys. 74, 2002, (59 pages).



Weak External Perturbation

DFT: H
GS
KSφi(rrr) ≡

[
−1

2
∇2 + vKS(rrr)

]
φi(rrr) = λiφi (rrr),

vKS(rrr) = vH(rrr) + vxc(rrr) + vext(rrr).

Perturb vext(rrr) slightly to vext(rrr , t) = vext(rrr) + v̊ext(rrr , t), which in turn induce
perturbations to vHxc(rrr) ≡ vH(rrr) + vxc(rrr):

vHxc(rrr , t) = vHxc(rrr) + v̊Hxc(rrr , t).

TD-DFT: ι
∂

∂t
φi(rrr , t) = HKS(t)φi (rrr , t) ≡

[
−1

2
∇2 + vKS(rrr , t)

]
φi(rrr , t),

HKS(t) = −
1

2
∇2 + vH(rrr , t) + vxc(rrr , t) + vext(rrr , t)

= H
GS
KS + v̊Hxc(rrr , t) + v̊ext(rrr , t).



Linear Response Theory

Seek information on first order change in n(rrr , t) = n(rrr) + n̊(rrr , t):

φi (rrr , t) = φi (rrr) + φ̊i(rrr , t),

n(rrr , t) ≡ n(rrr) + n̊(rrr , t)

= n(rrr) +

Nv∑

i=1

[
φ̊∗
i (rrr , t)φi (rrr) + φ∗

i (rrr)φ̊i (rrr , t)
]
.

Better to explain using the single-particle density matrix which reads

ρ(rrr , t) =

Nv∑

i=1

|φi(rrr , t)〉 〈φi (rrr , t)| = ρ(rrr) + ρ̊(rrr , t),

ρ(rrr) =

Nv∑

i=1

|φi(rrr)〉 〈φi(rrr)| ,

ρ̊(rrr , t) =

Nv∑

i=1

(∣∣∣φ̊i (rrr , t)
〉
〈φi (rrr)|+ |φi (rrr)〉

〈
φ̊i(rrr , t)

∣∣∣
)
.

(For Dirac Bra-ket notation, google bra-ket.)



Linear Response Theory

Differentiate ρ(rrr , t) with respect to t to get

ι
∂

∂t
ρ(rrr , t) =

Nv∑

i=1

[HKS(t) |φi(rrr , t)〉 〈φi(rrr , t)| − |φi (rrr , t)〉 〈φi (rrr , t)|HKS(t)]

= [HKS(t), ρ(rrr , t)] .

Substitute HKS(t) = HGS
KS + v̊Hxc(rrr , t) + v̊ext(rrr , t) and ρ(rrr , t) = ρ(rrr) + ρ̊(rrr , t) to

get

ι
∂

∂t
ρ̊(rrr , t) =

[
H

GS
KS , ρ̊(rrr , t)

]
+ [̊vHxc(rrr , t), ρ(rrr)] + [v̊ext(rrr , t), ρ(rrr)]

= Lρ̊(rrr , t) + [̊vext(rrr , t), ρ(rrr)] ,

where L is the Liouvillian super-operator :

Lρ̊(rrr , t) :=
[
H

GS
KS , ρ̊(rrr , t)

]
+ [̊vHxc(rrr , t), ρ(rrr)] .



Linear Response Theory

ι
∂

∂t
ρ̊(rrr , t) =

[
H

GS
KS , ρ̊(rrr , t)

]
+ [̊vHxc(rrr , t), ρ(rrr)] + [v̊ext(rrr , t), ρ(rrr)]

= Lρ̊(rrr , t) + [̊vext(rrr , t), ρ(rrr)] ,

Apply the Fourier transformation to get

ωρ̊(rrr , ω) =
[
H

GS
KS , ρ̊(rrr , ω)

]
+ [̊vHxc(rrr , ω), ρ(rrr)] + [v̊ext(rrr , ω), ρ(rrr)] ,

= Lρ̊(rrr , ω) + [v̊ext(rrr , ω), ρ(rrr)] ,

where Lρ̊(rrr , ω) =
[
HGS

KS , ρ̊(rrr , ω)
]
+ [̊vHxc(rrr , ω), ρ(rrr)]. Therefore

(ω − L)ρ̊(rrr , ω) = [̊vext(rrr , ω), ρ(rrr)] .

Set v̊ext(rrr , ω) = 0 ⇒ an eigenvalue problem; the smallest positive eigenvalues
and associated eigenvectors give excitation states.



Matrix representation of L

Can show:

ρ̊(rrr, t) =




R(φ1(r)) · · · R(φNv
(r)) N(ρ(rrr))

R(φ1(r)) 0 · · · 0
〈
φ̊1(rrr, t)

∣∣∣ ρ⊥(rrr)

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
R(φNv

(r)) 0 · · · 0
〈
φ̊Nv

(rrr, t)
∣∣∣ρ⊥(rrr)

N(ρ(rrr)) ρ⊥(rrr)
∣∣∣φ̊1(rrr, t)

〉
· · · ρ⊥(rrr)

∣∣∣φ̊Nv
(rrr, t)

〉
0




.

Hence basis functions of the “vector space” of all possible ρ̊(rrr , t)

xi (rrr , t) = ρ⊥(rrr)
∣∣∣φ̊i(rrr , t)

〉
, yi (rrr , t) =

〈
φ̊i(rrr , t)

∣∣∣ ρ⊥(rrr).

In the frequency space:

ρ̊(rrr, ω) =




R(φ1(r)) · · · R(φNv
(r)) N(ρ(rrr))

R(φ1(r)) 0 · · · 0 y1(rrr, ω)

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
R(φNv

(r)) 0 · · · 0 yNv (rrr, ω)

N(ρ(rrr)) x1(rrr, ω) · · · xNv (rrr , ω) 0




.



Matrix representation of L

L




x1(rrr , ω)
...

xNv (rrr , ω)
y1(rrr , ω)

...
yNv (rrr , ω)




=

(
D+K K

−K −D−K

)




x1(rrr , ω)
...

xNv (rrr , ω)
y1(rrr , ω)

...
yNv (rrr , ω)




,

D = diag
(
ρ⊥(rrr)HGS

KSρ
⊥(rrr)− ǫ1, . . . , ρ

⊥(rrr)HGS
KSρ

⊥(rrr)− ǫNv

)
,

K




z1(rrr)
...

zNv (rrr)


 =




Nv∑

i=1

ρ⊥(rrr)

∫
κ(rrr , rrr ′)φi(rrr

′) zi (rrr
′) drrr ′ |φ1(rrr)〉

...
Nv∑

i=1

ρ⊥(rrr)

∫
κ(rrr , rrr ′)φi(rrr

′) zi (rrr
′) drrr ′ |φNv (rrr)〉




.



Linear Response Eigenvalue Problem

First several smallest positive eigenvalues and corresponding eigenvectors of

H

[
u

v

]
≡

[
A B

−B −A

] [
u

v

]
= λ

[
u

v

]
,

A
T = A, BT = B ∈ R

n×n,

[
A B

B A

]
≻ 0.

Equivalently, Hz = λz :

J =
1√
2

[
In In
In −In

]
, J

T
J = J

2 = I2n,

J
T

[
A B

−B −A

]
J =

[
0 A− B

A+ B 0

]
=:

[
0 K

M 0

]
=: H.

K = A− B ≻ 0, M = A+ B ≻ 0.

H non-symmetric, but rich structure to take advantage of.
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Linear Response Eigenvalue Problem

First several smallest positive eigenvalues, eigenvectors of

H

[
u

v

]
≡

[
A B

−B −A

] [
u

v

]
= λ

[
u

v

]
,

AT = A, BT = B ∈ R
n×n,

[
A B

B A

]
positive definite.

J =
1√
2

[
In In
In −In

]
, JTJ = J2 = I2n,

JT
[

A B

−B −A

]
J =

[
0 A− B

A+ B 0

]
=:

[
0 K

M 0

]
=: H.

K = A− B , M = A+ B ∈ R
n×n definite because

JT
[
A B

B A

]
J =

[
A+ B 0

0 A− B

]
≡

[
M

K

]
.



Equivalent Forms

Eigenvalue problem for H – original LR:

H

[
u

v

]
≡

[
A B

−B −A

] [
u

v

]
= λ

[
u

v

]
,

Eigenvalue problem for H – transformed LR:

Hz ≡
[
0 K

M 0

] [
y

x

]
= λ

[
y

x

]
≡ λz ,

Eigenvalue Problems for H and H equivalent:

Same eigenvalues, and

Eigenvectors related by

[
y

x

]
= JT

[
u

v

]
,

[
u

v

]
= J

[
y

x

]



Basics

Problem. H =

[
0 K

M 0

]
, 0 ≺ KT = K , 0 ≺ MT = M ∈ R

n×n.

KM and MK have positive eigenvalues:

0 < λ2
1 ≤ λ2

2 ≤ · · · ≤ λ2
n,

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn, because

eig(KM) = eig(K 1/2K 1/2M) = eig(K 1/2MK 1/2).

H2 =

[
KM 0
0 MK

]
⇒ H has eigenvalues

−λn ≤ · · · ≤ −λ1 < +λ1 ≤ · · · ≤ +λn.



Eigendecomposition

∃ X = Y−T ∈ R
n×n such that

K = YΛ2Y T, M = XXT, Λ = diag(λ1, λ2, . . . , λn).

Critically important later.

Proof.

1) Cholesky decomposition: M−1 = RTR .
2) Eigendecomposition: R−TKR−1 = QΛ2QT, QTQ = In.
3) Finally Y = RTQ, X = Y−T.

H is diagonalizable with Eigendecomposition:

H

[
YΛ YΛ

X −X

]
=

[
YΛ YΛ

X −X

] [
Λ

−Λ

]
.



Thouless’ Minimization Principle

Eigenvalue problem for H : special case of Hamiltonian eigenvalue

problem.

Eigenvalues appear in ±λ pairs:

−λn ≤ · · · ≤ −λ1 < +λ1 ≤ · · · ≤ +λn.

Thouless’ Minimization Principle (1961):

λ1 = min
u,v

̺(u, v), ̺(u, v) =

[
u

v

]T [
A B

B A

] [
u

v

]

|uTu − vTv | .

Many of today’s minimization approaches for computing λ1 are
results of this principle.



Thouless’ Minimization Principle

Use

[
y

x

]
= JT

[
u

v

]
,

[
u

v

]
= J

[
y

x

]
to get

Thouless’ Minimization Principle (in different form)

λ1 = min
x,y

ρ(x , y), ρ(x , y)
def
=

xTKx + yTMy

2|xTy | .

Will call both ̺(u, v) and ρ(x , y) Thouless’ Functional.

Proof.

Recall K = YΛ2Y T, M = XXT, and X = Y−T. We have

min
x,y

xTKx + yTMy

2|xTy | = min
x,y

xTYΛ2Y Tx + yTY− TY−1y

2|xTYY−1y |

= min
x̃,ỹ

x̃TΛ2x̃ + ỹTỹ

2|x̃Tỹ |

≥ min
x̃,ỹ

2
∑

i
λi |x̃(i)ỹ(i)|

2|∑i x̃(i)ỹ(i)|
≥ λ1.

Careful analysis ⇒ equality signs realizable, and optimal argument pair
produces eigenvector.



Previous Work - summary

Four decades’ researches by computational (quantum) physicists and chemists and
numerical analysts.

Following three eigenvalue problems are equivalent:

Hz ≡
[
0 K

M 0

] [
y

x

]
= λ

[
y

x

]
≡ λz , (Eig-H)

KMy = λ2y , (Eig-KM)

MKx = λ2x . (Eig-MK)
By computational (quantum) physicists and chemists:

Chi (1970): solve (Eig-KM) through Symmetric Eigenvalue Problem (SEP)
RKRT, where M = RTR (Cholesky decomposition).

Davidson-type algorithms (1980s & 1990s), Lanczos-like algorithms (1990s &
2000s)

CG-like algorithms (more recently, based on Thouless’ principle)

By numerical analysts:

Wilkinson (1960s) discussed (Eig-KM) and (Eig-MK). Implemented as LAPACK
xSYGVD

GR algorithm for product eigenvalue problems, generalizing well-known QR
algorithm (Watkins, Kressner)

Krylov-Schur, Jacobi-Davidson, Hamiltonian Krylov-Schur-type, symplectic
Lanczos, ...



Previous Work & What to Come

Trend. Huge size – n in the order 106 or larger; pose tremendous
challenge.

Despite four decades’ researches, it is still challenging to robustly
and efficiently compute first several positive eigenvalues and
eigenvectors.

To come:

New theory for H that parallels Symmetric Eigenvalue
Problem (SEP)

New algorithms capable of computing first several positive
eigenvalues and eigenvectors simultaneously.



Deflating Subspaces

U,V ⊆ Rn, subspaces. Call {U,V} a pair of deflating subspaces of {K ,M} if

KU ⊆ V and MV ⊆ U.

Let U ∈ Rn×k , V ∈ Rn×k , basis matrices for U and V, resp.

∃ KR,MR ∈ Rk×k such that

KU = VKR, MV = UMR.

In fact, for left generalized inverses U⊣, V⊣ of U, V , resp.,

KR = V⊣KU, MR = U⊣MV .
For example, U⊣U = I for

U⊣ = (UTU)−1UT, but we prefer

U⊣ = (V TU)−1V T if (V TU)−1 exists.



Basics: Deflating Subspaces

KU = VKR, MV = UMR ⇒
[
0 K

M 0

] [
V

U

]
=

[
V

U

] [
0 KR

MR 0

]

HR =

[
0 KR

MR 0

]
is a restriction of H onto V⊕ U.

HR same block structure as H; but lose symmetry in K , M.

Suppose W
def
= UTV nonsingular. Factorize W = W T

1 W2, where Wi

nonsingular. Define

HSR =

[
0 W−T

1 UTKUW−1
1

W−T
2 V TMVW−1

2 0

]
,

another restriction of H onto V⊕ U, too:

H

[
VW−1

2

UW−1
1

]
=

[
VW−1

2

UW−1
1

]
HSR.

HSR same block structure as H and retain symmetry in K , M. Major role to
come.



Trace Minimization Principle

Trace Minimization Principle

k∑

i=1

λi =
1

2
min

UTV=Ik

trace(UTKU + V TMV ).

If λk < λk+1, optimal {span(U), span(V )} gives deflating
subspaces of {K ,M} corresponding to ±λi , 1 ≤ i ≤ k .

Quite similar to the Trace Minimization Principle for Symmetric
Eigenvalue Problem (SEP) discussed earlier.

A lengthy proof can be found in

Zhaojun Bai and Ren-Cang Li. Minimization principle for linear
response eigenvalue problem, I: Theory. SIAM J. Matrix Anal.

Appl., 33(4):1075–1100, 2012.



Cauchy-like Interlacing Inequalities

Cauchy-like Interlacing Inequalities

U,V ∈ R
n×k ; W = UTV nonsingular; W = W T

1 W2, Wi ∈ R
k×k nonsingular;

U = span(U), V = span(V ); Eigenvalues of

HSR =

[
0 W−T

1 UTKUW−1
1

W−T
2 V TMVW−1

2 0

]
.

are ±µi (1 ≤ i ≤ k), where 0 ≤ µ1 ≤ · · · ≤ µk . Then for 1 ≤ i ≤ k

λi ≤ µi ≤ min

{
λi+2(n−k),

√
min{κ(K), κ(M)}
cos∠(U,V)

λi+n−k

}
,

where λj =∞ for j > n. If either U = MV or V = KU, then
λi ≤ µi ≤ λi+n−k .

Quite similar to the Cauchy Interlacing Inequalities for Symmetric Eigenvalue
Problem (SEP) discussed earlier.

A lengthy proof can be found in Bai and Li (2012) mentioned in the previous
slide.



Best Approximation

Seeking “best possible” approximations from the suitably built subspaces.

Given {U,V}, a pair of subspaces, dim(U) = dim(V) = nb.

Minimization principles motivate us to seek

the best approximation to λ1 in the sense of

min
x∈U, y∈V

ρ(x , y)

and its associated approximate eigenvector;

the best approximations to λj (1 ≤ j ≤ k) in the sense of

1

2
min

span(Û)⊆U,span(V̂ )⊆V

ÛT V̂=Ik

trace(ÛTKÛ + V̂ TMV̂ )

and their associated approximate eigenvectors. Necessarily k ≤ nb.



Best Approximation: λ1

U, V ∈ R
n×nb , basis matrices of U and V. Assume W = UTV nonsingular.

Factorize W = W T
1 W2, Wi ∈ R

nb×nb nonsingular.

x ∈ U, y ∈ V ⇔ x = Uû, y = V v̂ for û, v̂ ∈ R
nb .

ρ(x , y) =
xTKx + yTMy

2|xTy | =
ûTUTKUû + v̂TV TMV v̂

2|ûTWv̂ |

=
x̂TW−T

1 UTKUW−1
1 x̂ + ŷTW−T

2 V TMVW−1
2 ŷ

2|x̂T ŷ | ,

where x̂ = W1û and ŷ = W2v̂ .

min
x∈U, y∈V

ρ(x , y) = min
x̂,ŷ

x̂TW−T
1 UTKUW−1

1 x̂ + ŷTW−T
2 V TMVW−1

2 ŷ

2|x̂T ŷ |
which is the smallest positive eigenvalue of

HSR =

[
0 W−T

1 UTKUW−1
1

W−T
2 V TMVW−1

2 0

]
.



Best Approximation: λj (1 ≤ j ≤ k)

{
span(Û) ⊆ U, span(V̂ ) ⊆ V,

ÛTV̂ = Ik

}
⇔

{
Û = UW−1

1 X̂ , V̂ = VW−1
2 Ŷ ,

X̂ , Ŷ ∈ R
nb×k , X̂TŶ = Ik

}

Û
T
KÛ + V̂

T
MV̂ = X̂

T
W

−T
1 U

T
KUW

−1
1 X̂ + Ŷ

T
W

−T
2 V

T
MVW

−1
2 Ŷ .

min
span(Û)⊆U,span(V̂ )⊆V

ÛT V̂=Ik

trace(ÛT
KÛ + V̂

T
MV̂ )

= min
X̂TŶ=Ik

trace(X̂T
W

−T
1 U

T
KUW

−1
1 X̂ + Ŷ

T
W

−T
2 V

T
MVW

−1
2 Ŷ ).

which is the sum of 1st k smallest positive eigenvalue of

HSR =

[
0 W−T

1 UTKUW−1
1

W−T
2 V TMVW−1

2 0

]
.



Best Approximation: Eigenvectors

Positive eigenvalues of HSR: 0 ≤ ρ1 ≤ · · · ≤ ρnb . Associated eigenvectors ẑj .

HSRẑj = ρj ẑj , ẑj =

[
ŷj
x̂j

]
.

Then ρ(UW−1
1 x̂j ,VW

−1
2 ŷj ) = ρj for j = 1, . . . , nb.

Naturally, take λj ≈ ρj , and corresponding approximate eigenvectors of H:

z̃j ≡
[
ỹj
x̃j

]
=

[
VW−1

2 ŷj
UW−1

1 x̂j

]
for j = 1, . . . , nb.

What if UTV is singular? Still can do, just more complicated

Zhaojun Bai and Ren-Cang Li. Minimization principle for linear response
eigenvalue problem, II: Computation. SIAM J. Matrix Anal. Appl.,
34(2):392–416, 2013.



Gradients

Perturb x , y to x̂ = x + p, ŷ = y + q, p and q tiny . Assume xTy 6= 0.

Up to the first order in p and q,

ρ(x̂ , ŷ) =
(x + p)TK(x + p) + (y + q)TM(y + q)

2|(x + p)T(y + q)|

=
xTKx + 2pTKx + yTMy + 2qTMy

2|xTy + pTy + qTx |

=
xTKx + 2pTKx + yTMy + 2qTMy

2 |xTy |

[
1− pTy + qTx

xTy

]

= ρ(x , y) +
1

xTy
p
T [Kx − ρ(x , y) y ] +

1

xTy
q
T [My − ρ(x , y) x] .

Partial gradients: ∇xρ =
1

xTy
[Kx − ρ(x , y) y ] , ∇yρ =

1

xTy
[My − ρ(x , y) x] .

Closely related to residual:

Hz − ρ(x , y)z ≡
[
0 K

M 0

] [
y

x

]
− ρ(x , y)

[
y

x

]
= x

T
y

[
∇xρ
∇yρ

]
.



4-D Search

Interested in solving min
x,y

ρ(x , y) = min
x,y

xTKx + yTMy

2|xTy | to compute λ1.

Standard line search: Given current position

[
y

x

]
, search direction

[
q

p

]
, seek to

minimize ρ along line {[
y

x

]
+ t

[
q

p

]
: t ∈ R

}

Doable via Calculus. But not flexible enough to have subspace extensions.

We will do differently.

Minimize ρ within the 4-dimensional subspace

{[
βy + tq

αx + sp

]
for all scalars α, β, s, and t

}

to get
min

α,β,s,t
ρ(αx + sp, βy + tq) = min

u∈span(U), v∈span(V )
ρ(u, v),

where U = [x , p] and V = [y , q]. Returned to Best Approximation.



4-D Search

Naturally take [
q

p

]
=

[
∇yρ
∇xρ

]
,

as in the standard steepest descent (SD) algorithm.

Lead to plain 4-D SD algorithm for H

Can design block versions for computing several eigenpairs

Can incorporate pre-conditioners

All can be viewed as variants of locally optimal 4-D CG algorithms which we
will discuss.



Locally Optimal 4-D CG

Notation: ℓ iteration index; j eigenpair index.
Standard: search next approximations within

span

{[
y
(ℓ)
j

x
(ℓ)
j

]
,

[
y
(ℓ−1)
j

x
(ℓ−1)
j

]
,

[
qj
pj

]
, j = 1 : k

}
,

where [
qj
pj

]
= Φ

[
∇xρ
∇yρ

]∣∣∣∣
(x,y)=(x

(ℓ)
j

,y
(ℓ)
j

)

,

and Φ is a preconditioner to be discussed later.

We do differently: search next approximations within

span

{[
y
(ℓ)
j

0

]
,

[
y
(ℓ−1)
j

0

]
,

[
qj
0

]
,

[
0

x
(ℓ)
j

]
,

[
0

x
(ℓ−1)
j

]
,

[
0
pj

]
j = 1 : k

}
.

Breaking vectors into two this way is a common technique today in developing structure-preserving alg.:

Kevin J. Kerns and Andrew T. Yang. Preservation of passivity during RLC network reduction via split

congruence transformations. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
17(7):582–591, July 1998.

R. W. Freund. SPRIM: Structure-preserving reduced-order interconnect macromodeling. In Proc. Int. Conf.

Computer Aided Design, pages 80–87, Nov. 2004.

Ren-Cang Li and Zhaojun Bai. Structure-preserving model reductions using a Krylov subspace projection

formulation. Commun. Math. Sciences, 3(2):179–199, 2005.



Locally Optimal Block Preconditioned 4-D CG

Locally Optimal Block Preconditioned 4-D CG

Given an initial approximation Z0 = [XT
0 ,Y T

0 ]T ∈ C
2n×nb with

rank(X0) = rank(Y0) = nb, the algorithm attempts to compute approximate
eigenpair to (λj , zj ) for 1 ≤ j ≤ nb.

1: If jth column of Z0 isn’t an approximation to zj already, compute initial
approximation with {U,V} := {R(X0),R(Y0)} to give a new Z0;

2: for ℓ = 0, 1, . . . do
3: test convergence and lock up the converged (to discuss later)
4: construct a preconditioner Φℓ;

5:

[
Qℓ

Pℓ

]
← Φℓ

[
KXℓ − Yℓ Ωℓ

MYℓ − Xℓ Ωℓ)

]
, where Ωℓ = diag(ρℓ;j);

6: U = (Xℓ,Xℓ−1,Pℓ), V = (Yℓ,Yℓ−1,Qℓ) (drop Xℓ−1 and Yℓ−1 for ℓ = 0);
7: orthogonalize the columns of U and V and decompose

W = UTV = W T
1 W2;

8: construct HSR (assume W is nonsingular);
9: compute nb smallest positive eigenvalues ρℓ+1;j of HSR, and associated

eigenvectors ẑj ;

10: Zℓ+1 :=

[
Yℓ+1

Xℓ+1

]
=

[
VW−1

2 [ŷ1, . . . , ŷk ]
UW−1

1 [x̂1, . . . , x̂k ]

]
(normalize each column).

11: end for

12: return approximate eigenpairs to (λj , zj ) for 1 ≤ j ≤ nb.



Generic Pre-conditioner

For convenience, drop iteration index ℓ.

To compute eigenvalues close to µ: Φ = (H − µI2n)
−1, and

[
Q

P

]
= ΦR, R = HZ − ZΩ =

[
KX − Y Ω
MY − X Ω

]
,

one step of the inverse power iteration on the residual.

Interested in the smallest positive eigenvalues, naturally µ = 0:

ΦR =

[
0 M−1

K−1 0

]
R =

[
M−1[MY − X diag(ρj )]
K−1[KX − Y diag(ρj)]

]
.

Both P and Q computable (column-by-column) by (linear) CG.

In general for µ 6= 0, multiplying by Φ involves solving linear system:
(H − µI2n)z = b. Next slides consider this for 0 < µ < λ1.



Generic Pre-conditioner: (H − µI2n)z = b

Can verify
[
I 0
M µI

]
(H − µI ) =

[
I 0
M µI

] [
−µI K

M −µI

]
=

[
−µI K

0 MK − µ2I

]

to get

(H − µI2n)
−1 =

[
−µI K

0 MK − µ2I

]−1 [
I 0
M µI

]

Write b =

[
b1
b2

]
and z =

[
y

x

]
. (H − µI2n)z = b can be solved as

solve (MK − µ2I )x = Mb1 − µb2 for x , and then y = 1
−µ

(b1 − Kx).

Remain to solve (MK − µ2I )x = c efficiently. Write A = MK − µ2I , and
symbolically

A = M
1/2 (M1/2

KM
1/2 − µ2

I )︸ ︷︷ ︸
=:Â

M
−1/2 = M

1/2
ÂM

−1/2

Ax = c is equivalent to M1/2ÂM−1/2x = c ⇔ ÂM
−1/2

x︸ ︷︷ ︸
=:x̂

= M
−1/2

c︸ ︷︷ ︸
=:ĉ

.

Â is SPD because 0 < µ < λ1. Can apply linear CG to Âx̂ = ĉ symbolically
first and then translate to Ax = c.



Ax ≡ (MK − µ2I )x = c

Transform to Âx̂ = ĉ, Â = M−1/2AM1/2, x̂ = M−1/2x , ĉ = M−1/2x .

Linear CG to Âx̂ = ĉ : r̂0 = Âx̂0 − ĉ, p̂0 = −r̂0, and for i ≥ 0

x̂i+1 = x̂i + αi p̂i , r̂i+1 = r̂i + αi Âp̂i , p̂i+1 = −r̂i+1 + βi p̂i

where αi = −
p̂T
i r̂i

p̂T
i Âp̂i

=
r̂Ti r̂i

p̂T
i Âp̂i

, βi =
p̂T
i Âr̂i+1

p̂T
i Âp̂i

=
r̂Ti+1 r̂i+1

r̂Ti r̂i
.

To convert them back to x-space (so-to-speak): Note

r̂ := Âx̂ − ĉ = M−1/2(Ax − c) =: M−1/2r . So M1/2p̂0 = −r0, and for i ≥ 0,

xi+1 = xi +αiM
1/2

p̂i , ri+1 = ri +αiAM
1/2

p̂i , M
1/2

p̂i+1 = −ri+1 + βiM
1/2

p̂i .

Two possible choices for p-vectors (drop subscripts):

p = M
1/2

p̂ (natural),

p = M
−1/2

p̂ (not-so-natural).

Difference in new formulas for αi and βi .



CG(I) for Ax ≡ (MK − µ2I )x = c

Take p = M1/2p̂ (natural). Already r̂ = M−1/2r , Â = M−1/2AM1/2. So

p̂
T
r̂ = p

T
M

−1
r , p̂

T
Âp̂ = p

T
M

−1
Ap, r̂

T
r̂ = r

T
M

−1
r , p̂

T
Âr̂ = p

T
M

−1
Ar .

Therefore

αi = − pT
i M

−1ri

pT
i M

−1Api
=

rTi M−1ri

pT
i M

−1Api
, βi =

pT
i M

−1Ari+1

pT
i M

−1Api
=

rTi+1M
−1ri+1

rTi M−1ri
.

CG(I) for Ax ≡ (MK − µ2I )x = c

Given an initial approximation x0, a relative tolerance rtol, the algorithm
solves Ax ≡ (MK − µ2I )x = c.
1: r0 = Ax0 − c, p0 = −r0;
2: for i = 0, 1, . . . do
3: qi = M−1pi by (linear) CG;
4: αi = −(qT

i ri )/(q
T
i Api ), xi+1 = xi + αipi , ri+1 = ri + αiApi ;

5: if ‖ri+1‖1/‖c‖1 ≤ rtol, BREAK;
6: βi = (qT

i Ari+1)/(q
T
i Api ), pi+1 = −ri+1 + βipi ;

7: end for

8: return last xi as an approximate solution.



CG(II) for Ax ≡ (MK − µ2I )x = c

Take p = M−1/2p̂ (not-so-natural). Already r̂ = M−1/2r , Â = M−1/2AM1/2.
So

p̂
T
r̂ = p

T
r , p̂

T
Âp̂ = p

T
AMp, r̂

T
r̂ = r

T
M

−1
r , p̂

T
Âr̂ = p

T
Ar .

Therefore

αi = − pT
i ri

pT
i AMpi

=
rTi M−1ri

pT
i AMpi

, βi =
pT
i Ari+1

pT
i AMpi

=
rTi+1M

−1ri+1

rTi M−1ri
. (9)

CG(II) for Ax ≡ (MK − µ2I )x = c

Given an initial approximation x0, a relative tolerance rtol, the algorithm
solves Ax ≡ (MK − µ2I )x = c.

1: r0 = Ax0 − c, q0 = M−1r0 (by linear CG), p0 = −q0;
2: for i = 0, 1, . . . do
3: compute αi by (9), xi+1 = xi + αipi , ri+1 = ri + αiAMpi ;
4: if ‖ri+1‖1/‖c‖1 ≤ rtol, BREAK;
5: qi+1 = M−1ri+1 by (linear) CG;
6: compute βi by (9), pi+1 = −qi+1 + βipi ;
7: end for

8: return last xi as an approximate solution.



Discussion

Both CG require solving Mq = p in the inner iteration.

Another alternative is to rewrite symbolically

A = K
−1/2 (K 1/2

MK
1/2 − µ2

I )︸ ︷︷ ︸
=:Â

K
1/2 = K

−1/2
ÂK

1/2

Ax = c is equivalent to K−1/2ÂK 1/2x = c ⇔ Â K
1/2

x︸ ︷︷ ︸
=:x̂

= K
1/2

c︸ ︷︷ ︸
=:ĉ

.

Â is SPD because 0 < µ < λ1. Can apply linear CG to Âx̂ = ĉ symbolically
first and then translate to Ax = c.

Detail is omitted.



Convergence, Deflation (lock)

(ρℓ;j , zℓ;j) is considered acceptable if
‖Hzℓ;j − ρℓ;jzℓ;j‖2

‖Hzℓ;j‖2 + |ρℓ;j | ‖zℓ;j‖2
≤ rtol.

Usually λj are converged to in order, i.e., the smallest eigenvalues emerge first.

Lock all acceptable approximate eigenpairs in kcvgd × kcvgd diagonal matrix DDD for
eigenvalues and 2n × kcvgd tall matrix ZZZ for eigenvectors.

Every time a converged eigenpair is detected, delete the converged ρℓ;j and zℓ;j from
Ωℓ and Zℓ, respectively, and expand DDD and ZZZ to lock up the pair, accordingly.

At the same time, either reduce nb by 1 or append a new column to Z to maintain nb
unchanged. The latter can be done by computing more than nb eigenpairs at Line 9.

Deflate to avoid recomputing converged eigenpairs: Write ZZZ =

[
YYY

XXX

]
and suppose

XXXTYYY = Ikcvgd .

Modify K and M in form, but not explicitly, to K + ζYYYYYY T and M + ζXXXXXXT ,
where ζ should be selected such that ζ + λ1 ≥ λkcvgd+nb+1. Here we pre-assume

the kcvgd converged eigenpairs are indeed those for (λj , zj ) for 1 ≤ j ≤ kcvgd.
This is usually so, but with no guarantee, of course.



Hyperbolic Quadratic Eigenvalue Problem

Basics

Rayleight Quotients

Min-Max Principles

SD and CG type Method



Hyperbolic Q(λ) = Aλ2 + Bλ+ C : Basics

0 ≺ A = AH ∈ Cn×n, and B = BH, C = CH ∈ Cn×n.

Q(λ) is hyperbolic if

(xHBx)2 − 4(xHAx)(xHCx) > 0 for 0 6= x ∈ Cn.

This type Q arises, e.g., from dynamical systems that are overly damped.

Quadratic Eigenvalue Problem (QEP):

find λ ∈ C, 0 6= x ∈ Cn such that Q(λ)x = 0.

λ: quadratic eigenvalue; x : quadratic eigenvector.

All quadratic eigenvalues of hyperbolic Q(λ) are real:

λ−
n ≤ · · · ≤ λ−

1 < λ+
1 ≤ · · · ≤ λ+

n .



Basics (cont’d)

For more basic properties of Hyperbolic QEP, see

C.-H. Guo and P. Lancaster. Algorithms for hyperbolic quadratic eigenvalue
problems. Math. Comp., 74:1777–1791, 2005.

Nicholas J. Higham, Françoise Tisseur, and Paul M. Van Dooren. Detecting a
definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem,
and associated nearness problems. Linear Algebra Appl., 351-352:455–474, 2002.

A.S. Markus. Introduction to the spectral theory of polynomial operator pencils.
Translations of mathematical monographs, vol. 71. AMS, Providence, RI, 1988.



Rayleigh Quotients

Given x 6= 0, consider

f (λ, x) := xHQ(λ)x = λ2(xHAx) + λ(xHBx) + (xHCx) = 0.

Always has two distinct real roots (as functions of x)

ρ±(x) =
−(xHBx)±

[
(xHBx)2 − 4(xHAx)(xHCx)

]1/2

2(xHAx)
.

Can show

ρ+(x) ∈ [λ+
1 , λ

+
n ], ρ−(x) ∈ [λ−

n , λ
−
1 ].

Reasonable to define ρ±(x) as the Rayleigh quotients for the
problem.



Courant-Fischer Type

Courant-Fischer type min-max principle (Duffin, 1955)

λ+
i
= max

codimX=i−1
min
x∈X

ρ+(x), λ+
i
= min

dimX=i
max
x∈X

ρ+(x),

λ−
i

= min
codimX=i−1

max
x∈X

ρ−(x), λ−
i

= max
dimX=i

min
x∈X

ρ−(x).

In particular,

λ+
1 = min

x
ρ+(x), λ+

n = max
x

ρ+(x),

λ−
n = min

x
ρ−(x), λ−

1 = max
x

ρ−(x).

Duffin (1955) (though stated for hyperbolic Q with B ≻ 0, C ≻ 0, Duffin’s proof works for the

general hyperbolic case.)

Also Markus (1988) (mostly about hyperbolic matrix polynomial of any degree),
Voss (1982) (about certain nonlinear Q).



Trace Min/Max Type (Liang & Li, 2013)

Q(λ) = Aλ2 + Bλ + C hyperbolic. Its quadratic eigenvalues:

λ−
n ≤ · · · ≤ λ−

1 < λ+
1 ≤ · · · ≤ λ+

n .

k ≤ n, X ∈ Cn×k , rank(X ) = k. XHQ(λ)X also hyperbolic.

Quadratic eigenvalues of XHQ(λ)X :

λ−
k,X ≤ · · · ≤ λ−

1,X ≤ λ+
1,X ≤ · · · ≤ λ+

k,X .

Trace Min/Max type principle

inf
rank(X )=k

k∑

j=1

λ+
j,X =

k∑

j=1

λ+
j
, sup

rank(X )=k

k∑

j=1

λ+
j,X =

k∑

j=1

λ+
n−k+j

,

sup
rank(X )=k

k∑

j=1

λ−
j,X =

k∑

j=1

λ−
j
, inf

rank(X )=k

k∑

j=1

λ−
j,X =

k∑

j=1

λ−
n−k+j

.

Corollary of a more general Wielandt type max/max principle (Liang & Li, 2013).



Cauchy Type

Q(λ) = Aλ2 + Bλ + C hyperbolic. Its quadratic eigenvalues:

λ−
n ≤ · · · ≤ λ−

1 < λ+
1 ≤ · · · ≤ λ+

n .

k ≤ n; X ∈ Ck×k , rank(X ) = k;

Quadratic eigenvalues of XHQ(λ)X :

µ−
k

≤ · · · ≤ µ−
1 < µ+

1 ≤ · · · ≤ µ+
k
.

Cauchy-type interlacing inequality

λ+
i
≤ µ+

i
≤ λ+

i+n−k
, i = 1, · · · , k,

λ−
j+n−k

≤ µ−
j

≤ λ−
j
, j = 1, · · · , k.

Veselić (2010).

Also derivable from Wielandt type min-max principles (not presented here)
(Liang & Li, 2013).



Rayleigh-Ritz Procedure for Hyperbolic Q

Recall two most important aspects in solving large scale eigenvalue problems: building
good subspaces and seeking “best possible” approximations.

Given Y ∈ Cn and dim Y = m, find the “best possible” approximations to some of
Q(·)’s quadratic eigenpairs “using Y”.

Can be done by a new “Rayleigh-Ritz” procedure. Let Y be Y’s basis matrix.

Rayleigh-Ritz Procedure

1 Solve the QEP for Y HQ(λ)Y : Y HQ(µ±
i
)Yy±

i
= 0, where

µ−
m ≤ · · · ≤ µ−

1 < µ+
1 ≤ · · · ≤ µ+

m .

2 Approximate quadratic eigenvalues: µ±
i

≈ λ±
i
, approximate quadratic

eigenvectors: Yy±
i
.

But in what sense and why are those µ±
i

and Yy±
i

“best possible”?



Rayleigh-Ritz procedure for Hyperbolic Q (cont’d)

Trace Min/Max principle: inf
rank(X )=k

k∑

j=1

λ+
j,X =

k∑

j=1

λ+
j

suggests that best possible

approximations to λ+
i

(1 ≤ i ≤ k) should be gotten so that

∑k
j=1 λ

+
j,X is minimized, subject to span(X ) ⊂ Y, rank(X ) = k.

The optimal value is
∑k

j=1 µ
+
j
.

Consequently, first few µ+
i
≈ λ+

i
are “best possible”. Surprise: “interior” eigenvalues

are usually hard to compute but this is not the case here.

Similarly to argue for last few µ+
j
≈ λ+

j+n−k
are “best possible”.

Similarly to argue for first few µ−
i

≈ λ−
i

are “best possible”. Surprise: “interior”
eigenvalues are usually hard to compute but this is not the case here.

Similarly to argue for last few µ−
j

≈ λ−
j+n−k

are “best possible”.



Gradients of Rayleigh quotients ρ±(x)
Use ρ(x) for either ρ+(x) or ρ−(x), and perturb x to x + p, ‖p‖ tiny.

ρ(x) is changed to ρ(x + p) = ρ(x) + η + O(‖p‖2). Then

[ρ(x) + η]2 (x + p)HA(x + p) + [ρ(x) + η] (x + p)HB(x + p) + (x + p)HC(x + p) = 0

which gives, upon noticing xHQ(ρ(x))x = 0, that

[2ρ(x) xHAx + xHBx ]η + pH[ρ(x)2Ax + ρ(x)Bx + Cx ]

+ [ρ(x)2Ax + ρ(x)Bx + Cx ]Hp +O(‖p‖2) = 0

and thus

η = −pH[ρ(x)2Ax + ρ(x)Bx + Cx ] + [ρ(x)2Ax + ρ(x)Bx + Cx ]Hp

2ρ(x) xHAx + xHBx
.

Therefore the gradient of ρ(x) at x is

∇ρ(x) = −2[ρ(x)2A+ ρ(x)B + C ]x

2ρ(x) xHAx + xHBx
.

Important to notice that ∇ρ(x) is parallel to the residual vector

r±(x) := [ρ±(x)2A+ ρ±(x)B + C ]x = Q(ρ±(x))x .



Line Search

Steepest descent/ascent method for computing one of λ±
1 can be readily given.

Fix two parameters “typ” and ℓ with varying ranges as

typ ∈ {+,−}, ℓ ∈ {1, n}

to mean that we are to compute the quadratic eigenpair (λtyp
ℓ , utypℓ ).

A key step of the method is the following line-search problem

topt = argopt
t∈C

ρtyp(x + t p), argopt =

{
argmin, for (typ, ℓ) ∈ {(−, n), (+, 1)},
argmax, for (typ, ℓ) ∈ {(−, 1), (+, n)}.

where x is the current approximation to u
typ
ℓ , p is the search direction.

Not easy to do: Rayleigh quotient ρtyp too complicated, unlike for (linear) eigenvalue
problems.

Better way to solve by using min-max principle.



Line Search (cont’d)

Line Search is equivalent to find the best possible approximation within the subspace
span([x , p]).

Suppose x and p are linearly independent and let Y = [x , p].

Solve the 2-by-2 hyperbolic QEP for YHQ(λ)Y to get its quadratic eigenvalues

µ−
2 ≤ µ−

1 < µ+
1 ≤ µ+

2

and corresponding quadratic eigenvector y±
j
.

Table for selecting the next approximate quadratic eigenpair:

(typ, ℓ) current approx. next approx.

(+, 1) (ρ+(xxx),xxx) (µ+
1 ,Yy

+
1 )

(+, n) (ρ+(xxx),xxx) (µ+
2 ,Yy

+
2 )

(−, 1) (ρ−(xxx),xxx) (µ−
1 ,Yy−

1 )

(−, n) (ρ−(xxx),xxx) (µ−
2 ,Yy−

2 )



Steepest Descent/Ascent method

Basically it is Line Search along gradient direction.

Steepest Descent/Ascent method

Given an initial approximation xxx0 to u
typ
ℓ , and a relative tolerance rtol, the algorithm

attempts to compute an approximate pair to (λtyp
ℓ , utypℓ ) with the prescribed rtol.

1: xxx0 = xxx0/‖xxx0‖, ρρρ0 = ρtyp(xxx0), rrr0 = rtyp(xxx0);
2: for i = 0, 1, . . . do
3: if ‖rrr i‖/(|ρρρi |2‖Axxx i‖+ |ρρρi | ‖Bxxx i‖+ ‖Cxxx i‖) ≤ rtol then

4: BREAK;
5: else

6: solve QEP for Y H
i
Q(λ)Yi , where Yi = [xxx i , rrr i ];

7: select the next approximate quadratic eigenpair (µ, y) = (µtyp
j

,Yiy
typ
j

)

according to the table;
8: xxx i+1 = y/‖y‖, ρρρi+1 = µ, rrr i+1 = rtyp(xxx i+1);
9: end if

10: end for

11: return (ρρρi ,xxx i ) as an approximate eigenpair to (λtyp
ℓ , utypℓ ).



Extended Steepest Descent/Ascent method
In Steepest Descent/Ascent method, the search space is spanned by

xxx i , rrr i = Q(ρρρi )xxx i .

It is the second order Krylov subspace K2(Q(ρρρi ),xxx i ) of Q(ρρρi ) on xxx i .

One way to improve the method is to use a higher order Krylov subspace

Km(Q(ρρρi ),xxx i ) = span{xxx i ,Q(ρρρi )xxx i , . . . , [Q(ρρρi )]
m−1xxx i}.

Let Yi be a basis matrix of Km(Q(ρρρi ),xxx i ). Solve m-by-m hyperbolic QEP for
Y H
i Q(λ)Yi to get its quadratic eigenvalues

µ−
m ≤ · · · ≤ µ−

1 < µ+
1 ≤ · · · ≤ µ+

m

and corresponding quadratic eigenvectors y±
j
.

Table for selecting the next approximate quadratic eigenpair:

(typ, ℓ) current approx. next approx.

(+, 1) (ρ+(xxx),xxx) (µ+
1 ,Yiy

+
1 )

(+, n) (ρ+(xxx),xxx) (µ+
m ,Yiy

+
m )

(−, 1) (ρ−(xxx),xxx) (µ−
1 ,Yiy

−
1 )

(−, n) (ρ−(xxx),xxx) (µ−
m ,Yiy

−
m )



Extended Steepest Descent/Ascent method (cont’d)

Extended Steepest Descent/Ascent method

Given an initial approximation xxx0 to u
typ
ℓ , and a relative tolerance rtol, and the search

space dimension m, the algorithm attempts to compute an approximate pair to
(λtyp

ℓ , utypℓ ) with the prescribed rtol.

1: xxx0 = xxx0/‖xxx0‖, ρρρ0 = ρtyp(xxx0), rrr0 = rtyp(xxx0);
2: for i = 0, 1, . . . do
3: if ‖rrr i‖/(|ρρρi |2‖Axxx i‖+ |ρρρi | ‖Bxxx i‖+ ‖Cxxx i‖) ≤ rtol then

4: BREAK;
5: else

6: compute a basis matrix Yi for Km(Q(ρρρi ),xxx i );
7: solve QEP for Y H

i
Q(λ)Yi to get its quadratic eigenvalues µ±

j
and

eigenvectors y±
j
;

8: select the next approximate quadratic eigenpair (µ, y) = (µtyp
j

,Yy typ
j

)

according to the table;
9: xxx i+1 = y/‖y‖, ρρρi+1 = µ, rrr i+1 = rtyp(xxx i+1);
10: end if

11: end for

12: return (ρρρi ,xxx i ) as an approximate eigenpair to (λtyp
ℓ , utypℓ ).



Rate of Convergence

Rate of Convergence (Liang & Li, 2013)

|ρρρi+1 − λtyp
ℓ | ≤ ε2m|ρρρi − λtyp

ℓ |+O
(
εm|ρρρi − λtyp

ℓ |3/2 + |ρρρi − λtyp
ℓ |2

)
,

where

εm = min
g∈Pm−1,g(σ1) 6=0

max
i 6=1

|g(σi )|
|g(σ1)|

,

and σj for 1 ≤ j ≤ n are eigenvalues of Q(ρρρi ) arranged as in

σ1 > 0 > σ2 ≥ · · · ≥ σn if (typ, ℓ) ∈ {(+, 1), (−, 1)}, or,

σ1 < 0 < σ2 ≤ · · · ≤ σn if (typ, ℓ) ∈ {(+, n), (−, n)}.

While the result is similar to the one for A− λB (B ≻ 0), it is much much more
complicated to prove.

Important: rate depends on eigenvalue distribution of Q(ρρρi ). Shed light to
preconditioning:

Q(ρρρi ) ≈ LiDiL
H
i , Di = diag(±1),

and use Extended Steepest Descent/Ascent method on L−1Q(λ)L− H.

Should reformulate for implementation sake. Detail omitted.



CG methods, Block Variations

Straightforward applications of ideas presented for A− λB earlier.
Left as exercises ...
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