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Chapter 7

Matrix Recovery and
Completion

In the preceding chapters, we have studied the problem of recovering an unknown vector from a
limited number of linear measurements. Several sufficient conditions for robust sparse recovery
have been proposed, including the robust null space property (RNSP) and the restricted isometry
property (RIP). Methods for constructing measurements that satisfy the RIP, both deterministic
as well as probabilistic, have been proposed. The object of study in the present chapter is the
recovery of low rank matrices from a limited number of linear measurements. An important
special case of matrix recovery is matrix completion, in which the measurements consist of
specific components of the unknown matrix. The most widely used decoder map for matrix
recovery is nuclear norm minimization. In the case of matrix completion, however, minimization
of the max-norm (defined in Section 7.5 below) is also used as the decoder map.

A recent trend in the compressed sensing literature is to express a given matrix as a sum of
two matrices, one of which is of low rank and the other is very sparse. This problem fits naturally
into an area of research called “robust principal component analysis” (PCA). It can be solved by
minimizing the sum of a nuclear norm and an ¢;-norm. This approach is discussed in Chapter 9.

For the most part, the emphasis in this chapter is on the recovery of real matrices X €
R™r %" However, the contents of Section 7.1 are also applicable to complex matrices X €
Cnrxne g0 in that section it is assumed that X € C"~*"<. Throughout the chapter, it is assumed
that n,, < n.. This assumption leads to a reduction in notational clutter. Moreover, the assump-
tion does not result in any loss of generality, because if the unknown matrix has more rows than
columns, then the problem can be reformulated as one of recovering its transpose.

Therefore the most general problem under study in this chapter can be stated as follows:
Suppose X € C"r*" and A : C"*" — C™ is a linear map. The measurement vector y is
given by y = A(X) if it is assumed that measurements are noise-free, and by y = A(X) + 7 if
it is assumed that there is measurement noise. Specifically, let us assume that an upper bound e
for ||n||2 is known, which could be zero if 77 = 0. The estimate X is determined via

X :=argmin || Z|n st ly — AZ)|2 <¢, (7.1)
z
or its analogue with || - | 5 replaced by the max-norm || - || »s. To quantify how good this estimate

is, we recall the relevant parts of Definition 2.7. The above procedure is said to achieve robust
rank recovery of rank k if there exist constants C' and D such that

IX = X||p < COLX, || - |n) + De. (7.2)

Note that, in contrast to the very general norms used in vector recovery, here the discussion
is restricted to the Frobenius norm of the recovery error (which is the matrix analogue of the
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Euclidean norm) and the sparsity index of X with respect to the nuclear norm (which is the
matrix analogue of the ¢;-norm). Also, (7.2) is used as the definition of robust rank recovery
irrespective of the norm used in the decoding process (nuclear or max-norm).

7.1 = Matrix Recovery via Vector Recovery

In this section we present a general approach for deriving sufficient conditions for matrix re-
covery on the basis of sufficient conditions for vector recovery. In Section 7.2, we define the
rank-restricted isometry property (RRIP) and rank-robust null space property (RRNSP) and show
that they are sufficient conditions for robust rank recovery. But for some cosmetic changes, the
material is taken from [197].

We begin by introducing some notation. Throughout the section, we work with matrices
in C"r*" where n, < n.. For notational simplicity, let n = min{n,,n.} = n,. Given a
vector € C", let D(z) € C™*™ denote the diagonal matrix whose diagonal is the vector x. If
X € C" ™, then X(X) € R}*" denotes the diagonal matrix of singular values of X, some of
which could be zero if rank(X) < n. Similarly, o(X) € R denotes the singular value vector
of X, that is, the diagonal of the matrix ¥(X). Next, suppose X € C"*"<. Then the singular
value decomposition of X has the form X = UX(X)VT, where U € C"*" V € C"*", and
U'U = V1V = I,,. We refer to U and V as a unitary pair if UTU = V'V = I,,. For a unitary
pair (U, V), define

SWU,V):={UD(z)V':zeC"}. (7.3)

Then S(U, V) is an n-dimensional subspace of C""*™< (where the dimension is over the field of
complex numbers). Finally, suppose A : C"*™ — C™ is a linear operator, and that (U, V') is a
unitary pair. Then a linear operator Ay : C* — C™, which can also be thought of as a matrix
Ay,v € C™*", is said to be a restriction of the linear operator A if it is true that

Apyr = AUD(z)VT), Vo € C". (7.4)

Next we define the notion of an “extension” property.
Definition 7.1. Suppose P is a property of matrices in C™*". Then we say that P, is an
extension property of P if P, is a statement about linear operators from C"*"< to C™, such

that, for every linear operator A : C"r*™ — C™ and every unitary pair (U, V'), the restriction
matrix Ay,y satisfies property P.

A concrete illustration of an extension property is the rank-restricted isometry property (RRIP)
introduced in Section 7.2.
Now we present two key lemmas.

Lemma 7.2. Suppose X, Y € C"*"< andlet o(X),0(Y),o(X —Y) denote, respectively, the
vectors of singular values of X, Y, X — Y. Then
lo(X) = (V) < [IX =Y, (7.5)
lo(X) oY)l < [|X + YN (7.6)
Proof. Recall the following result from Lemma 1.8: Let n = min{n,,n.}, and let o;(X),

0i(Y), 0,(X = Y), i € [n], denote the singular values of X,Y, X — Y, respectively. Then, for
every [ € [n], we have that

1 l
Z 0 (X) — 05(Y)] < Zoi(X —Y).
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If we substitute [ = n into the above equation, then we get
D o X) = ai(V)| <> ai(X - Y).
i=1 i=1

Now note that the left side is ||o(X) — o (Y)||1, while the right side equals || X — Y|y by (1.24).
Therefore we have established (7.5). If we replace Y by —Y/, then the singular values o;(Y)
remain unaffected. Therefore (7.5) implies (7.6).

The next lemma is the key to the results in this section.

Lemma 7.3. Suppose X, W € C"*"c satisfy

X+ Wiy <[ X]n- (7.7
Let W = US(W)VT be an SVD of W, and let X1 = —UX(X)V. Then

X1+ Wiy < [[Xilln (7.8)

Remark: The point of the lemma is this: If || X + W ||y < || X ||, then there exists another
matrix X with the same unitary pair as W and the same nuclear norm as X such that || X +
Win < [ X1ln-

Proof. Note that if x € C™ and (U, V') is a unitary pair, then
IUD@)VT|x = [l
Therefore it follows that

X1 + Wiy = [UI=3(X) + S(W)VT|ly
= [[E(W) =Xy = llo(W) —a(X)[1
<X+ Wiy < IX][v = [ Xa v

In the above chain of reasoning, we first use the fact that the nuclear norm is unitarily invariant,
then (7.6), then (7.7), and again the fact that the nuclear norm is unitarily invariant.

To state the main theorem, we introduce the notion of one vector (or matrix) being “as good
as” another in an optimization problem. First, for vector recovery, given A € C™*", y € C™,
and € > 0, we say that € C™ is as good as x € C™ with respect to A, y, € if

12l < llzlli;[ly = AZll2 < e [ly — Azl}2 < e (7.9)

The idea is that if we attempt to recover an unknown vector by solving the ¢;-norm optimization
problem
Z = arg min||z||1 s.t. [|[y — Az[]2 <€, (7.10)
Ze(cn

then both x and & are feasible for this problem, and % is “as good as” x. In the same vein, given
a linear map A : C"r*" — C™, y € C™, and € > 0, we say that X € C"*"< is as good as
X € Crrxne if

Xl < 11Xl ly = A2 < € ly = A2 < e. (7.11)
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The interpretation is similar to that in the vector recovery problem. If we attempt to recover an
unknown matrix by solving the nuclear norm minimization problem

Z = argmin ||Z||y st |y — A(Z)]2 < e, (7.12)
ZeCnrXne

then both X and X are feasible for this problem, and X is “as good as” X.

Now we state the main theorem of this section, for which purpose we introduce a few new
symbols. Given a vector x € C", the symbol z; € R’} denotes the vector consisting of the
magnitudes of the n components of z, arranged in nonascending order. Note that, while = can
be a complex vector, x| is a real vector with nonnegative components. In the discussion below,
|| - |l» denotes any norm on C™ with the property that ||z||, = ||z, ||,. Clearly all £,-norms satisfy
this condition. The matrix norm on C"*™ (with n,, < n.) corresponding to || - ||, is denoted
by || - ||v and is defined by

1X ]y = [l ()]l

It is clear from the definition that the matrix norm || - ||y is unitarily invariant. Moreover, if we
choose ||z||, = ||z||, for p = 1,2, 0o, respectively, then the corresponding matrix norm || - ||y
becomes the nuclear norm, the Frobenius norm, and the spectral norm, respectively. In principle
we could choose other values of p € [1, 00|, and all these choices would generate valid unitarily
invariant matrix norms, which are the Schatten p-norms.

The statement of the theorem is facilitated by the introduction of shorthand notation for four
statements.

V1. A matrix A satisfies a property P.

V2. There exists a function h : R” x Ry — R, such that, for any x € C”, n € C™, where
Inll2 <€,y = Ax + 1, and any & as good as x with respect to A, y, €, we have that

|& — ||, < h(xy,e). (7.13)
MI1. The linear operator A : C"*" — C™ satisfies the extension property P., where n, <
Ne.

M2. There exists a function h : R” x Ry — R, such that, for any X € C"r*" n € C™,
where ||7]|2 < €,y = A(X) + 7, and any X as good as X with respect to A, y, ¢, we have
that

IX — X||v < h(a(X),e€). (7.14)

Now we state the main theorem.
Theorem 7.4. With these conventions, we have that
V1l = V2) = (M1 = M2). (7.15)
Moreover, the function h in M2 can be taken as the function h in V2.

Proof. Suppose V1 = V2 and that M1 is true; we wish to show that M2 is true. Accordingly,
suppose that X € C"*"< y = A(X) + n where ||n||2 < €, and that X is as good as X with
respect to A, y, €. Thus

Xl < 11X ] ly = A2 < € ly = A2 < e. (7.16)
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Define W = X — X, so that X = X + W. Itis now shown that
Wy < h(a(X),e). (7.17)

By assumption, || X + W||x < || X||n. Suppose W = UX(W)VT is an SVD of W, and
as in Lemma 7.3, define X; = —UX(X)VT. Then || X; + W||y < [|X1||ny. Now define
Yy = A(Xl) —+ n. Then

XL+ W) = wllz = [AW) = nll2 = [AX + W) — AX) = nll»

= [AX) —yl2 <,

where the last step follows from (7.16).

Now let us set up a vector recovery problem, where the measurement matrix is Ay y (with
U,V coming from the SVD of W), true vector x5 = —o(X), and Ty = x5 + w, where w =
o(W). Therefore 3 = —o(X) + o(W). Suppose y1 = A(X1) + 7 as defined above is the
measured vector for this problem. Then the measurement error 1, = y; — Ay, vy 2 is given by

m =y +Ayyvo(X)=AX1) +n—-AX1) =17

because
Apyveo(X) = AUS(X)VT) = —A(X,).

Therefore it follows that ||y — Ay,vx2||2 < €. Next,

AU’VQA?Q = AU)V(—O'(X> + U(W))
= A(-US(X)VI+US(W)VT) = A(X; + W).

We have already shown that ||y, — A(X; + W)]|2 < €. Therefore
[y — Avviallz < e

Hence both z9, 4 satisfy the constraint in (7.10) with y replaced by y1, & replaced by 22, and x
replaced by x. To show that 2 is as good as x5 for this problem, it remains only to show that
|Z2|l1 < ||#2||1- This is a ready consequence of Lemma 7.3. We have that

[Z2][1 = [| = o(X) + (W)L
< 1X1+ Wiy <[ Xallv = [[X][x = llzlly

because X; = —UX(X)VT. Therefore @ is as good as x5 with respect to Auv,yi,e. By
assumption V1 implies V2, which means that

|22 = @lly < hl(22),, € = h(o(X),e), (7.18)

because o (X) is already in nonascending order. Recall now that £ = x4+ w, so that &5 —z9 =
w = o (W). Therefore (7.18) implies that

lo(W)ll < h(o(X),e). (7.19)
Recall that W = X — X. Now it follows from the definition of the matrix norm || - ||y~ that
IX = Xy = W]y = lle(W)ll, < h(e(X),e).

This is precisely (7.17).
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7.2 = Matrix Recovery via Nuclear Norm Minimization

In this section, we present some conditions for matrix recovery via nuclear norm minimization.
First we present conditions based on the null space of the measurement map; these conditions are
analogous to the contents of Section 3.1. Then we present conditions based on the rank-restricted
isometry property (RRIP); these conditions are analogous to the contents of Section 3.2.

7.2.1 = Null Space—-Based Properties

Suppose A : R"*"e — R™ is a linear measurement map. As before, define its null space N/ (A)
by
N(A):={Z e R"*" : A(Z) = 0}. (7.20)

Throughout, let M (k) denote the subset of R™~*"< consisting of all matrices of rank k or less.
Suppose without loss of generality that n,, < n., and let n := min{n,,n.} = n,. Suppose

X e R *" andleto; > g9 > --- > 0, > 0 denote the singular values of X. Then, as shown
in (2.39), we have that

Xl = min X = Zlly = 3 o (7.21)
i=k+1
Thus the quantity 65 (X, || - ||~) is the matrix analogue of the k-sparsity index oy (x, || - ||1) for

vectors. For convenience, let us also define

0k (X, || - ) : Zoz, (7.22)

so that B
[ XN v = 0 (X, [ - [[8) + 0 (X, [ - [[)-

The next definition gives matrix analogues of Definitions 3.7, 3.10, and 3.14.

Definition 7.5. A linear map A : R"*"< — R™ s said to satisfy the rank-exact null space
property (RENSP) of order k if

0c(Z, 1l Iv) < Ok(Z, ]| - In), YZ € N(A) \ {0}. (7.23)

A is said to satisfy the rank-stable null space property (RSNSP) of order k if there exists a
constant p € (0, 1) such that

0c(Z, ]l In) < pOk(Z. || - In), VZ € N(A). (7.24)

A is said to satisfy the rank-robust null space property (RRNSP) of order k if there exist con-
stants p € (0,1) and T € Ry such that

Ou(M, || - |Iv) < pOu (M, || - Iv) + T A, ¥M € R™ M. (7.25)

As in the vector case, the RENSP and the RSNSP are required to hold for all Z € N (A),
whereas the RRNSP is required to hold for all M € R "<,

In Definition 7.5 we wrote out 0;,(Z, || - ||x) and 0x(Z, || - || ) for the sake of completeness.
However, from here onwards we simply write 0 (Z) and 0),(Z), because the nuclear norm is the
only one for which we will need to compute these quantities.
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Next, we consider two decoder maps. If y = A(X) without any measurement noise, we
define
Ay) = X := argmin [|A|x s.t. y = A(Z), (7.26)
ZERnrXne

whereas if y = A(X) + 1 where ||| < ¢, we define

A(y) = X := argmin ||A||y st ||y — A(Z)|| <. (7.27)
ZERnrXne

Next it is shown that, as in the case of vector recovery, the RENSP, RSNSP, and RRNSP,
respectively, are sufficient conditions for exact-rank recovery, stable-rank recovery, and robust-
rank recovery in the sense of Definition 2.7. In addition, the RENSP is also necessary for exact-
rank recovery.

Throughout the proofs in the remainder of this subsection, we make use of Lemma 1.8,
specifically (1.20), with [ = n, which implies that

> loi(X) —0i(2)] <D oi(X - 2). (7.28)
i=1
Now let k € [n], and rewrite (7.28) as

IX = Z|n =Y oi(X = 2) > Y |os(X) — 0:(Z)]
i=1 i=1

k n
> [0i(X) = 0i(2)] + > [04(Z) — 0i(X)]
i=1 i=k+1
= 0x(X) = 0k(2) + 01(Z) — O1(X). (7.29)

Theorem 7.6 is a matrix analogue of Theorem 3.16.

Theorem 7.6. Suppose A : R""*"< — R™ is linear and satisfies the RRNSP of order k with
constants p, 7. Define define A : R™ — R"™ %" gs in (7.27). Then
1+p 4t

X — Xy <2 0 (X
| [~ < l_pk( )+1_p

€. (7.30)
Proof. Note that | X ||y < || X||n.2° Define H = X — X so that X = X — H. Then applying
(7.29) with Z replaced by H gives

0k (X) + 01(X) = | X[l > || X]|Ix = | X — Hl|n
> 0p(X) — Op(H) + 0p(H) — 0, (X),

or, after cancelling 0 (X) and rearranging,
0n(H) — 0 (H) < 205,(X). (7.31)
Next, note that both X and X are feasible for the optimization problem in (7.27). Therefore

M) = ILACX) = 9] = [AX) = glll < [IAX) = yll + [l A@) - yll < 2.

26The proof does not actually use the fact that X is the minimizer in (7.27)—just the fact that | X ||y < [| X || -
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Applying the RRNSP to H gives

Or(H) < pbi(H) + 27e. (7.32)

Inequalities (7.31) and (7.32) can be expressed as

) e

This resembles (3.35), and the remainder of the proof follows that of Theorem 3.16.

Theorem 7.7. Suppose A : R"m*" — R™ ig linear and satisfies the RSNSP of order k with
constant p. Define A : R™ — R" %" gs in (7.26). Then

A 1
[X - X[~ <2

+p
- p@k(X). (7.34)

The proof is very similar to that of Theorem 7.6 and is left as an exercise for the reader.
Theorem 7.8, stated next, is the matrix analogue of Theorem 3.9.

Theorem 7.8. Suppose A : R"*" — R™ js linear, and define A : R™ — R"*"e gs in (7.26).
Then the following two statements are equivalent:

1. The pair (A, A) achieves exact-rank recovery of order k.

2. The map A satisfies the RENSP.

Proof. 1 = 2. Let Z € N'(A)\ {0} be arbitrary, and let Z = ULV T be an SVD of Z. Define
7, =US VT, Zy = —UZ,VT, where

3, = Diag(oy,...,0%,0,...,0), X = Diag(0,...,0,0541,.-.,04).

Then B
Z =71 — 2o, | Zilly = 0k(2), ]| Z2|| v = 0k(2).

Also, Z € N(A) \ {0} implies that A(Z;) = A(Z>), and that Z, # Z;. Now apply item 1 to
Z1. Then we must have that || Z; ||y < || Z2]|| - This holds for every Z € N'(A) \ {0}, which is
item 2.

2 = 1. Suppose X € M(k), S € R"*" £ X and A(S) = A(X). Suppose in addition
that A satisfies the RENSP. We wish to show that || X ||x < ||S]||n. Define Z = X — S and note
that Z € N(A) \ {0}. Now apply (7.29) while noting that 0 (X) = || X||x and 8x(X) = 0
because X € My,. This gives

ISllv = 1X = Zllnv 2 IX|l5 = 06Z + 0k(Z) > || X]| -

This completes the proof.

7.2.2 = Rank-Restricted Isometry Property

In this section we introduce the rank-restricted isometry property (RRIP) and show that it is an
extension of the RIP in the sense of Definition 7.1. A direct consequence of this interpretation is
that, for every result concerning the robust sparse recovery of vectors using ¢;-norm minimiza-
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tion, there is a corresponding result on the rank robust sparse recovery of matrices using nuclear
norm minimization.

Definition 7.9. A linear map A : C"*" — C™ is said to satisfy the rank-restricted isometry
property (RRIP) of rank k with constant ¢ if

1= IXIE < JAX)Z < A+ 0)IX[F, VX € M(k), (7.35)

where M(k) denotes the set of matrices in C™ *" of rank r or less.

Lemma 7.10. The rank-restricted isometry property (RRIP) is an extension property of the re-
stricted isometry property (RIP) in the sense of Definition 7.1.

Proof. Recall from Definition 3.19 that a matrix A satisfies the RIP of order k& with constant ¢ if
(L= )lz[l3 < [|Az[3 < (1 +8)[z]3, V& € Si. (7.36)

To show that the RRIP is an extension property of the RIP, suppose that a linear operator A :
Cnrrxne — C™ satisfies (7.35). The objective is to show that, for every unitary pair U, V, the
restriction operator Ay satisfies (7.36). Accordingly, let x € X be an arbitrary k-sparse
vector, and let X = UD(z)VT. Then the singular value vector o(X) of the matrix X will be
the same as the vector z, except for replacing each element of = by its modulus and permuting
the elements to put them in nonincreasing order. Therefore it follows that ||o(X)||2 = [|z]|o.
Moreover, || X||p = ||o(X)|l2 = ||z||2- Finally, by the definition of the restriction matrix, we
have that A(X) = Ay v x. Substituting these identities into (7.35) leads to

(1= 9)zl3 < lAvyel3 < (1 +0)z]3, Vo € Sy

Therefore Ay, satisfies (7.36).

Now we show how Theorem 7.4 can be used to convert a vector recovery bound into a matrix
recovery bound. Recall the following upper bounds derived in Theorem 3.20. In that theorem,
the symbol £ is defined via (3.52), that is, as the minimizer of ||z||; subject to the constraint that
ly — Az||2 < e. However, an examination of the proof shows that this fact is never used—only
the fact that |||y < ||«||1 is used. Therefore, while proving Theorem 3.20, we have actually
proved the following set of bounds.

Lemma 7.11. Suppose that, for some number t > 1, the matrix A € C™*" satisfies the RIP
of order tk with constant dy, =: § < +/(t — 1)/t. Define constants a,b,c, p, T as in (3.49) and
(3.50). Suppose x € C™ and that y = Ax + n where ||n||2 < e. Choose any & € C" such that

12l < lzfl1, [ly — Az|]2 <. (7.37)
Then 201 ) A
. + T
I =l < S =Ponta ) + e (138)
For all p € (1,2] we have
R 1 2
12—zl < PRy m[(l +2p)or(z, | - 1) + 37¢€]. (7.39)
In particular,
2
2 —2l2 £ —=——[(1+2p)ow(z, || [[1) + 37¢]. (7.40)
VE(1 = p)
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By combining Theorem 7.4 with Lemmas 7.10 and 7.11, we get the following set of bounds

for matrix recovery. Note that, if we choose the vector norm || - ||,, in (7.13) as the ¢;-norm, then
the corresponding matrix norm || - ||y in (7.14) becomes the nuclear norm. If we choose || - ||, as
the £5-norm, then || - ||y becomes the Frobenius norm.

Theorem 7.12. Suppose that, for some number t > 1, the linear map A : C"r*" — C™
satisfies the RRIP of order tk with constant 0y, < +/(t — 1)/t. Define constants a,b,c, p,T as
in (3.49) and (3.50). Suppose X € C"*" and that y = A(X) + n where ||n||2 < e. Choose
any X € C" e sych that

Xy < X, ly — AX)l2 < e (7.41)
Then 201 ) A
S +p T
_ < . .
- 2
X —X|lp <—[(14+2p)0u(X, ]| - + 37¢€|, 7.43
| 7 R =) (14 2p)0k(X, || |Inv) ] (7.43)

where the rank sparsity indices 8 are defined in (2.41) and (2.40), respectively. In particular, if
X is determined as

X =argmin || Z||y s.t. |y — AX)|2 < e, (7.44)
z
then X satisfies (7.42) and (7.43).

In Theorem 3.24, it is shown that the bound &;;, < +/(t — 1)/t is tight. An analogous
statement is also true for matrix recovery.

Theorem 7.13. (See [49, Proposition 3.2].) Suppose t > 4/3 and is rational, and ¢ > 0
is arbitrarily small. There exist integers r and n and a linear map A on R™*™ such that the
following hold:

1. A satisfies the RRIP of rank tr with

t—1
Otr < - + €.
2. There exists a matrix X of rank r that cannot be recovered using (7.26).
It is stated (without proof) in [251, Remark 3] that there is a matrix analogue of Theorem
3.25.

Problem 7.1. This is an analogue of Lemma 3.8 for matrices. Using the fact that ||Z|ny =
0k(Z, || - In) + 0(Z, | - || v) for all Z, show that the following statements are equivalent:

1. Alinear map A : R"*" — R™ satisfies the RENSP.
2. 0x(Z, ] Iv) < (1/2)|Z]lv, ¥Z € N(A).
3. ||ZHN < 29k(Z7 || . ||N), VZ € N(A)

Problem 7.2. This is an analogue of Lemma 3.11 for matrices. Show that the following state-
ments are equivalent:

1. A linear map A : R"*"e — R™ satisfies the RSNSP with constant p € (0,1).
2. 0u(Z, ) - lIn) < (p/(L+ ) Z]In, YZ € N(A).
3 NZIn <X+ p)0k(Z, || - In), VZ € N(A).
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7.2.3 = The RRIP Implies the RRSNP

In the previous subsection, the fact that the RRIP leads to robust-rank recovery was derived as
a consequence of Theorem 7.4. In the present subsection, we present an alternate derivation by
showing that the RRIP implies the RRNSP and then invoking Theorem 7.6.%7

Theorem 7.14. Suppose A : R *"e — R™ satisfies the RRIP of rank tk with 6y, < \/(t — 1)/t
for some t > 1. Define the constants v, a,b, c as in (3.48) and (3.49) and the constants p, T as in
(3.50). Then, A satisfies the RRNSP of rank k with constants p and T.

To aid in the proof of this theorem, we present a series of lemmas. The first lemma is just a
specialization of Lemma 7.3 to real matrices.

Lemma 7.15. Given W € R™ X" with the singular value decomposition UX(W)V'T, suppose
there exists an Xo € R™"*"< for which | Xo+W||nx < || Xol|n. Then, for X, = ~UX(X)V'T,
we have that

[ X1+ Wiy < I XN

Lemma 7.16. Suppose U € R"*" 'V € R"*" form a unitary pair. Let x € R" be arbitrary.
Define A € R"*"e gs
A=UD(z)V".

Then the following statements are true:
1. rank(A) = ||z||o, where ||z||o is the cardinality of the support set of x.

2. A has the singular values |x1|, |z2|,...,|Zn,| (not necessarily in decreasing order).

Proof. Define a diagonal matrix [* € R *"r as

()i =

-1, forz; <0,
1, for x; > 0.

Then I* | = I*, 'r=Ir" = I*,and I*I* = I. Moreover, we can write

A=UI"D(|lz|)V".

Now U I* is also unitary. Therefore the above factorization looks like a singular value decompo-
sition but for the fact that the elements of |x| might not be in nonincreasing order. But this can
be sorted out by row and column permutations. This shows that the components of |x| are the
singular values of A.

Lemma 7.17. Let A : R"*"™ — R™ be a linear measurement map and let (U, V') be a

unitary pair with U € R > 'V € R™*"r_ Suppose the two sets of vectors {u1, ua, . .., un, },
{v1,v2,...,v,, } represent the columns of U and V, respectively. Define a matrix Ayy €
Rman as
_ T T T
Apv = [A(urv] )| A(ugvy )| . .. [A(un, v, )] (7.45)

Let x € R™ be arbitrary. Then

A(UD(I)VT) = AU\/JJ.

2TThis proof is by Shashank Ranjan; see [204].
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Proof. We have

Ny

AUDz)VT) = .A( Z xiuiU;r). (7.46)
i=1

Using the linearity of A, (7.46) can be written as

AUD)VT) = ixifl(uiv;)

= [A(urv] )| A(ugvy )| .. [A(up, v, )] @

= AUVx.
Lemma 7.18. Suppose A : R"*" — R™ satisfies the RRIP of rank k with 0y, := 6. Then, for
a given unitary pair (U, V), the matrix Ayvy (as defined in (7.45)) satisfies the RIP of order k
with 8, := 9.

Proof. Let x € 3, C R™" be arbitrary. Define

X =UD(z)V'.
From Lemma 7.16 , rank(X) = ||z|o < k, and X has the singular values {|z1], |z2], ...,
|, |}, which implies that X € M. Now we make the use of Lemma 7.17 and the RRIP of A,
namely

1= )IX[E < [ACOIE = [|[Avve]3 < (1+6)] X% (7.47)
Observe that
Ny Ny
XI5 =D of(X) = [af* = |l2ll5.
i=1 i=1
Hence we can rewrite (7.47) as
(1= )llzll3 < [[Avvell3 < (1+d)]]3. (7.48)
This completes the proof.

Now we present the proof the main theorem of this subsection.

Proof of Theorem 7.14. Let X € R" "¢ be arbitrary and let X = UX(X)V T be the singular
value decomposition of X. Define Ayy as in (7.46), and define S = [k].

From Lemma 7.18, it follows that Ay satisfies the RIP of order tk with §z, < +/(t — 1)/t.
Consequently, from Theorem 3.20, Ay satisfies the RNSP of order k with constants p, 7 defined
as above. Now let o(X) denote the vector of singular values of X. Then A(X) = Apyo(X).
Using Definition 3.14, we get

lo(X) sl < plloe(X)gellr + Tl Avy o (X)]|2- (7.49)

Using the fact that || (X) gl = 01 (X., | |v). [|lo(X) g [l1 = 01 (X, || - | v), and | Ayy o (X) 2
= || A(X)]|2 (from Lemma 7.18), the inequality (7.49) can be written as

0u (X, 1| [lv) < pOk(X, || - ) + 7] AX) |2, (7.50)

which is the desired inequality.
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7.3 = Probabilistic Recovery Methods

Theorem 7.12 shows clearly the importance of constructing linear maps A : R %" — R that
satisfy the RRIP. In the case of vector recovery, we have seen that if the measurement matrix
consists of random samples of a sub-Gaussian variable (together with the normalization factor
(1,/m)), then the resulting matrix satisfies the RIP with high probability. In this section, we
state and prove an analogue of this result for linear maps on the set of matrices. Interestingly,
as of now there are no deterministic procedures for constructing measurement maps that satisfy
the RRIP. It is evident that any linear map .A : R""*"< — R™ can be represented as a matrix of
dimensions m X n,.n., just by representing each matrix X € R"*" by a vector v(X) € R"r",
The difficulty however is that the restriction on the rank of X translates into highly nonlinear
constraints on the components of v(X).

Suppose we wish to recover an unknown matrix X € R"*" using m linear measurements.
If A: R" %™ — R™ is a linear measurement map, then we can represent .A as follows:

(A1, X)p
A(X) = : , (7.51)
<AmaX>F

where Ay, ..., A, € R"*" Now suppose that each matrix A; equals (1/+/m)®;, where ®;
consists of n,n. independent samples of a zero-mean, unit-variance random variable Y, which
is sub-Gaussian in the sense of Definition 6.12. Thus there exists a constant ¢ > 0 such that

Elexp(0Y)] < exp(ch?), V0 € R. (7.52)

The objective in this section can be stated as follows: Given a rank bound &, an RRIP constant §,
and a failure probability £, determine a lower bound on the number of measurements m such that
the map A satisfies the RRIP of order & with constant J, with probability > 1 — £. The principal
results of this section are Theorems 7.21 and 7.22. For the most part, the contents of this section
mirror those of [56]. However, the actual proof of the RRIP is different and parallels the proof
of the RIP in [19]; it is presented here in Chapter 6.

For a random variable Y that satisfies (7.52), we can define a corresponding constant ¢ as in
(6.43), namely

_ - B2
=2,(=1/(4c),a=~ve S +e%,f=(,¢:= ————. 7.53
7 =2,¢=1/(4c) gl B=¢ 230t d) (7.53)
With these definitions, we can state the following analogue of Theorem 6.17.
Theorem 7.19. Suppose matrices @1, ..., P, each consist of n.n. independent samples of a

sub-Gaussian random variable Y that satisfies (7.52). Define A; = (1//m)®,, and define
A R X" — R™ gs in (7.51). Suppose X € R"*" satisfies || X ||p = 1. Then

Pr{|[A(X)[3 — 1| > t} < 2exp(—émt?), (7.54)
where ¢ is defined in (7.53).

The proof is the same as that of Theorem 6.17. Observe that if A € R™*™ and u € R", then

alu

Au=| | A=) (a'w)?.

a™u i€[m]
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If X € R™*" and A(X) is given by (7.51), then
JAXE = > (A, X)r).

1€[m]

So the same reasoning applies as in the proof of Theorem 6.17.
Theorem 7.19 gives a tail probability estimate for one fixed matrix X of unit Frobenius norm.
However, what we need is a bound that is uniform over the set

S(k) == {X € M(k) : [|X][|r =1},

where as before M(k) denotes the set of all matrices that have rank < k. For this purpose
we follow the same general approach as in Section 6.2. Specifically, we compute the covering
number of the set S(k); however, the details are a little different from those in Section 6.2. We
begin by estimating the covering number of the set S(k) with respect to the Frobenius norm.

Theorem 7.20. Let N (€) denote the covering number of S(k) with respect to || - || p. Then

6 (nr+ne+1)k
) , (7.55)

N(e) < (1+€

Remark: The method of proof below is taken from that of [56, Lemma 3.1]. However, the
actual estimate given here is slightly better.

Proof. Clearly S(k) consists of all matrices of the form ULV T, where U € R"** UTU = I,
V e R™** and V'V = I, and ¥ = Diag(c), where o € R% and |o||3 = 1. The approach
is to construct an €/3 cover for each set (of U, V, and X).

We begin with the set {o € RY : ||o||3 = 1}. This is a subset of the unit sphere (not the
entire unit ball) in R¥. Therefore, by Lemma 6.3, with respect to || - |-, this set has an ¢/3-cover
of cardinality < (1 + (6/¢))*. Next, let us look at the set {U € R™** : UTU = I;,}. Observe
that

[U]l1=2 = max ujlle =1,

because each column of U is normalized. Now the unit sphere in the norm || - ||;_,2 is contained
in the k-fold Cartesian product of the unit sphere in || - || in R"". By Lemma 6.3, this unit sphere
has an €/3-cover of cardinality < (14 (6/¢))"", whence the unit sphere in the norm || - ||;—,2 has
an ¢/3-cover of cardinality < (1+(6/¢))™*. Now the set {U € R"** : UTU = I} is a subset
of this latter unit sphere. Hence this set also has an ¢/3-cover of cardinality < (1+(6/¢))"*. By
parallel reasoning, {V € R"** : VTV = [, } has an €/3-cover of cardinality < (14 (6/¢))"<¥.

Now we use these to construct an e-cover for S(k). The claim is that the set of all products
of the form U;X;V;" as U;, X;, V; range over their respective covers forms an e-cover for S(k).
The cardinality of the set of all such triple products is bounded by the right side of (7.55). Now it
is shown that the set of all such products is indeed an e-cover for S(k). Suppose X = UXV T €
S(k), and choose Uy, X1, V4 such that

U = Utllime < €/3,[|E = Z1|lr = |lo —o1ll2 < €/3,[|[V = Vi]i2 < €/3,
and define X; = U; %, V;'. Using the identity
abe — a1bye; = (a —ay)be+ a1 (b—b1)c+ arbi(c — 1),
we can write
1X = Xillp < (U =U)SV T+ [UL(Z = )V [p + [U:Z1(V = Vi) T -

We now bound each term separately.
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For the first term, note that right multiplication by V' T preserves the Frobenius norm because
VTV = I. Therefore
(U = 0BV |l = (U = US|

Next

IO = UDZNE =) oflluy — (w)lls < D oFIU = Urllf, < (¢/3)%

JE[K] JE[K]

Hence ||(U — U)XV T|| ¢ < €/3. By parallel reasoning ||U12;(V — V1) T ||r < €/3. As for the
middle term,
I (E =)V = 2= Eilr = llo — a1l < ¢/3.

Combining these bounds shows that || X — X ||r <e.
Now suppose an RRIP constant 6 € (0, 1) and a “failure probability” £ € (0, 1) are specified.
Using the bound (7.55), we can derive a bound on the number of measurements m to ensure that

A of (7.51) satisfies the RRIP of order k£ with constant §, with probability > 1 — &.

Theorem 7.21. Define A : R %" — R™ as in Theorem 7.19, and define ¢ as in (7.53). If

2
Tk(n, +n.+1) + Zlng , (7.56)

then A of (7.51) satisfies the RRIP of order k with constant §, with probability > 1 — £.

1
m > 52

Remark: The proof of [56, Theorem 2.3] proceeds along somewhat different lines, and the
resulting bound for the number of samples m is not so explicit as in (7.56). Instead, the proof
given here is an adaptation of that of Theorem 6.1, which is taken from [19].

Proof. Define the adjoint operator A* : R™ — R"~*" in the standard manner, namely
(A*(u), X)p = (u, A(X)), VX € R"",u € R™.
Define BB : R"*™ — R"*"e by B = A*A — I, and the constant y by

p= sup [B(Z)|F.
ZeM(k)

Ife <1,then1/e > 1,and 1 + 6/e < 7/e. Accordingly, define

(np+ne+1)k (nr+ne+1)k
d(e) = <7> > (1 + 6) .
€

€

Let Sc(k) denote a minimal e-cover of S(k) with respect to || - || 7, and note that | S, (k)| < d(e)
by Theorem 7.20. Therefore, by the union of events bound, we get

Pr {YH};&? 3 A3 - 1] > t} < 2|Se (k)| exp(—cémt®) < 2d(e) exp(—cmt?).

Now let X € S(k) be arbitrary, and choose Y € S, (k) such that || X — Y||r < e. Observe
that

(X, B(X))r = (X, (A" A= D)(X))r = [AX)]I3 -
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Next, note that

(X,BX)r =Y, BY))r+ (X -Y,B(X+Y))p. (7.57)
Therefore
(X =Y, BX+Y)r| <X -Y|Fr IB(X-Y)|r
<X =Ylr-UIBX)|r+ IBY)lFr)
< 2,
while

(Y. BY)r| = [IAY)]3 -1 < t.
Substituting these bounds into (7.57) shows that
(X, B(X)) | < £+ 2ue, YX € S(k). (7.58)
Now take the supremum of the left side with respect to X, and note that

sup (X, B(X))r|=p
XeS(k)

because B is self-adjoint. Therefore (7.58) implies that

w<t+2eu, orpu <

1—2¢

Hence of ;
(X, B(X))p| <t+2ue<t+—— = —"— VX € S(k).
1—2¢ 1— 2

So we can conclude that

Pr {Xrerﬁ)((k) A3 — 1] > t/(1 - 26)} < 2d(e) exp(—émt?).

Therefore, given an RRIP constant § and failure probability £, we can take ¢ = (1 — 2¢)J
where € is as yet unspecified. Then

Pr{ max ||| A(Y)]3 - 1| > 5} < 2d(e) exp(—ém(1 — 2¢)256?). (7.59)
Y eS. (k)
Let us now substitute for d(¢). Then the right side is < £ provided

7 (nr+nc+1)k
2 () exp(—eém(1 — 2¢)%0%) <&,

€

or
1 7 2
>—— |(n, e+ 1kIn—+In—|. 7.60
=1 260252 {(n F e+ DkIn 2 +In 2 (7.60)
We are free to choose any € € (0,0.5) in the above. To get a good bound, let us minimize
1 7
= 71 _

which is the only e-dependent part of the bound, with respect to e. Figure 7.1 shows a plot of
f(€) versus e. From this plot it can be seen that if we take e = 0.05, then f(e) < 7. Moreover
1 5

<125 =2.
(1-2¢)2 ~ 4
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Figure 7.1. Plot of f(€) versus e.

Therefore the bound in (7.60) becomes

1 5 2
mz@ 7k(nr+nc+l)+zlng ,

which is the same as (7.56).

Now we present an improvement of Theorem 7.21 for the case where the underlying random
variable is a normal Gaussian instead of an arbitrary sub-Gaussian variable. The main difference
is that in this case, when || X || = 1, the quantity m||.A(X)||3 follows a chi-squared distribution
with m degrees of freedom. Therefore it follows from [153, Lemma 1] that (7.54) can be replaced
by

Pr{||A(X)[|3 = 1| > t} < 2exp(—c(t)m), (7.61)
where?8 2 3

By using this improved estimate of the tail probability, we can give an alternate bound for the
sample complexity.

Theorem 7.22. Define A : R"r*" — R™ as in Theorem 7.19, where the underlying random
variable is normal Gaussian. If

12 5. 2
> _ — — .
m 5 {7/{(7% +n.+ 1) + —1In f] , (7.63)

then A of (7.51) satisfies the RRIP of order k with constant §, with probability > 1 — £.

The proof is entirely parallel to that of Theorem 7.21 until (7.59). At this point, with ¢ =
(1 — 2¢)0, the exponent on the right side changes to
(1-2¢)326% (1- 26)3(53:|

ém(l —2€)%6% < m {

4 6
where (A) < (B) means that (B) replaces(A). Consequently, in (7.60),
1 (1-20%6° (1-2¢°6%]7"
é(1 — 2¢€)262 4 6 '

28Not that there is a typo in the line after [56, Equation (IL.3)].
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Now the expression inside the brackets can be written as

(1— 2¢)252 (1 21— 25)5) .

4

Next, for €, € (0, 1), we have that

Therefore

(1 —2¢)262 2(1 —2¢)d (1 —2¢)262
4 (1 3 > = '

So the sample complexity bound (7.60) now becomes

12 5. 2
> — “InZ
m2 s {7k(nr+nc+1)+4lnf},

which is the same as (7.60) with ¢ replaced by 1/12. Hence (7.56) gets replaced by (7.63).
Remarks:

1. Note that the estimate (7.63) is rather crude because we wish to permit any 6 € (0,1).
However, large values of ¢ in the RRIP are not realistic. If we were to restrict § to belong
to (0,0.5), for example, then in the above proof

w2
3 73
which would allow us to replace the factor 12 in (7.63) by 6.

2. By Theorem 6.16, a normal Gaussian variable satisfies (7.52) with ¢ = 1/2. If we were
to compute the corresponding constant ¢ using (7.53), we would get ¢ = 0.0201, and
1/¢ = 50. Hence, if we insist on a bound that holds for all § € (0, 1), the bound in (7.63)
improves that in (7.56) by roughly a factor of 4. If we are content with a bound that holds
for 6 € (0,0.5), then the bound (7.63) with 12 replaced by 6 improves that in (7.56) by
roughly a factor of 8.

We conclude this section by briefly describing (without proofs) another approach to matrix
recovery.

Suppose X € R™ %"« ig the unknown matrix that we wish to recover using probabilistic
methods. In (7.51), the data consists of the Frobenius inner products (A1, X)p, ..., (Am, X)F,
where each A; is a random matrix in R™"*"<. In such a case, the computation of the inner
product (A;, X)r can be time-consuming. In [50], it is suggested to choose each A; to be a
rank-one matrix of the form A; = bicj. In this case it is easy to show that

<b707T,X>F = b;rXCi,

which is just a standard triple product. The question studied in [50] is whether such rank-one
projections suffice to recover an unknown matrix X. The answer is shown to be in the affirma-
tive. For this purpose, the RIP is replaced by the robust uniform boundedness (RUB) property.
Complete details can be found in the paper.
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7.4 = Matrix Completion: Probabilistic Methods

In this section and the next, the emphasis is on the so-called matrix completion problem, as
opposed to the matrix recovery problem that has been the object of study until now. To state
the matrix completion problem precisely, we begin with some notation. Suppose the unknown
matrix X to be recovered belongs to R *"<_and assume without loss of generality that n,. < n..
If n, > n., X can be replaced by its transpose. For each index pair (i,7) € [n,] X [n],
define E; ; to be the binary matrix with a 1 in position (¢, j) and zeros elsewhere. Then the
collection of matrices {E; ;, (i, 7) € [nr] x [n.]} defines an orthonormal basis for R™"*"< in the
Frobenius inner product. Moreover, (E; j, X)r = X; ; for all X € R"*". Now suppose a set
Q C [n,] x [n¢], called the measurement set, is specified. To be specific suppose that |Q2] = m
and that Q = {(i1,1),--., (im, Jm)}- In the matrix completion problem, the m measurements
consist of (E; ;, X)r = X; j forall (4, j) € €, or, equivalently, the values X; ; for all (¢, j) € €.
The set of measurements can be equivalently expressed as Fq.X where

Eq = Z Ei;

(1,7)€Q

has an element of 1 if (¢,5) € €2 and 0 otherwise, and A.B denotes the Hadamard product.
Recall that if A, B have the same dimensions, then C' = A.B is defined by ¢;; = a;;b;; for all
(4, 7). With these conventions, the matrix completion problem can be stated as follows:

X = arg minrank(Z) s.t. Eq.Z = FEq.X. (7.64)

The above problem is a special case of minimizing the rank of an unknown matrix subject to
linear constraints. The general problem is NP-hard, and specializing the constraints to the above
form does not make it any easier—it is still NP-hard. Therefore we replace the rank function by
its convex relaxation, which is the nuclear norm, and replace the problem in (7.64) by

X = arg min ||Z||y s.t. Eq.Z = Eq.X. (7.65)

The issue, as always, is to find conditions under which the solution to the problem in (7.65) is
the same as that of (7.64). It turns out that there are some new wrinkles in the matrix completion
problem that are not present in the general problem of matrix recovery.

7.4.1 = The Coherence of a Matrix

One such key concept is called “coherence,” introduced in [54]. To lead up to this concept,
suppose the unknown matrix X has an entry of 1 at just one location, with the rest of the elements
being equal to zero. Without loss of generality, suppose that X;; = 1 while X; ; = 0 for
(4,7) # (1,1). In this case X has rank one. Moreover, if one were to sample X by computing
an inner product (B, X) g for some random Gaussian matrix B, then with probability one it can
be stated that By ; # 0, so that (B, X)r # 0. On the other hand, if we were to study the
matrix completion problem by sampling various elements of X, then all but one of the sampled
elements would equal zero. Consequently, unless (1, 1) belongs to the sample set €2, the solution
X to (7.64) (or (7.65) for that matter) would be the zero matrix, which would not equal X.

The source of difficulty in this case is that the matrix X has very high coherence. In [54],
two distinct measures of coherence are defined.

Definition 7.23. Suppose X € R"*"< has rank r and the reduced singular value decomposition
X =UXVT, where U € R**", V € R"*", and ¥ € R"*" is the diagonal matrix of singular
values of X. Let Py = UUT € R™ X" denote the orthogonal projection of R onto UR™.
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Finally, let e; € R"" denote the ith canonical basis vector. Then we define

Ny
po(U) := — max ||Pye;|3. (7.66)

T i€[n.]

The quantity po(V) is defined analogously, and

po(X) := max{po(U), uo(V)}. (7.67)
Next, we define
NN T
i (X) i= POV T, (7.68)
where
[M|loo = max [ M;;].
i€ny],j€[nc]

The coherence 11o(U) measures how closely any one of the n, canonical basis vectors is
aligned with the columns of U. Note that an equivalent characterization of o (U) is the follow-
ing: Let U%,i € [n,], denote the ith row of the matrix U. Then

po(U) = =% max [|[U7[3
T i€[n,]

It is easy to see that if one of the columns of U equals one of the e;, then ||Pye;||3 = 1 and
1o(U) = n,/r. Indeed n,./r is the maximum value for po(U). This is the difficulty with the
matrix whose (1, 1) entry is 1 and the rest are zero. The SVD of this rank-one matrix has U = ey,
and, as a result, this matrix has maximum coherence. On the other side, the minimum value for
po(U) is 1 and is achieved when every element of U has equal magnitude 1/,/n,.. One example
of a matrix with minimum coherence is provided by the class of Hadamard matrices. Given
two matrices A, B of whatever dimensions, it is possible to define their Kronecker product as
follows: Suppose, to be specific, that A has dimensions k x [ and B has dimensions r X s. Then
the Kronecker product A ® B has dimensions kr x [s and is defined as

auB auB

ale ale

The Hadamard matrix H (1) has dimensions 2! x 2 for every integer [ > 1 and is defined recur-

sively as follows:

H(1) = [ Lo } JH(l) = H(1) ® H(l - 1).

The elements of H () are all equal to £1, and the columns are orthogonal to each other. There-
fore it readily follows that the normalized matrix (1/2!/2)H(l) is orthogonal and has minimum
coherence of 1. Moreover, every submatrix consisting of all rows and some subset of columns
also has minimum coherence. As for p(X), it is easy to derive a quick (and possibly not very
tight) bound. The (i5)th element of UV T can be bounded via Schwarz’s inequality as

UV )il = | D wanve| = [(VI, U] < [Vl - [T
kelr]

MO(U)NO(V)T < '

NypNe NyNe
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Note that all of the preceding discussion applies irrespective of whether the sample set €2 is
chosen in a deterministic fashion or in a random fashion. As the title of this section indicates, the
emphasis in the present section is on matrix completion when the elements of the sampling set
) are chosen at random. This is in contrast with methods where the sampling set 2 is chosen in
a deterministic fashion, namely corresponding to the edges in a Ramanujan graph; that approach
is studied in the next section. Within probabilistic methods, it is possible to make a further
distinction. Some authors replace the rank function in (7.64) by the nuclear norm because (as
shown in Theorem 1.53) the convex relaxation of the rank function over the unit sphere in the
spectral norm is indeed the nuclear norm. There is, however, another method called “OptSpace”
that does not use nuclear norm minimization. Both methods are discussed here.

7.4.2 = Optimality Conditions for Nuclear Norm Minimization

In this subsection we first derive a necessary and sufficient condition for a matrix X to be a
solution of the constrained minimization problem in (7.65). However, this condition is not very
easy to apply. Therefore we present a sufficient condition that guarantees that X is a unique
solution to (7.65).

Theorem 7.24. Suppose X has rank r and let USV T be a reduced SVD of X. Choose matrices
suchthat [U U], [V V] are both square orthogonal matrices. Then X is a solution of the con-
strained minimization problem in (7.65) if and only if there exists a matrix M € R(r—7)x(ne=r)
with ||M||s < 1, such that if we defineY = UV " + U, MV, then we have

Proof. Let us convert the constrained minimization problem in (7.65) to Lagrangian form by
defining
T=1ZIxn+ > Xj(Eij, 2)p — (Eij, X)r),
(4,5)€EQ

where F,; denotes the matrix with a 1 in position (4, j) and zeros elsewhere. Because this
Lagrangian is convex, a matrix X is a solution of (7.65) if and only if 0 € 9J(X). Thus it is
just a matter of computing the subdifferential of J at X and checking whether the zero matrix
belongs to the subdifferential.

Now

OJ(X) =0l In(X)+ Y X\jEij.
(4,7)€Q

We can invoke Corollary 1.65 to see that
Al - In(X)={UV" + UMV, |M|s <1}.

Therefore
8J(X)={UV" + UMV, +W,||M||s < 1},

where
W = Z AijEij-
(4,7)€Q
Now X is a solution of (7.65) if and only if the zero matrix belongs to this set. Let us define
Y =UVT + U, MV, and note that W;; = 0 whenever (i, j) ¢ Q. Thus, in order for Y + W
to equal zero, we must have that Y;; = 0 whenever (i, j) ¢ Q. The values of Y}, (4,7) € 2 do
not matter because we can choose \;; = —Yj;.
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While the condition in Theorem 7.24 is both necessary as well as sufficient, it is not that
easy to use. Moreover, it guarantees only that X is a solution of (7.65)—not that X is a unique
solution. Now we present a sufficient condition under which the true matrix X is the unique
solution to the nuclear norm minimization problem (7.65). Such sufficient conditions are to be
found in various papers on matrix completion. The next theorem is roughly the same as [207,
Theorem 2] and is stated in this form in [41, Lemma 2]. Note that the theorem is “deterministic”
and there is nothing “random” about the theorem.

To state the theorem, suppose X = UXV T is the unknown matrix of rank 7 or less that is to
be recovered, where U € R"*", V' € R™*" and ¥ is diagonal of dimensions 7 x r. Define
T C R™ X" to be the subspace spanned by all matrices of the form UBT and CV T. It is easy
to show that the projection operator Py equals

PrZ=UU"Z+2zZVV' -UU " ZVV"
=UU'Z4+U, U] ZVVT
=uUu'zv,. V] +2vVT,

where U \U| =1, —UU " andV, V' =1, —VVT.

Theorem 7.25. Define o = r/n,.. Suppose there exists a’Y € R"*" such that the following
hold:

1. 'Y belongs to the image of Eq., thatis Y;; = 0, V(i,j) & (.
2. Y satisfies
@ 3
Pry —UVTe <z IPreMls <7 (7.70)

Suppose further that the operator norm of (1/a)PrEq. — I when restricted to the subspace T
is no larger than 1/2. In other words

|(1/a)PrEq.Z — Z|| < (1/2)|| Z||p, VZ € T. (7.71)
Under these assumptions, for any A € R"*" \ {0} such that Eq.A = 0, we have that
X+ Ally > [ X]|~, (7.72)

so that X = X is the unique solution to (7.65).

Proof. Suppose Eq.A = 0, so that ||[Eq.Al|p = 0. Then
|Eq.PrA|% = (Eq.PrA, PrA)p
= (PrEq.PrA — aPr A PrA)p + (P A, PrA)p
> al|PrA|G — a/2|PrAE = a/2|PrA|z,

where (a) follows from (7.71). Now, since || Eq.Al|r = 0, we have || Eq. Pr Al r = ||[Eq. Pr. Al .
Therefore,

[PriAlln > [[PreAllr > [|[Eq. ProAllr
> Va/2|PrA|p. (7.73)

Note that (7.73) implies that || P71 A||; > 0. Suppose that || Py Al|xy = 0. Then (7.73) implies
that || P7Allr = 0, and in turn A = P71 A + P7A = 0, which is a contradiction.
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Next, recall that for any matrix M, it is true that

|M||n = maX(U’V’T,M>F
u’,v’

over all matrices U’, V'’ with orthogonal columns. In particular, for a specific A, it is possible to
choose U, V) such that [U U], [V V] have orthogonal columns, and

ULV PriA)p = |ProAlly.
For such a choice, we have

X + Ay =@ OV +U0,. V], X +A)p
=O X ||y + UV + ULV, A)p
=Xy + (UVT + ULV, A)p — (Y, A)p
= || X[y + (UVT = PrY,PrA)p + (ULV)| — ProY, PrilA)p
> X |Ix = [UVT = PrY e Pralre + [PrsAlly = 1PrY s Prs Ally
> | X|lv — Va/32[PrAllr + (1 — [[Pr Y[ s)|Pre Al v, (7.74)

where (a) follows from the characterization of the nuclear norm, (b) follows from (U, V", X)p =
0, (¢) follows from (Y, A)p = 0, and (d) follows from Holder’s inequality. Now it follows from
(7.70) and (7.73) that

(= ProYls)IPreAlly > (1/4)[ProAlly = VVa/32|PrAll e,

where we use the fact that ||P7. A||x > 0. Substituting this fact into the last equation in (7.74)
shows that || X + Al|x > [ X||~-

7.4.3 = Matrix Completion via Nuclear Norm Minimization

Given that the optimization problem in (7.64) is NP-complete, a logical approach is to replace
the rank function by its convex relaxation (7.65). Specifically, we are interested in the question:
Under what conditions is the true but unknown matrix X the unique solution to the optimization
problem in (7.65)? In this setting one can distinguish between two distinct situations. If one were
to sample m out of the n,.n. elements of the unknown matrix X without replacement, then one
is guaranteed that exactly m distinct elements of X are measured. However, the disadvantage
is that the locations of the m samples are not independent, because once the first element has
been selected, there are only n,.n. — 1 choices for the second sample, and so on. Thus sampling
without replacement requires quite advanced probabilistic analysis. This is the approach adopted
in [54]. An alternative is to sample the elements of X with replacement. In this case the locations
of the m samples are indeed independent. However, the price to be paid is that, with some small
probability, there would be duplicate samples, so that after m random draws, the number of
elements of X that are measured could be smaller than m. This is the approach adopted in [207].
On balance, the approach of sampling with replacement is easier to analyze. Therefore, in the
present section, we present without proof the main results of [54] and [207], while referring the
reader to the original papers for full details. Note that, when the sampling matrix is generated at
random, the recovery of the unknown matrix can be guaranteed only with high probability that
can be made close to, but not exactly equal to, one.

Theorem 7.26. (See [54, Theorem 1.3].) Suppose X € R" *" has rank r, and let n =
max{n,, n.}. Suppose that m elements of X are sampled (without replacement), and define X
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as in (7.65). There exist constants C, c such that, if
m > C max{pu3, ,u(l)/2,u1, pon**}nrBlogn (7.75)

for some B > 2, then X = X is the unique minimizer of the optimization problem in (7.65), with
probability at least equal to 1 — en™P. Forr < Lo Yn/5 this estimate can be sharpened to

m > Cu0n6/5rﬁ logn (7.76)

with the same probability of success.

Now let us discuss the implications of this theorem. A general matrix of dimensions n,. X n.
has n,n. free parameters. However, because a matrix X of rank r can be factorized as X; X,
where X; € R"*" and X, € R"*", a rank r matrix has no more than r(n, + n.) free
parameters.?’ If n, = n, so that the matrix is square, the number of free parameters in a general
matrix is n? whereas the number of free parameters in a rank r matrix is no larger than 2rn. Thus
the bounds for the number of measurements m can be compared against both of these numbers
of free parameters.

By taking just the last term inside the maximum operator in (7.75), we get the lower bound

m > Cu0n5/4rﬁ logn.

Given that m would have to grow at least linearly with respect to the number of free parameters
(i.e., m = Q(nr)), the extra factor here is n'/*log n. In the other direction, if 7 = O(n'/?), for
example, then m = O(n7/ 4), which is not substantially smaller than n2. On the other hand, if
r is kept fixed while n is increased, then m can be quite a bit smaller than n%. The improved
bound in (7.76), where n®/4 is replaced by n8/°, requires that » < n'/® (because po > 1). Thus,
in order to be useful, the unknown matrix has to have very small rank. To illustrate, suppose
n = 220 = 10%. Then r < 2* = 16. If we take a more realistic size of n = 2'9 = 1,024, then
r < 22 = 4. Therefore the bounds on the ranks under which Theorem 7.26 is guaranteed to
achieve (probabilistic) recovery are unrealistically low.
Now we present the main result from [207].

Theorem 7.27. (See [207, Theorem 2].) Choose some constant 3 > 1, and draw
m > 32max{u2, o }r(n, + ne)Blog?(2n,) (7.77)

samples from [n,] x [n.] with replacement. Define X as in (7.65). Then, with probability at least
equal to 1 — ( where
¢ = 6log(ne)(ny +ne)? =20 4 n2-2VF, (7.78)

the optimization problem has a unique solution X, and X = X.

Comparing the bounds in (7.75) and (7.78) with n, = n. = n, we see that the term
n®/*rlogn in the former is replaced by nr log® n. after ignoring various constants. Also, unlike
in (7.75), the constants in (7.78) are explicitly displayed. Thus, in addition to the proof being
more straightforward, the bound is also better in the case of Theorem 7.27.

The key point to note is that the conditions in Theorems 7.26 and 7.27 are only sufficient
conditions. As with the basis pursuit formulation, it is possible to carry out some simulations on
phase transitions for nuclear norm minimization. This is done in [41], and the simulations show
that these conditions are in reality quite conservative, especially when the locations to be sampled
are selected in a deterministic fashion.

29 Actually the number is smaller, but this estimate is good enough for present purposes.
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7.4.4 = The OptSpace Algorithm

In this subsection we describe the OptSpace algorithm from [147, 148], a new approach to matrix
completion that does not depend on minimizing the nuclear norm. While the algorithm is easy
to describe, its analysis is quite advanced. Specifically, the algorithm involves optimizing a
nonconvex function on a compact manifold using a steepest descent technique, and thus involves
a great many technical details. For this reason, we describe the algorithm and refer the reader to
the original publications for the analysis.

There are two papers that describe the OptSpace algorithm, namely [147] and [148]. In [147],
it is assumed that the unknown matrix to be completed is “truly” row rank, and not “nearly” low
rank, and also that the measurements are noise-free. Both of these assumptions are removed in
[148]. In the interest of simplicity, we describe only the simpler version of OptSpace as given in
[147].

As before, let X € R"™ %" be the unknown matrix to be recovered, and let r be a known
upper bound on its rank. Let Q C [n,] X [n.] be a measurement set, and let F, denote the
corresponding measurement matrix. Let G = Eq.X denote the set of measurements available to
the learner. The OptSpace algorithm consists of three steps.

Trimming: The first step is to remove entries from columns (or rows) that are over-repre-
sented in the random sampling. If || is the total number of samples, then || /n,. is the average
number of samples per column. If any column contains more than twice this many samples, then
all entries in the column are set equal to zero, and the resulting “trimmed” matrix is denoted by
G.

Projection: Construct the best rank-r projection of the trimmed matrix G, say G = UyS, Vo',
using a singular value decomposition.

Cleaning residual errors: Once the trimmed matrix is projected onto the set of rank r
matrices, the rank-r matrix UpSoV," is not necessarily a good approximation to the original
measurement matrix G. This is addressed by solving an optimization problem. Define

F(U,8,V) = |Ea.(G-USV")|%,
and define the function of U and V' alone as

FU, V)= min F(U,S,V).
SERTXT
Note that, for fixed U, V, the function F (U, S, V) is quadratic in S. Hence it is straightforward
to compute F'(U, V). However, F'(U, V) is a highly nonlinear function in its arguments. In the
cleaning step, the aim is to minimize F'(U, V') over all matrices U, V' with orthonormal columns,
that is, the set of all U, V that satisfy U U = VTV = I,. Itis suggested in [147] to do this
using steepest descent, starting at (Up, Vp).

In [148], the matrix X is not assumed to be exactly of rank r, and it is permitted to have
measurement noise, so that the information available to the learner consists of Eq. X + W,
where W is a noise matrix. The OptSpace algorithm proceeds along similar lines, with just a few
extra modifications to cater to the more general situation.

7.5 = Matrix Completion: Deterministic Methods

In the previous section the focus was on matrix completion when the elements to be measured
were chosen at random. In the present section, we study the case where the measurement matrix
is chosen in a deterministic fashion, specifically, as the biadjacency matrix of a Ramanujan graph.
Two types of results are presented. First, it is shown that relatively easily constructed matrices
provide a decent approximation to the unknown matrix. Second, it is shown that, under suitable
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conditions, it is possible to recover the unknown matrix exactly.?? In either case, Ramanujan
bigraphs play a central role, so we begin with a study of this topic.

7.5.1 = Ramanujan Bigraphs

Suppose B € {0,1}"*™. Then B can be interpreted as the biadjacency matrix of a bipartite
graph with n,. vertices on one side and n. vertices on the other side. By convention, the side
with more vertices is called the “left” side and the other is the “right” side. In what follows, it is
assumed that n,. < n., so that columns of B correspond to the left side and rows to the right side.
The bipartite graph associated with B (that is, the bipartite graph for which B is the biadjacency
matrix) is said to be left-regular if every left vertex has the same degree, right-regular if every
right vertex has the same degree, and biregular if it is both left-regular and right-regular. Due to
the convention that n,, < n., left-regularity is equivalent to the requirement that every column
of B has the same number of ones, and right-regularity is equivalent to the requirement that
every row has the same number of ones. By a slight abuse of language, we associate left- and
right-regularity with the matrix B itself, as well as the bipartite graph corresponding to 5.

Suppose B € {0, 1}"*"« is biregular with right (or row) degree d,. and left (or column)
degree d.. We refer to such graphs as (d,., d..)-biregular. It is clear that n,.d, = n.d., or equiva-
lently n,/d. = n./d,. Moreover, biregularity implies that

1, B=d.1, ,Bl, =d1,,. (7.79)

It is easy to verify that v/d..d. is the largest singular value of B. This motivates the following
definition.

Definition 7.28. Suppose B € {0, 1}"*"< is (d,, d.)-biregular. Then the bipartite graph corre-
sponding to B is said to be a Ramanujan bigraph if every nonzero singular value o; of B other
than /d,d. =: oy satisfies the bound

Wdr —1—de =1 <oy < \d —1+/d. — 1, (7.80)

o7 — (dy — 14+ d. — 1)| < 2y/d, — 1\/d. — 1. (7.81)

It is obvious that if B is a square matrix so that the corresponding bipartite graph is balanced
(and d, = d.), then the inequality (7.80) reduces to (4.28), because the lower bound is trivially
satisfied. Thus when n,, = n., a Ramanujan bigraph is the same as case 2 of Definition 4.13.
The definition of a Ramanujan bigraph in terms of (7.80) is given in [139], while the definition
in terms of (7.81) is given in [220].

Note that in [176], a bipartite graph satisfying only the upper bound in (7.80) is referred to as
an “irregular” Ramanujan graph. Other possible terms are unbalanced or asymmetric Ramanujan
graph.

In the case of d-regular graphs, we have Theorem 4.16, which implies that if we keep d fixed
and let n increase, then 2v/d — 1 is the best possible bound on the second largest eigenvalue of
the adjacency matrix. An analogous bound for bipartite graphs is proved in [109].

or equivalently

Theorem 7.29. Fix d,,d., and let n,,n. approach infinity, subject of course to the constraint
that n,.d, = ned.. Let o5 denote the second largest singular value of B € {0,1}"*"<. Then

liminf oy > \/d, — 14+ /d. — 1. (7.82)

30Much of the material in this section is a part of the doctoral research of Shantanu Prasad Burnwal at the Indian
Institute of Technology Hyderabad. As such, only the theorems are presented, and the reader is referred to [41] for the
proofs.
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Therefore the upper bound in (7.80) is the best that one can hope for.

In Section 4.3.2, we have presented two explicit constructions of Ramanujan graphs. We
also mentioned some recent results in [175, 176, 177] which show that, for every degree d and
number of vertices n, there exists a d-regular Ramanujan bipartite graph with n vertices. Along
these lines, it is also shown in [176] that, for every pair of integers (d,, d.), both > 3, there exist
infinitely many (d,., d..)-biregular Ramanujan bigraphs. However, there are very few explicit
constructions of Ramanujan bigraphs. The papers [16, 17] present some abstract constructions.
However, these constructions are not so explicit as those in [172, 181].

Against this background, we now present an explicit construction based on LDPC codes.
This construction is presented as [41, Theorem 8] and can be thought of as the first (and thus
far the only) explicit construction of a Ramanujan bigraph. Let ¢ be any prime number, and let
P € {0,1}7%7 denote the “right shift” permutation. Thus P;;_q = 1fori > 2, P, = 1,
and the remaining elements are zero. Next, let [ be any integer between 2 and g, and define
B(q,1) € {0,1}/9%¢ as the matrix with the (i, j)th block in {0, 1}7*% equal to P(=DG=1) _In
greater detail, B(q, () equals

Iq Iq Iq Iq
I, P P2 pa-t
4 —
B(g, ) = | 1a p? P ... p2a-1 _ (7.83)
[, Pl pA-n . pUu-DG-D

Note that P? = I;. Therefore the various powers of P can be computed modulo g.

Theorem 7.30. The matrix B(q,1) has a singular value of \/1q, [(q — 1) singular values of \/q,
and | — 1 singular values of 0. Therefore, whenever 2 < | < q — 1, B(q,l) defines a Ramanujan
bigraph. With | = q, B(q, q) defines a balanced Ramanujan bipartite graph.

The proof can be found in [41].

Next we present the rationale for using the biadjacency matrix of a Ramanujan bigraph as the
measurement matrix Eq. Suppose we could choose Eq = 1,,, xn,, the matrix of all ones. Then
Fq. X = X, and we could recover X exactly from the measurements. However, this choice of
FEq corresponds to measuring every element of X, and there would be nothing “compressed”
about this sensing. Now suppose that E, = B, the biadjacency matrix of a (d,., d.)-biregular
graph. Then o1 = v/d,d. is the largest singular value of B, with corresponding row and column
singular vectors u; = (1/+/d,)1,, and v; = (1/y/d.)1,.. Let oo denote the second largest
singular value of B. Then

B = o1u1v] + By, where | Bs|s < 02,

where || - ||s denotes the spectral norm of a matrix (i.e., its largest singular value). Using the
formulas for u; and v and rescaling shows that

NeNe NrNe
SR 4 e By,
d.d. rxne £GP

This formula can be expressed more compactly by defining the constant « as

[drde _ dr d
o = —_— = —,
NyrNe N Ny
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where the various equalities follow from the fact that n,.d,, = n.d.. One can think of « as the
fraction of elements of the unknown matrix X that are sampled. Since 1,, x,..X = X, we see
that

Ipx—x4mx,
(0%

where M = (1/a)) B2. Therefore

=|M.X]|s. (7.84)

HlB.X _x
@ s

Now note that

g2 NyNe (o))
\/j = — = . = — .
|| HS a 02 A/ drdc o1 V1rTe

Therefore, the smaller o9 is compared to oy, the better the approximation error is between
(1/a)B.X and the unknown matrix X.*' Now, a Ramanujan bigraph is one for which this
ratio is as small as possible.

7.5.2 = Some Properties of the Max-Norm and the Nuclear Norm

In this subsection we introduce the so-called max-norm, which provides an alternative to the
nuclear norm as the objective function in the matrix completion problem. The advantage of the
max-norm is that it is possible to establish bounds between the estimated matrix X and the true
but unknown matrix X without invoking the coherence of the unknown matrix. This is shown in
the next subsection. The disadvantage is that, in contrast with nuclear norm minimization, there
are no conditions available under which exact recovery of the unknown matrix is possible. To
lay the foundation for these results, in this subsection we derive several properties of both the
max-norm and the nuclear norm.
Recall from Section 1.2, specifically Table 1.1, that the 2 — oo induced norm of a matrix
A € R" %" is given by
141200 = max la’]l2, (7.85)

r

where a' denotes the ith row of A. We can now define the max-norm.

Definition 7.31. The max-norm of a matrix A € R"*"< is denoted by || A|| s and is defined by
[Allar = min(|U 2500 - |V [|l2—500) 8.2 UVT = A, (7.86)

where the maximum is taken over all integers | and all U € R <!V € R™*! that satisfy
Uv'? = A

Note that the max-norm is also referred to as the y2-norm. It is introduced in [162], where
several of its properties are analyzed.> Apparently the first paper to propose the use of the max-
norm to address the matrix completion problem is [222]. An excellent review of the rationale
behind the max-norm, including a discussion of why it is a good proxy for the rank of a matrix,
is found in [156].

31Note that ny, ne are the dimensions of the unknown matrix and are therefore fixed.

32Note however that in [162], the factorization is taken as A = XY and the quantity to be minimized is taken as
| X|l2— 00 - IY]]1—2. This is clearly equivalent to (7.86), because, as is evident from Table 1.1, we have that ||Y||1 52
=Y |2 c0-
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Next we give various interpretations of the max-norm and also relate it to the nuclear norm.
In order to prove these results, we make heavy use of the concept of dual norms.

Definition 7.32. Suppose || - || is @ norm on R"*"<. Then its dual norm on R"*"<, denoted by
Il - I, is defined by

IX]" = max (X, Y)p| = max (X,Y)p = max. (X, Y)p| = \|131/1|2\1§1<X’Y>F' (7.87)

Iyi<i Iyi<i 1Yll=
“I¥ = || - lls- The following properties of dual
norms are easy to prove.
1. Suppose || - ||a, || - ||» satisfy ||A]ly = 7||Allo for all A € R™ *™<_ for some constant ~.
Then
X115 =Y1X]l5, vX € R™ 7. (7.88)

2. Suppose || - las || - ||o satisty || Ao < ||A||» for all A € R™*"™e_ Then

X115 < 1 X5, VX € R >"e, (7.89)

Next we give geometric interpretations of what the unit balls in the max-norm and the nuclear
norm look like. The discussion is facilitated by some notation. Let B(r, || - ||) denote the ball of
radius r in the norm || - ||, centered at the origin. Where warranted, the underlying space will be
displayed as a subscript on B. Next, let S,, denote the set of column vectors & € {—1,1}", the
set of “signed” n-vectors. Analogously, define

§rrXne . {Q,BT e A Snwﬁ € S”C}7

the set of “signed” rank one matrices or order n, X n.. With these notational conventions,
we begin our analysis of the max-norm and the nuclear norm. The main results are stated in
succession, followed by their proofs.

It is evident from the definition of the nuclear norm that

B, |- |lv) = Conv({uv" : [lull2 = 1, [v]l2 = 1} U {0}).

In words, the set {A : ||A||x = 1} is the convex hull of rank-one matrices of the form uv ',

where both w and v have unit ¢3-norm. The set {A : ||A||xy < 1} is the convex hull of such
rank-one matrices together with the zero matrix.

A similar characterization of the unit ball in the max-norm is not available at present. How-
ever, one can find both a subset and a superset of 5(1, || - || ar). These bounds involve a universal
constant known as “Grothendieck’s constant,” denoted by K. The constant K¢ is defined in
Theorem 7.33 below, where an upper bound for K is also provided; see (7.91).

Theorem 7.33. (Grothendieck’s inequality [114].) There exists a universal constant K¢ such
that, for every set of integers I, n,.,n. > 1 and every matrix A € R"*" we have that

Uzs Ny Nec

ne
max a; @) | < K max a;jo . 7.90
16:ll2<1.l[b, l2<1 ZZ i (0 = G aes,, pesn. 2> aijoifs (790

=1 j=1 =1 j=1

Moreover
™

<— = ~1.7821. 7.91
~ 2In(1 +v/2) 79D
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Note that the maximum on the left side of (7.90) is taken over all unit /5-norm vectors
01,...,0,,.,01,...,0, € R!, where the integer [ is arbitrary and can be chosen so as to
achieve the maximum.

Both sides of (7.90) have obvious interpretations as dual matrix norms. Therefore Grothen-
dieck’s inequality is equivalent to the following restatement in terms of matrix norms. Note that
the induced matrix norm || - ||oo—1 is defined in (1.26) and || - ||%,_,; is its dual.

Theorem 7.34. (See [223, Corollary 2].) For every pair of integers n,.,n. > 1, we have that

[Alloo—1 < [|All3s < Kol Alloomr, VA € R, (7.92)

Consequently
B(L [ - [5e—1) € B(L | - [lar) < KB, [ - [[51)- (7.93)
Since both || - ||co—1 and || - |3, are norms on R™ ™, it is not surprising that they are

equivalent. What is surprising however is that the constants in (7.92) are independent of the
dimensions n,. and n..

Theorem 7.34 allows us to state the following result, which states that the unit ball in the
max-norm contains the convex hull of all rank-one sign matrices (plus the zero matrix) and is in
turn contained in the same set expanded by a factor of K.

Theorem 7.35. We have that
Conv(S" ™ U{0}) C B(1,] - |ar) € KgConv(S™ ™ U {0}). (7.94)

Now we introduce yet another norm which is a kind of nuclear norm and relate it to the
max-norm.

Definition 7.36. The norm || - ||, on R"*"< is defined by

Xy = mi il s.t. X = o) i € Sn,.s M- .
1 Xl tri?é%%l:]u“t %l:]da,@zforsomea €Sy,.,B€S,, (7.95)

Thus || X ||, is analogous to the nuclear norm when X is expressed as a sum of rank-one sign
matrices. This is brought out in the next theorem, which gives an alternate characterization of
the nuclear norm. See also Problem 7.3.

Theorem 7.37. Define a norm || - || on R"*" as follows:

X = min 3l s X = 37 ditgo] 6512 =1 o5l =1, Y €[], (7.96)
7 jel JEl]

Then || - [la = || - [| n-
Theorem 7.38. || - ||co—1 is the dual norm of || - ||,,.. Consequently
[ XNar < 1 Xly < Kel| X]|a (7.97)
Next we give yet another alternate characterization of the nuclear norm.
Theorem 7.39. (See [223, Lemma 1] or [209, Lemma 1].) We have that
X[l = min([|B||p - |C]|r) s.t. X = BCT (7.98)
:min%(||BH%+ IC|I%) s.t. X = BCT. (7.99)
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Theorem 7.39 allows us to relate the nuclear and max norms.

Theorem 7.40. (See [162, Lemma 3.4].) Let A € R"*", Then

1
NS

Now that the main results have all been stated, we proceed to prove them.

[Alln < [[Allar < [|Alln- (7.100)

Proof of Theorem 7.34. Recall that

[Alloo—1 = max [ Ay]:.
lyllo=1

The maximum of a convex function over a convex set occurs at an extreme point of the convex
set. For the unit ball in the /,,-norm, the extreme points are the sign vectors. Therefore

A = Ayllr.
14lloe—1 = maox Ay

However, since the dual of the ¢1-norm is the /,-norm, it is also true that

|4yl = max |(z, Ay)| = max |o” Ay|.
llzlloo=1 llz]loe=1
Again by the same argument
Ny MNe
[Allcos1 = e z" Ay| = s ;;aijxiyj 7

which is the right side of (7.90) without the coefficient K.
Next, from the definition of the max-norm, it follows that

B(L | lla) ={H =02" : [Oll2s0c <1,[|®]|2500 < 1}.

This is because if
H =BCT,|[Bl2s0 - [Cllzsoe <1,

then we can always scale B, C' so that the product is the same but both matrices have norms less
than one. To put it another way*

B(L, |- lm) = {H = [(6",¢")],6".¢" € Bi(L,|| - l2)}-
This is because if we partition ©, @ as
o' &'
O=| : |eR"Md=| : | cR™X
oo o

then |[©]|200 < 1, [|®]J2500 < 1} is equivalent to |||y < 1 fori € [n,], |¢/|]2 < 1 for

J € [nel. B B B

33Note that here and elsewhere, we use the symbol (Oi, ¢*) to denote the inner product of row vectors. This saves
some cumbersome notation.
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Now, from the definition of the dual norm, it follows that

Allz; =  max A H max ai; (8", @) (7.101)
1Al = g,y o4 H el = uelnzn¢1u2<1;; !

which is the left side of (7.90). Hence Grothendieck’s inequality implies that
1Al < Kl Alloos1,
which is the right inequality in (7.92). To prove the left inequality in (7.92), choose | = 1, and

aq b1
. B

an
Then ||a)2—00 = 1 and ||B]|2—s00 = 1. Therefore ||a3" ||5; < 1. It follows that

Ny Nec

HAHJW > |<A alg ZZGU L/Bj .
=1 j=1
Since this is true for every choice of signed vectors «, 3, it follows that

[Alloo—1 < (1]

This completes the proof of (7.92). Now (7.93) is a ready consequence of (7.92) and properties
(7.88) and (7.89) of dual norms.

Proof of Theorem 7.35. This consists of showing that the unit ball B(1, || - ||%,) is the convex
hull of all signed rank-one matrices and the zero matrix. Note that

X% <1 <= [(A,X)r| <1, VA€ B, - [loo)-
Equivalently
1X)5% <1 <= |(A, X)r| < 1whenever [(A,Y)p| <1, VY € S X",
This completes the proof.

Proof of Theorem 7.37. Let X = UXV T be a reduced SVD of X, so that U € R**", V ¢

R"*" have orthonormal columns, and ¥ = diag(oy, ..., 0y). Therefore X =}, O’ZU,UT

7
and moreover, the matrices u;v, are orthonormal under the Frobenius inner product. Therefore

= (X, u;v, ) for each i € [r]. Now suppose that
X =D dibé;
Jell]
for some integer [, real numbers d;, and unit £5-norm vectors 6;, ¢;. Then

o = (ugv F—Zd uivi 0,0 F—Zd ui, 05) - (vi, d;).
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Therefore

Zo—l Zd Z uu <Uza¢J>

i€[r] JEl]  i€lr]
Define

¢ = 3 {unby) - (v, 6,).

i€[r]
Then by Schwarz’s inequality

e < (D (i 007 | | D i g | < 110;13 - llel3 < 1,

i€r] i€[r]

where we use the fact that both {u;}}_; and {v;}]_, are orthonormal systems, and both #; and
¢; are unit vectors. Thus

Sooi =Y dic = | dies| < S lds eyl < S ldyl.

€lr] JE[ JE[ JEl JEl

Taking the minimum of the right side with respect to all representations of X in the form (7.96)
shows that | X||x < || X||q-

In the other direction, choose | = r, d; = o;, 0; = u;, and ¢; = v;. This shows that
1 Xa < I X[~

Proof of Theorem 71.38. By definition, the dual norm of || - ||,, is given by

Al} = max [(X,A
141 = max [(X, Al

It is now shown that, for all A € R"" %", two statements are true:
(X, A)p| < ||A|loo—1 Whenever || X ||, <1, (7.102)

and
X with [| X ||, < 1.t (X, A)p = [|A] o1 (7.103)
These two relationships suffice to show that || - ||o—1 is the dual norm of || - ||,,.

To prove these two claims, recall from (7.93) that

A = T A3
|Allsor = _max |’ 4B

o ne

Now suppose || X ||, < 1, and choose [, d1,...,d;, a1,...,00 € S, and Bq,...,8, € S,

such that
1€l i€l
Then

(X, A)rl Zdi@iﬁ?w‘b SZ\dz‘\'K%@T»AH

ie[l) i€l

IN

> 1dil | - 1 Allsom1 < | Alloos1-

i€l]

This establishes (7.102).
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To establish (7.103), choose @ € S,,,, 3 € S,,, such that &' AB = ||A]|oo1.3* Letl =1
and define X = a3". Then || X||, <1, yet

(X, A)p =a’ AB = || Al|oos1-

This completes the proof that || - ||,, is the dual norm of || + ||oo—1-
Now (7.97) follows from (7.92) and the properties of dual norms.

Proof of Theorem 7.39. Suppose X € R"~*" has rank r, and let X = UXV " be its reduced
SVD, so that U € R™*" and V' € R™*". Now suppose that X = BC'T for some B € R"~ <!,
C € R™*! Then, using the facts that U'U=V'V =1, we get

Y=U'XV=U'BC'V=U"B(V'C)=GH",

where G=U"TBeR™>* H=VTC eR*.

Now it is established that |G| < || B||r, |H||r < ||C| F. Let g;, b; denote the jth columns
of G, B, respectively, and observe that g; = U " b;. Further, U T U = I, implies that |[U " || = 1,
so that [|g;||2 < ||bj]|2 for all j € [l]. Finally

IGIE =D llgll3 < > lIbsl3 = 1BII%

Jell Jell

By entirely analogous reasoning, it follows that || H||r < ||C||F.
Next, it is shown that if © = GH " for some G,H € R"*! then

IGI% + | H || > 2o, (7.104)

1Gllr +HllF = llof, (7.105)

where o € R, is the vector of singular values of X. Let us begin with (7.104). The relation
¥ = GHT implies that (g*, h?) = o;, where g°, h* denote the ith rows of G, H, respectively.
The same relation also implies that (g%, h7) = 0 whenever i # j, but we do not make any use of
this. By Schwarz’s inequality, it follows that

lg'll2 - 1A 2 > (g*, h") = 0.

For convenience let a; = ||g|2, B; = ||h||2. Now a simple exercise using Lagrange multipliers
shows that
min(a? + B7) s.t. a;f3; > 0; = 204,

corresponding to the choice o; = B; = /0;. In other words
(9", 1) = o = |g'll3 + [In'[13 > 203

Therefore GH T = ¥ implies that

IGIE +1HIE =D (lg'll3 + I1h7115) =2 ) 05 = 2| X |-

i€[r] i€lr]

It has already been established that if X = BCT, then |G||r < |B|
Therefore

rs [Hl[F < ||C]F.

X =BCT = |B| +[Cl% > 2IIX]|x.

34Note that it is NP-hard to actually find such a pair c, 3. But such a pair surely exists.
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To prove (7.105), observe that
Il 1HE = [ Y a2 | [ 3267,
i€(r] JE|[r]

where as before a; = ||g°||2, B; = ||h7||2. Itis again a simple exercise using Lagrange multipliers
to show that

min Z o? Z [3]2 st.aifl; > o; = ||o]|i,

i€[r] J€lr]
or equivalently
1/2 1/2
min Z O(? Z 6J2 st.oaf; > 05 = llor]]1-
i€(r] J€r]

Thus
X =BC" = |B|r-|Clr =2 |Glr-|H|r > |o].

To complete the proof, for a given matrix X, we select B, C' such that the inequalities in
(7.104) and (7.105) become equalities. Let X = U SV T be the reduced SVD of X, and choose
B = UX'Y2, C = VX2, Then, because each column of U and of V has unit {5-norm, it
follows that | B||% = ||C||% = ||o |-

Proof of Theorem 7.40. Suppose B € R"*!. Then

1Bll200 = max [[b']2 = [|6]| o,
i€[n,]

where 6 = [||b!]|2. .. ||b"" 2], while
[Bllr = [16]]2 = (6]
Therefore, if X = BC'T, then
[Bll2=00 - [Cll2—oc < IBllF - [[C]F-
The definition of the max-norm and (7.99) now lead to

min_|[Bllaseo - [Cllasee < min ||B[|r - [|C][F,
BCT=X BCT=X

which is the right inequality in (7.100).
To prove the left inequality in (7.100), we prove instead that

XI5, < Varmel| X ||s, VX € Rrrxne. (7.106)

Because || - ||s and || - || v are dual norms of each other, (7.106) coupled with (7.88) and (7.89)
imply the left inequality in (7.100). To prove (7.106), we prove instead the following equivalent

statement:
1Al <1 = (X, A p < /nenc|| X s- (7.107)

Accordingly, suppose that | A||y; < 1, and choose U € R XV e R™*! guch that

A=UVT ||Ull2500 < 1,[|V]l25500 < 1.
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Then

(X, A)p = (X, UV )p = > (X,ujv])

Jell]
= u Xv; < | Xls D llugllz - [l
JE(] JE[]
1/2 1/2
< IXls [ S s 3 > I3
JE[] JE[]
1/2 1/2
= IXlls [ S )3 >3
i€[ny i€[n.)

S vV nrncHX”Sa

because ||u’||3 < 1 for all 4, and ||v*||3 < 1 for all i. This establishes (7.107).

Problem 7.3. By mimicking the proof of Theorem 7.38, prove the following: Suppose p,q €
[1, 00|, and define the associated norm

X g :=min Y |ds] 5.0 X = Y ;60 105l = L, 16515 = 1. ¥5 € [I).
7 el i€l
Show that || - ||,p.q is the dual of the induced matrix norm || - || p— .

7.5.3 = Error Bounds Using the Max-Norm

In this section we present some bounds on the reconstruction error between the true matrix X
and the matrix X recovered using max-norm minimization. In the literature to date, such esti-
mates have been given for square matrices. The results presented here extend such estimates to
rectangular matrices and also improve upon earlier bounds. The contents of this subsection are
taken from [41].

Let us recall the problem formulation. There is an unknown matrix X € R""*" of rank r
or less, where r is a known upper bound. There is also a measurement set 2 C [n,] x [n.] and
the associated measurement matrix Eq € {0, 1}"*"< defined by

1 if(,5) € Q,
(Ba)ij _{ 0 if (i,?) Z Q.

The data consists of the values X, (4, j) € Q, or equivalently the Hadamard product Eq.X.
The objective is to construct an approximation to X.

Throughout this subsection, it is assumed that the matrix Eq, is the biadjacency matrix of
a biregular graph with row degree d,. and column degree d.. Therefore 1,1 Eq = dclzc and
Eql,. = d,1,, . Moreover, the largest singular value of Eq is 01 := +/d,d., with associated
row and column singular vectors 1, and 1,,_, respectively.

In Theorem 7.41, an estimate is constructed via max-norm minimization, that is,

Xy = arg min || Z|ar st. Eq.Z = Eq.X, (7.108)
Z

Theorem 7.41 is an extension of [131, Theorem 2] to rectangular matrices.
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Theorem 7.41. Suppose Eq, is (d,., d.)-biregular, and let oo denote the second largest singular
value of Eq (and of course s1 = \/d,.d.). Suppose X € R"*"<  and define

X := argmin ||Z|m s.t. Eq.Z = Eq.X. (7.109)
ZERnr Xne
Then
p_— IX - X|% < 4ch||X||M (7.110)

Note that there are no assumptions regarding either the coherence or the rank of the unknown
matrix X. Also, the bound given in (7.110) improves the bound in [131, Theorem 2] by a factor
of two, in addition to generalizing the result to rectangular matrices.

Now we present a proof of Theorem 7.41. A key part of the proof, known as the “expander
mixing lemma” in [136, Lemma 2.5], is of independent interest and is stated here as Theorem
7.35 below. This theorem generalizes the result in [136, Lemma 2.5] in two ways. First, the
bound is tighter, and second, the result is applicable also to rectangular graphs. Note that in
[136], the expander mixing lemma is credited to [7].

Theorem 7.42. (Expander mixing lemma for biregular graphs.) Suppose A € {0, 1} > js
(dy, d.)-biregular. Let |E| = n,d, = n.d. denote the total number of edges, and let o4 denote
the second largest singular value of A. Finally, for any subset S of right vertices and any subset
T of left vertices, let |E(S, T)| denote the number of edges connecting these subsets. Then

€8, )| 1S]1T) |sw 7|
7|€| — ‘5‘\/ \T 1 e (7.111)
S S( Te
5\/ - | i |- 7| .
40_1 (7.113)

Remarks: For d-regular graphs with n vertices, the bound in (7.111) becomes

‘|EST Tl’_d\/—T\/l_W 1— Z') (7.114)

This can be contrasted with the bound in [136, Lemma 2.5], which, after a little manipulation, is

’|E(S’T) _ 18l |T|‘ <22\ /1111 (7.115)
Clearly, the bound in (7.114) is smaller than that in (7.115), especially as |S|, |T'| become large.
In the limit, if |S| = |T'| = n, the left side of (7.114) (or (7.115)) becomes zero, as does the bound
on the right side of (7.114), but not the bound in (7.115). Therefore (7.111) is an improvement
over the existing bound. Equation (7.112) is the same as (7.111) but written in a form that is
symmetric in .S and S¢, as well as T" and T°. Finally, note that the right side of (7.113) can also
be written as oy /(4071).

Proof. Let r denote the rank of A, and write

A=USVT =Y ouw,

1€[r]
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The biregularity assumption implies that

v =V dpde,uy = (1/\/777)1717»”1 = (1/\/”70)17%'

Now let 15 € {0,1}"", 17 € {0,1}" denote the indicator vectors of the sets S and T, respec-
tively, and note that £(S,T) = 1} Alr. Carry out an orthogonal expansion

1s = Zaiui+a71T: Zﬁﬂ)r"b»

i€[r] i€lr]

where a” A = 0, Ab = 0. Also observe that

o = (ls,u1) = <1i/7$—:h> = \|/57:T|r’61 = \/1%
Next
(8, T)| =15 A1y = > ciif3;
i€[r]
=via1f + ZUiOéiBzw (7.116)
i=2
Therefore

E(S,T)| = vieny =Y dicvif3;.
i=2

Next, by Schwarz’s inequality, it follows that

- /2 , . 1/2 - /2 , . 1/2
() (5 < (5 (59"
1=2 1=2 =2

=2

r
Z Uz‘%ﬂi
i=2

Note that

. S S
>oa? = sl - ot = Isi - BE — 151 (1- ),

i=2 " e

and similarly

c

e a
>oar=m(1-11).

This implies that

|S| 1/2 ‘T| 1/2
< oo\/|8]- T (1—n> (1—) . (7.117)

e

T
Z Uiaiﬂi
i=2

Substituting this into (7.116) gives

‘S| 1/2 |T‘ 1/2
<oy (1-2) 7 (1= B

Ne

’5(& )|  voap
€] €]
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The proof is concluded by showing that
via1 P . @ @

€l ne one
Now
de
1/104161 = |S| . |T
while
IE| = n.d, = nede = \/npdined,.
Therefore
ok __1 Li)-jr = 211
€l Vnedingd, Ny Ne

This completes the proof of (7.111).
To prove (7.112), observe that |S¢| = n, — |S| and |T°| = n, — |T'|. Substituting these into
(7.111) gives (7.112).
To prove (7.113), observe that |S| 4+ |S¢| = n, and |T'| + |T°| = n.. With these constraints,
we infer that
1S+ 18] < /4, 1T - [T9] < n/4.

Now write |£| = v/d,-d.n,n.. Substituting these relations into (7.112) gives (7.113).

The proof of Theorem 7.41 makes use of the following estimate, which might be of indepen-
dent interest.

Theorem 7.43. Suppose Eq, is (d,., d.)-biregular, and let o5 denote the second largest singular
value of Eq. Suppose R € R"*". Then

1
) = > Ryl < 2RI, (7.118)
g1

NyNe ..
(w)e[nr]x[nc] (i.4)€Eq

< 2 Kgl|R| . (7.119)
g1

The theorem states that the average value of the elements of an arbitrary matrix R is fairly
well approximated by its average over the vertices of a biregular graph. The bound in (7.119)
improves upon the bound in [131, Theorem 8] by a factor of two, in addition to generalizing the
result to rectangular matrices.

Proof of Theorem 7.43. To simplify notation, we use the shorthand
D Ri= > R
2% (i,5)€lnr]x[nc]

and we also use F instead of Eq.
We begin by proving the theorem for rank-one sign matrices of the form M = aﬁT, where
both «, 3 have only £1 as elements. Define

A={ien]:a,=1},B:={j€[n]:p; =1}

Thenitisclearthatc =14 — 14¢,3 = 15 — 1gc. Now define J = 1,, 1—r (the matrix of all
ones), and observe that 1,,, = 14 + 14¢, 1,,, = 15 + 1p.. Now define M’ = (1/2)(M + J),
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M = 2M’ — J. Then some elementary algebra gives M’ = 141] + 14c17.. We can now
apply the expander mixing lemma Theorem 7.42 to such a matrix, which gives

1 1 1
P ZMij Z Mij| = Nt Z(QMi/j -1)- E Z (2Mi/j -1)

i,J (z,])EE i,J (i,5)€€
=2 Y Mg Y M
NypNe 4
1,J (z,j)ES
o[BI | [A%- 1B |E(A B)| _ |£(A%, B)|
NpNe NpNe I€] I€|
<9 |A[-|B| |€(A, B)| n |[A°| - [B°| |€(A°, BY)|
NypNe I€] NypMe I€]
<2
01

where the last step follows from (7.113).
Now let R be an arbitrary matrix, and express R as » , 1M, where each M; is a rank-one
sign matrix, and ), |&;| = ||R||,,. To simplify notation, let us denote the two averages by

T e ;RWRE 1€] ZR”

(1,9)

Then a routine application of the triangle inequality shows that

IR — Rg| < Z|§I|U\7Il — M| < % <Z|5l> = %”R”w
I

l
which is (7.118). Now (7.119) follows from (7.97).

The proof of Theorem 7.41 makes use of the fact that the max-norm is multiplicative under
the Hadamard product. See, for example, [156, Theorem 17].

Proof of Theorem 7.41. Apply Theorem 7.43 to the matrix R = (X — X).(X — X), so that
R = (245 — xij)2. Then R;; = 0 whenever (i, j) € Eq because of the constraint in (7.109).
Therefore (7.119) gives

|X - X|7 < *KGHRHM (7.120)

Tl

Next, the multiplicativity of || - || 5y implies that
IRlar = [1X = X137 < (1Kl + 11X N1a0)* < 41X 344

where we use the fact that || X ||a; < || X||as. Substituting this into (7.120) gives (7.110).

7.5.4 = Matrix Completion via Nuclear Norm Minimization

In this subsection we present two distinct sets of results. First, it is shown that a suitably scaled
version of the measured matrix, without any optimization at all, is a reasonable approximation
to the unknown matrix. Second, it is shown that, under suitable conditions, the unknown matrix
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can be recovered exactly via nuclear norm minimization. Only the theorems are stated, and the
reader is referred to [41] for the proofs.

Theorem 7.44. (See [41, Theorem 5].) Suppose the sampling set ) comes from a (d,,d.)-
regular bipartite graph, and o5 = 02(Eq) denotes the magnitude of the second largest singular
value of Eq. (Of course o1 = +/d,d.. is the largest singular value.) Suppose X € R"*"c is q
matrix of rank r or less, and let 1o denote its coherence as defined in Definition 7.23. Then

1
HEQ.X—XH < Z2uorl1 X ||s. (7.121)
« S 01

where || - || s denotes the spectral norm (largest singular value) of a matrix.

Remark: Observe that the bound in (7.121) is a product of two terms: o /o; which depends
on the measurement matrix Eq, and por|| X||s which depends on the unknown matrix X.

Corollary 7.45. Suppose the sampling set ) comes from a (d,., d..)-regular asymmetric Ramanu-
Jjan graph, Then

1

H Eo.X - XH<W X s 7.122)

Now a bit of notation is introduced to state the result on exact recovery via nuclear norm
minimization. Assume that there is a constant # such that

1> D HONTUR) < Lfls <0, 98 € [, 1] = d, (7.123)
keS

> %(v”vk) —I|ls <0, VS C [nd],|S] = dy, (7.124)
kes "

where U*T is shorthand for (U*) T. Note that if S = [n,], then n,./|S| = 1, and
Z UkTUk
ken,]

Therefore it is reasonable to assume that (7.123) and (7.124) hold for sufficiently large d,., d..

Theorem 7.46. (See [41, Theorem 7].) Suppose X € R"r*"< js a matrix of rank r or less, and
let o, 0 be as defined above. Suppose Eq € {0,1}"*"< is a biadjacency matrix of a (d,,d.)
biregular graph ), and let o5 denote the second largest singular value of matrix Eq. Define

6= Zpor, (7.125)
01
and suppose that
0+ ¢ <1/2, (7.126)

4 Ir
(1+3\/;)¢+9<1. (7.127)

Then X is the unique minimum of (7.65).
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Notes and References

Some important contributions to matrix recovery using rank-one measurements, and probabilistic
methods for matrix completion, are just mentioned in passing in the chapter. The interested
reader is referred to [50] for an analysis of rank-one measurements, to [54, 207] for detailed
analyses of matrix completion using probabilistic sampling, and to [147, 148] for convergence
analysis of the OptSpace algorithm.

Inequality (7.110) can be interpreted as saying the following: Suppose X is obtained using
max-norm minimization, and elements are drawn from both X and X at random, uniformly
distributed over the set [n,] x [n.]. Then the expected value of the error squared is bounded
by the right side of (7.110). While this interpretation is valid, it also negates one of the chief
advantages of max-norm minimization, namely that bounds similar to (7.110) can be derived
even with nonuniform probabilities. Specifically, suppose p;; is a probability distribution over
the set [n,.] X [n.]. Then it is possible to find upper bounds on the expected value of the error

> (X — Xiy)%.
i

See [131, Theorem 4]. It is shown in [51] that, in the case of nonuniform sampling, nuclear
norm minimization does not perform as well as max-norm minimization, and indeed, max-norm
minimization is minimax-rate optimal in a sense made precise in the paper. While this behavior
had been observed in numerical examples, this paper provides a mathematical justification for
these observations.

There is a paper [28] in which it is claimed that the matrix completion problem can be solved
using a Ramanujan graph to generate the sampling matrix. However, there is one step in the
proof that does not appear to be justified. Thus the contents of Section 7.5.4 are apparently the
first to provide a deterministic method for matrix completion.

Some of the content in this chapter is from the forthcoming Ph.D. theses of the author’s
students Shantanu Prasad Burnwal (see Section 7.5.4) and Shashank Ranjan (see Section 7.2.3).





