
Chapter 7

Matrix Recovery and
Completion

In the preceding chapters, we have studied the problem of recovering an unknown vector from a
limited number of linear measurements. Several sufficient conditions for robust sparse recovery
have been proposed, including the robust null space property (RNSP) and the restricted isometry
property (RIP). Methods for constructing measurements that satisfy the RIP, both deterministic
as well as probabilistic, have been proposed. The object of study in the present chapter is the
recovery of low rank matrices from a limited number of linear measurements. An important
special case of matrix recovery is matrix completion, in which the measurements consist of
specific components of the unknown matrix. The most widely used decoder map for matrix
recovery is nuclear norm minimization. In the case of matrix completion, however, minimization
of the max-norm (defined in Section 7.5 below) is also used as the decoder map.

A recent trend in the compressed sensing literature is to express a given matrix as a sum of
two matrices, one of which is of low rank and the other is very sparse. This problem fits naturally
into an area of research called “robust principal component analysis” (PCA). It can be solved by
minimizing the sum of a nuclear norm and an `1-norm. This approach is discussed in Chapter 9.

For the most part, the emphasis in this chapter is on the recovery of real matrices X ∈
Rnr×nc . However, the contents of Section 7.1 are also applicable to complex matrices X ∈
Cnr×nc , so in that section it is assumed that X ∈ Cnr×nc . Throughout the chapter, it is assumed
that nr ≤ nc. This assumption leads to a reduction in notational clutter. Moreover, the assump-
tion does not result in any loss of generality, because if the unknown matrix has more rows than
columns, then the problem can be reformulated as one of recovering its transpose.

Therefore the most general problem under study in this chapter can be stated as follows:
Suppose X ∈ Cnr×nc , and A : Cnr×nc → Cm is a linear map. The measurement vector y is
given by y = A(X) if it is assumed that measurements are noise-free, and by y = A(X) + η if
it is assumed that there is measurement noise. Specifically, let us assume that an upper bound ε
for ‖η‖2 is known, which could be zero if η = 0. The estimate X̂ is determined via

X̂ := arg min
Z

‖Z‖N s.t. ‖y −A(Z)‖2 ≤ ε, (7.1)

or its analogue with ‖ · ‖N replaced by the max-norm ‖ · ‖M . To quantify how good this estimate
is, we recall the relevant parts of Definition 2.7. The above procedure is said to achieve robust
rank recovery of rank k if there exist constants C and D such that

‖X̂ −X‖F ≤ Cθk(X, ‖ · ‖N ) +Dε. (7.2)

Note that, in contrast to the very general norms used in vector recovery, here the discussion
is restricted to the Frobenius norm of the recovery error (which is the matrix analogue of the
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202 Chapter 7. Matrix Recovery and Completion

Euclidean norm) and the sparsity index of X with respect to the nuclear norm (which is the
matrix analogue of the `1-norm). Also, (7.2) is used as the definition of robust rank recovery
irrespective of the norm used in the decoding process (nuclear or max-norm).

7.1 Matrix Recovery via Vector Recovery
In this section we present a general approach for deriving sufficient conditions for matrix re-
covery on the basis of sufficient conditions for vector recovery. In Section 7.2, we define the
rank-restricted isometry property (RRIP) and rank-robust null space property (RRNSP) and show
that they are sufficient conditions for robust rank recovery. But for some cosmetic changes, the
material is taken from [197].

We begin by introducing some notation. Throughout the section, we work with matrices
in Cnr×nc where nr ≤ nc. For notational simplicity, let n = min{nr, nc} = nr. Given a
vector x ∈ Cn, let D(x) ∈ Cn×n denote the diagonal matrix whose diagonal is the vector x. If
X ∈ Cnr×nc , then Σ(X) ∈ Rn×n+ denotes the diagonal matrix of singular values of X , some of
which could be zero if rank(X) < n. Similarly, σ(X) ∈ Rn+ denotes the singular value vector
of X , that is, the diagonal of the matrix Σ(X). Next, suppose X ∈ Cnr×nc . Then the singular
value decomposition of X has the form X = UΣ(X)V †, where U ∈ Cn×n, V ∈ Cnc×n, and
U†U = V †V = In. We refer to U and V as a unitary pair if U†U = V †V = In. For a unitary
pair (U, V ), define

S(U, V ) := {UD(x)V † : x ∈ Cn}. (7.3)

Then S(U, V ) is an n-dimensional subspace of Cnr×nc (where the dimension is over the field of
complex numbers). Finally, supposeA : Cnr×nc → Cm is a linear operator, and that (U, V ) is a
unitary pair. Then a linear operator AU,V : Cn → Cm, which can also be thought of as a matrix
AU,V ∈ Cm×n, is said to be a restriction of the linear operator A if it is true that

AU,V x = A(UD(x)V †), ∀x ∈ Cn. (7.4)

Next we define the notion of an “extension” property.

Definition 7.1. Suppose P is a property of matrices in Cm×n. Then we say that Pe is an
extension property of P if Pe is a statement about linear operators from Cnr×nc to Cm, such
that, for every linear operator A : Cnr×nc → Cm and every unitary pair (U, V ), the restriction
matrix AU,V satisfies property P .

A concrete illustration of an extension property is the rank-restricted isometry property (RRIP)
introduced in Section 7.2.

Now we present two key lemmas.

Lemma 7.2. Suppose X,Y ∈ Cnr×nc , and let σ(X),σ(Y ),σ(X−Y ) denote, respectively, the
vectors of singular values of X,Y,X − Y . Then

‖σ(X)− σ(Y )‖1 ≤ ‖X − Y ‖N , (7.5)

‖σ(X)− σ(Y )‖1 ≤ ‖X + Y ‖N . (7.6)

Proof. Recall the following result from Lemma 1.8: Let n = min{nr, nc}, and let σi(X),
σi(Y ), σi(X − Y ), i ∈ [n], denote the singular values of X,Y,X − Y , respectively. Then, for
every l ∈ [n], we have that

l∑
i=1

|σi(X)− σi(Y )| ≤
l∑
i=1

σi(X − Y ).

Copyright © 2019 Society for Industrial and Applied Mathematics 
From An Introduction to Compressed Sensing - Vidyasagar (9781611976120)



7.1. Matrix Recovery via Vector Recovery 203

If we substitute l = n into the above equation, then we get

n∑
i=1

|σi(X)− σi(Y )| ≤
n∑
i=1

σi(X − Y ).

Now note that the left side is ‖σ(X)−σ(Y )‖1, while the right side equals ‖X−Y ‖N by (1.24).
Therefore we have established (7.5). If we replace Y by −Y , then the singular values σi(Y )
remain unaffected. Therefore (7.5) implies (7.6).

The next lemma is the key to the results in this section.

Lemma 7.3. Suppose X,W ∈ Cnr×nc satisfy

‖X +W‖N ≤ ‖X‖N . (7.7)

Let W = UΣ(W )V † be an SVD of W , and let X1 = −UΣ(X)V †. Then

‖X1 +W‖N ≤ ‖X1‖N . (7.8)

Remark: The point of the lemma is this: If ‖X +W‖N ≤ ‖X‖N , then there exists another
matrix X1 with the same unitary pair as W and the same nuclear norm as X such that ‖X1 +
W‖N ≤ ‖X1‖N .

Proof. Note that if x ∈ Cn and (U, V ) is a unitary pair, then

‖UD(x)V †‖N = ‖x‖1.

Therefore it follows that

‖X1 +W‖N = ‖U [−Σ(X) + Σ(W )]V †‖N
= ‖Σ(W )− Σ(X)‖N = ‖σ(W )− σ(X)‖1
≤ ‖X +W‖N ≤ ‖X‖N = ‖X1‖N .

In the above chain of reasoning, we first use the fact that the nuclear norm is unitarily invariant,
then (7.6), then (7.7), and again the fact that the nuclear norm is unitarily invariant.

To state the main theorem, we introduce the notion of one vector (or matrix) being “as good
as” another in an optimization problem. First, for vector recovery, given A ∈ Cm×n, y ∈ Cm,
and ε ≥ 0, we say that x̂ ∈ Cn is as good as x ∈ Cn with respect to A, y, ε if

‖x̂‖1 ≤ ‖x‖1, ‖y −Ax̂‖2 ≤ ε, ‖y −Ax‖2 ≤ ε. (7.9)

The idea is that if we attempt to recover an unknown vector by solving the `1-norm optimization
problem

ẑ = arg min
z∈Cn

‖z‖1 s.t. ‖y −Az‖2 ≤ ε, (7.10)

then both x and x̂ are feasible for this problem, and x̂ is “as good as” x. In the same vein, given
a linear map A : Cnr×nc → Cm, y ∈ Cm, and ε ≥ 0, we say that X̂ ∈ Cnr×nc is as good as
X ∈ Cnr×nc if

‖X̂‖N ≤ ‖X‖N , ‖y −A(X̂)‖2 ≤ ε, ‖y −A(X)‖2 ≤ ε. (7.11)
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The interpretation is similar to that in the vector recovery problem. If we attempt to recover an
unknown matrix by solving the nuclear norm minimization problem

Ẑ = arg min
Z∈Cnr×nc

‖Z‖N s.t. ‖y −A(Z)‖2 ≤ ε, (7.12)

then both X̂ and X are feasible for this problem, and X̂ is “as good as” X .
Now we state the main theorem of this section, for which purpose we introduce a few new

symbols. Given a vector x ∈ Cn, the symbol x↓ ∈ Rn+ denotes the vector consisting of the
magnitudes of the n components of x, arranged in nonascending order. Note that, while x can
be a complex vector, x↓ is a real vector with nonnegative components. In the discussion below,
‖ ·‖v denotes any norm on Cn with the property that ‖x‖v = ‖x↓‖v . Clearly all `p-norms satisfy
this condition. The matrix norm on Cnr×nc (with nr ≤ nc) corresponding to ‖ · ‖v is denoted
by ‖ · ‖V and is defined by

‖X‖V = ‖σ(X)‖v.

It is clear from the definition that the matrix norm ‖ · ‖V is unitarily invariant. Moreover, if we
choose ‖x‖v = ‖x‖p for p = 1, 2,∞, respectively, then the corresponding matrix norm ‖ · ‖V
becomes the nuclear norm, the Frobenius norm, and the spectral norm, respectively. In principle
we could choose other values of p ∈ [1,∞], and all these choices would generate valid unitarily
invariant matrix norms, which are the Schatten p-norms.

The statement of the theorem is facilitated by the introduction of shorthand notation for four
statements.

V1. A matrix A satisfies a property P .

V2. There exists a function h : Rn × R+ → R+ such that, for any x ∈ Cn, η ∈ Cm, where
‖η‖2 ≤ ε, y = Ax+ η, and any x̂ as good as x with respect to A, y, ε, we have that

‖x̂− x‖v ≤ h(x↓, ε). (7.13)

M1. The linear operator A : Cnr×nc → Cm satisfies the extension property Pe, where nr ≤
nc.

M2. There exists a function h : Rn × R+ → R+ such that, for any X ∈ Cnr×nc , η ∈ Cm,
where ‖η‖2 ≤ ε, y = A(X) + η, and any X̂ as good as X with respect toA, y, ε, we have
that

‖X̂ −X‖V ≤ h(σ(X), ε). (7.14)

Now we state the main theorem.

Theorem 7.4. With these conventions, we have that

(V 1 =⇒ V 2) =⇒ (M1 =⇒ M2). (7.15)

Moreover, the function h in M2 can be taken as the function h in V 2.

Proof. Suppose V1 =⇒ V2 and that M1 is true; we wish to show that M2 is true. Accordingly,
suppose that X ∈ Cnr×nc , y = A(X) + η where ‖η‖2 ≤ ε, and that X̂ is as good as X with
respect to A, y, ε. Thus

‖X̂‖N ≤ ‖X‖N , ‖y −A(X̂)‖2 ≤ ε, ‖y −A(X)‖2 ≤ ε. (7.16)
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7.1. Matrix Recovery via Vector Recovery 205

Define W = X̂ −X , so that X̂ = X +W . It is now shown that

‖W‖V ≤ h(σ(X), ε). (7.17)

By assumption, ‖X + W‖N ≤ ‖X‖N . Suppose W = UΣ(W )V † is an SVD of W , and
as in Lemma 7.3, define X1 = −UΣ(X)V †. Then ‖X1 + W‖N ≤ ‖X1‖N . Now define
y1 = A(X1) + η. Then

‖A(X1 +W )− y1‖2 = ‖A(W )− η‖2 = ‖A(X +W )−A(X)− η‖2
= ‖A(X̂)− y‖2 ≤ ε,

where the last step follows from (7.16).
Now let us set up a vector recovery problem, where the measurement matrix is AU,V (with

U, V coming from the SVD of W ), true vector x2 = −σ(X), and x̂2 = x2 + w, where w =
σ(W ). Therefore x̂2 = −σ(X) + σ(W ). Suppose y1 = A(X1) + η as defined above is the
measured vector for this problem. Then the measurement error η1 = y1 −AU,V x2 is given by

η1 = y1 +AU,V σ(X) = A(X1) + η −A(X1) = η

because
AU,V σ(X) = A(UΣ(X)V †) = −A(X1).

Therefore it follows that ‖y1 −AU,V x2‖2 ≤ ε. Next,

AU,V x̂2 = AU,V (−σ(X) + σ(W ))

= A(−UΣ(X)V † + UΣ(W )V †) = A(X1 +W ).

We have already shown that ‖y1 −A(X1 +W )‖2 ≤ ε. Therefore

‖y1 −AU,V x̂2‖2 ≤ ε.

Hence both x2, x̂2 satisfy the constraint in (7.10) with y replaced by y1, x̂ replaced by x̂2, and x
replaced by x. To show that x̂2 is as good as x2 for this problem, it remains only to show that
‖x̂2‖1 ≤ ‖x2‖1. This is a ready consequence of Lemma 7.3. We have that

‖x̂2‖1 = ‖ − σ(X) + σ(W )‖1
≤ ‖X1 +W‖N ≤ ‖X1‖N = ‖X‖N = ‖x‖1

because X1 = −UΣ(X)V †. Therefore x̂2 is as good as x2 with respect to AU,V , y1, ε. By
assumption V1 implies V2, which means that

‖x̂2 − x2‖v ≤ h[(x2)↓, ε] = h(σ(X), ε), (7.18)

because σ(X) is already in nonascending order. Recall now that x̂2 = x2 +w, so that x̂2−x2 =
w = σ(W ). Therefore (7.18) implies that

‖σ(W )‖v ≤ h(σ(X), ε). (7.19)

Recall that W = X̂ −X . Now it follows from the definition of the matrix norm ‖ · ‖V that

‖X̂ −X‖V = ‖W‖V = ‖σ(W )‖v ≤ h(σ(X), ε).

This is precisely (7.17).
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7.2 Matrix Recovery via Nuclear Norm Minimization
In this section, we present some conditions for matrix recovery via nuclear norm minimization.
First we present conditions based on the null space of the measurement map; these conditions are
analogous to the contents of Section 3.1. Then we present conditions based on the rank-restricted
isometry property (RRIP); these conditions are analogous to the contents of Section 3.2.

7.2.1 Null Space–Based Properties

SupposeA : Rnr×nc → Rm is a linear measurement map. As before, define its null spaceN (A)
by

N (A) := {Z ∈ Rnr×nc : A(Z) = 0}. (7.20)

Throughout, letM(k) denote the subset of Rnr×nc consisting of all matrices of rank k or less.
Suppose without loss of generality that nr ≤ nc, and let n := min{nr, nc} = nr. Suppose
X ∈ Rnr×nc , and let σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 denote the singular values of X . Then, as shown
in (2.39), we have that

θk(X, ‖ · ‖N ) := min
Z∈Rnr×nc

‖X − Z‖N =

n∑
i=k+1

σi. (7.21)

Thus the quantity θk(X, ‖ · ‖N ) is the matrix analogue of the k-sparsity index σk(x, ‖ · ‖1) for
vectors. For convenience, let us also define

θ̄k(X, ‖ · ‖N ) :=

k∑
i=1

σi, (7.22)

so that
‖X‖N = θ̄k(X, ‖ · ‖N ) + θk(X, ‖ · ‖N ).

The next definition gives matrix analogues of Definitions 3.7, 3.10, and 3.14.

Definition 7.5. A linear map A : Rnr×nc → Rm is said to satisfy the rank-exact null space
property (RENSP) of order k if

θ̄k(Z, ‖ · ‖N ) < θk(Z, ‖ · ‖N ), ∀Z ∈ N (A) \ {0}. (7.23)

A is said to satisfy the rank-stable null space property (RSNSP) of order k if there exists a
constant ρ ∈ (0, 1) such that

θ̄k(Z, ‖ · ‖N ) ≤ ρθk(Z, ‖ · ‖N ), ∀Z ∈ N (A). (7.24)

A is said to satisfy the rank-robust null space property (RRNSP) of order k if there exist con-
stants ρ ∈ (0, 1) and τ ∈ R+ such that

θ̄k(M, ‖ · ‖N ) ≤ ρθk(M, ‖ · ‖N ) + τ‖A(M)‖, ∀M ∈ Rnr×nc . (7.25)

As in the vector case, the RENSP and the RSNSP are required to hold for all Z ∈ N (A),
whereas the RRNSP is required to hold for all M ∈ Rnr×nc .

In Definition 7.5 we wrote out θk(Z, ‖ · ‖N ) and θ̄k(Z, ‖ · ‖N ) for the sake of completeness.
However, from here onwards we simply write θk(Z) and θ̄k(Z), because the nuclear norm is the
only one for which we will need to compute these quantities.
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Next, we consider two decoder maps. If y = A(X) without any measurement noise, we
define

∆(y) = X̂ := arg min
Z∈Rnr×nc

‖A‖N s.t. y = A(Z), (7.26)

whereas if y = A(X) + η where ‖η‖ ≤ ε, we define

∆(y) = X̂ := arg min
Z∈Rnr×nc

‖A‖N s.t. ‖y −A(Z)‖ ≤ ε. (7.27)

Next it is shown that, as in the case of vector recovery, the RENSP, RSNSP, and RRNSP,
respectively, are sufficient conditions for exact-rank recovery, stable-rank recovery, and robust-
rank recovery in the sense of Definition 2.7. In addition, the RENSP is also necessary for exact-
rank recovery.

Throughout the proofs in the remainder of this subsection, we make use of Lemma 1.8,
specifically (1.20), with l = n, which implies that

n∑
i=1

|σi(X)− σi(Z)| ≤
n∑
i=1

σi(X − Z). (7.28)

Now let k ∈ [n], and rewrite (7.28) as

‖X − Z‖N =

n∑
i=1

σi(X − Z) ≥
n∑
i=1

|σi(X)− σi(Z)|

≥
k∑
i=1

[σi(X)− σi(Z)] +
n∑

i=k+1

[σi(Z)− σi(X)]

= θ̄k(X)− θ̄k(Z) + θk(Z)− θk(X). (7.29)

Theorem 7.6 is a matrix analogue of Theorem 3.16.

Theorem 7.6. Suppose A : Rnr×nc → Rm is linear and satisfies the RRNSP of order k with
constants ρ, τ . Define define ∆ : Rm → Rnr×nc as in (7.27). Then

‖X̂ −X‖N ≤ 2
1 + ρ

1− ρ
θk(X) +

4τ

1− ρ
ε. (7.30)

Proof. Note that ‖X̂‖N ≤ ‖X‖N .26 Define H = X − X̂ so that X̂ = X −H . Then applying
(7.29) with Z replaced by H gives

θ̄k(X) + θk(X) = ‖X‖N ≥ ‖X̂‖N = ‖X −H‖N
≥ θ̄k(X)− θ̄k(H) + θk(H)− θk(X),

or, after cancelling θ̄k(X) and rearranging,

θk(H)− θ̄k(H) ≤ 2θk(X). (7.31)

Next, note that both X and X̂ are feasible for the optimization problem in (7.27). Therefore

‖A(H)‖ = ‖[A(X)− y]− [A(X̂)− y]‖ ≤ ‖A(X)− y‖+ ‖A(x̂)− y‖ ≤ 2ε.

26The proof does not actually use the fact that X̂ is the minimizer in (7.27)—just the fact that ‖X̂‖N ≤ ‖X‖N .
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Applying the RRNSP to H gives

θ̄k(H) ≤ ρθk(H) + 2τε. (7.32)

Inequalities (7.31) and (7.32) can be expressed as[
1 −1
−ρ 1

] [
θk(H)
θ̄k(H)

]
≤
[

2θk(X)
2τε

]
. (7.33)

This resembles (3.35), and the remainder of the proof follows that of Theorem 3.16.

Theorem 7.7. Suppose A : Rnr×nc → Rm is linear and satisfies the RSNSP of order k with
constant ρ. Define ∆ : Rm → Rnr×nc as in (7.26). Then

‖X̂ −X‖N ≤ 2
1 + ρ

1− ρ
θk(X). (7.34)

The proof is very similar to that of Theorem 7.6 and is left as an exercise for the reader.
Theorem 7.8, stated next, is the matrix analogue of Theorem 3.9.

Theorem 7.8. SupposeA : Rnr×nc → Rm is linear, and define ∆ : Rm → Rnr×nc as in (7.26).
Then the following two statements are equivalent:

1. The pair (A,∆) achieves exact-rank recovery of order k.

2. The map A satisfies the RENSP.

Proof. 1 =⇒ 2. Let Z ∈ N (A)\{0} be arbitrary, and let Z = UΣV > be an SVD of Z. Define
Z1 = UΣ1V

>, Z2 = −UΣ2V
>, where

Σ1 = Diag(σ1, . . . , σk, 0, . . . , 0),Σ2 = Diag(0, . . . , 0, σk+1, . . . , σn).

Then
Z = Z1 − Z2, ‖Z1‖N = θ̄k(Z), ‖Z2‖N = θk(Z).

Also, Z ∈ N (A) \ {0} implies that A(Z1) = A(Z2), and that Z2 6= Z1. Now apply item 1 to
Z1. Then we must have that ‖Z1‖N < ‖Z2‖N . This holds for every Z ∈ N (A) \ {0}, which is
item 2.

2 =⇒ 1. Suppose X ∈M(k), S ∈ Rnr×nc 6= X , andA(S) = A(X). Suppose in addition
that A satisfies the RENSP. We wish to show that ‖X‖N < ‖S‖N . Define Z = X − S and note
that Z ∈ N (A) \ {0}. Now apply (7.29) while noting that θ̄k(X) = ‖X‖N and θk(X) = 0
because X ∈Mk. This gives

‖S‖N = ‖X − Z‖N ≥ ‖X‖N − θ̄kZ + θk(Z) > ‖X‖N .

This completes the proof.

7.2.2 Rank-Restricted Isometry Property

In this section we introduce the rank-restricted isometry property (RRIP) and show that it is an
extension of the RIP in the sense of Definition 7.1. A direct consequence of this interpretation is
that, for every result concerning the robust sparse recovery of vectors using `1-norm minimiza-
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tion, there is a corresponding result on the rank robust sparse recovery of matrices using nuclear
norm minimization.

Definition 7.9. A linear map A : Cnr×nc → Cm is said to satisfy the rank-restricted isometry
property (RRIP) of rank k with constant δ if

(1− δ)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δ)‖X‖2F , ∀X ∈M(k), (7.35)

whereM(k) denotes the set of matrices in Cnr×nc of rank r or less.

Lemma 7.10. The rank-restricted isometry property (RRIP) is an extension property of the re-
stricted isometry property (RIP) in the sense of Definition 7.1.

Proof. Recall from Definition 3.19 that a matrix A satisfies the RIP of order k with constant δ if

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22, ∀x ∈ Σk. (7.36)

To show that the RRIP is an extension property of the RIP, suppose that a linear operator A :
Cnr×nc → Cm satisfies (7.35). The objective is to show that, for every unitary pair U, V , the
restriction operator AU,V satisfies (7.36). Accordingly, let x ∈ Σk be an arbitrary k-sparse
vector, and let X = UD(x)V †. Then the singular value vector σ(X) of the matrix X will be
the same as the vector x, except for replacing each element of x by its modulus and permuting
the elements to put them in nonincreasing order. Therefore it follows that ‖σ(X)‖2 = ‖x‖2.
Moreover, ‖X‖F = ‖σ(X)‖2 = ‖x‖2. Finally, by the definition of the restriction matrix, we
have that A(X) = AU,V x. Substituting these identities into (7.35) leads to

(1− δ)‖x‖22 ≤ ‖AU,V x‖22 ≤ (1 + δ)‖x‖22, ∀x ∈ Σk.

Therefore AU,V satisfies (7.36).

Now we show how Theorem 7.4 can be used to convert a vector recovery bound into a matrix
recovery bound. Recall the following upper bounds derived in Theorem 3.20. In that theorem,
the symbol x̂ is defined via (3.52), that is, as the minimizer of ‖z‖1 subject to the constraint that
‖y − Az‖2 ≤ ε. However, an examination of the proof shows that this fact is never used—only
the fact that ‖x̂‖1 ≤ ‖x‖1 is used. Therefore, while proving Theorem 3.20, we have actually
proved the following set of bounds.

Lemma 7.11. Suppose that, for some number t > 1, the matrix A ∈ Cm×n satisfies the RIP
of order tk with constant δtk =: δ <

√
(t− 1)/t. Define constants a, b, c, ρ, τ as in (3.49) and

(3.50). Suppose x ∈ Cn and that y = Ax+ η where ‖η‖2 ≤ ε. Choose any x̂ ∈ Cr such that

‖x̂‖1 ≤ ‖x‖1, ‖y −Ax̂‖2 ≤ ε. (7.37)

Then

‖x̂− x‖1 ≤
2(1 + ρ)

1− ρ
σk(x, ‖ · ‖1) +

4τ

1− ρ
ε. (7.38)

For all p ∈ (1, 2] we have

‖x̂− x‖p ≤
1

k1−1/p
· 2

1− ρ
[(1 + 2ρ)σk(x, ‖ · ‖1) + 3τε]. (7.39)

In particular,

‖x̂− x‖2 ≤
2√

k(1− ρ)
[(1 + 2ρ)σk(x, ‖ · ‖1) + 3τε]. (7.40)
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By combining Theorem 7.4 with Lemmas 7.10 and 7.11, we get the following set of bounds
for matrix recovery. Note that, if we choose the vector norm ‖ · ‖v in (7.13) as the `1-norm, then
the corresponding matrix norm ‖ · ‖V in (7.14) becomes the nuclear norm. If we choose ‖ · ‖v as
the `2-norm, then ‖ · ‖V becomes the Frobenius norm.

Theorem 7.12. Suppose that, for some number t > 1, the linear map A : Cnr×nc → Cm
satisfies the RRIP of order tk with constant δtk <

√
(t− 1)/t. Define constants a, b, c, ρ, τ as

in (3.49) and (3.50). Suppose X ∈ Cnr×nc and that y = A(X) + η where ‖η‖2 ≤ ε. Choose
any X̂ ∈ Cnr×nc such that

‖X̂‖N ≤ ‖X‖N , ‖y −A(X̂)‖2 ≤ ε. (7.41)

Then

‖X̂ −X‖N ≤
2(1 + ρ)

1− ρ
θk(X, ‖ · ‖N ) +

4τ

1− ρ
ε, (7.42)

‖X̂ −X‖F ≤
2√

k(1− ρ)
[(1 + 2ρ)θk(X, ‖ · ‖N ) + 3τε], (7.43)

where the rank sparsity indices θ are defined in (2.41) and (2.40), respectively. In particular, if
X̂ is determined as

X̂ = arg min
Z

‖Z‖N s.t. ‖y −A(X̂)‖2 ≤ ε, (7.44)

then X̂ satisfies (7.42) and (7.43).

In Theorem 3.24, it is shown that the bound δtk <
√

(t− 1)/t is tight. An analogous
statement is also true for matrix recovery.

Theorem 7.13. (See [49, Proposition 3.2].) Suppose t ≥ 4/3 and is rational, and ε > 0
is arbitrarily small. There exist integers r and n and a linear map A on Rn×n such that the
following hold:

1. A satisfies the RRIP of rank tr with

δtr ≤
√
t− 1

t
+ ε.

2. There exists a matrix X of rank r that cannot be recovered using (7.26).

It is stated (without proof) in [251, Remark 3] that there is a matrix analogue of Theorem
3.25.

Problem 7.1. This is an analogue of Lemma 3.8 for matrices. Using the fact that ‖Z‖N =
θk(Z, ‖ · ‖N ) + θ̄k(Z, ‖ · ‖N ) for all Z, show that the following statements are equivalent:

1. A linear map A : Rnr×nc → Rm satisfies the RENSP.

2. θ̄k(Z, ‖ · ‖N ) < (1/2)‖Z‖N , ∀Z ∈ N (A).

3. ‖Z‖N < 2θk(Z, ‖ · ‖N ), ∀Z ∈ N (A).

Problem 7.2. This is an analogue of Lemma 3.11 for matrices. Show that the following state-
ments are equivalent:

1. A linear map A : Rnr×nc → Rm satisfies the RSNSP with constant ρ ∈ (0, 1).

2. θ̄k(Z, ‖ · ‖N ) < (ρ/(1 + ρ))‖Z‖N , ∀Z ∈ N (A).

3. ‖Z‖N < (1 + ρ)θk(Z, ‖ · ‖N ), ∀Z ∈ N (A).
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7.2.3 The RRIP Implies the RRSNP

In the previous subsection, the fact that the RRIP leads to robust-rank recovery was derived as
a consequence of Theorem 7.4. In the present subsection, we present an alternate derivation by
showing that the RRIP implies the RRNSP and then invoking Theorem 7.6.27

Theorem 7.14. SupposeA : Rnr×nc → Rm satisfies the RRIP of rank tk with δtk <
√

(t− 1)/t
for some t > 1. Define the constants ν, a, b, c as in (3.48) and (3.49) and the constants ρ, τ as in
(3.50). Then, A satisfies the RRNSP of rank k with constants ρ and τ .

To aid in the proof of this theorem, we present a series of lemmas. The first lemma is just a
specialization of Lemma 7.3 to real matrices.

Lemma 7.15. Given W ∈ Rnr×nc with the singular value decomposition UΣ(W )V >, suppose
there exists anX0 ∈ Rnr×nc for which ‖X0 +W‖N ≤ ‖X0‖N . Then, forX1 = −UΣ(X0)V >,
we have that

‖X1 +W‖N ≤ ‖X1‖N .

Lemma 7.16. SupposeU ∈ Rnr×nr , V ∈ Rnc×nr form a unitary pair. Let x ∈ Rnr be arbitrary.
Define A ∈ Rnr×nc as

A = UD(x)V >.

Then the following statements are true:

1. rank(A) = ‖x‖0, where ‖x‖0 is the cardinality of the support set of x.

2. A has the singular values |x1|, |x2|, . . . , |xnr | (not necessarily in decreasing order).

Proof. Define a diagonal matrix I∗ ∈ Rnr×nr as

(I∗)i,i =

{
−1, for xi < 0,

1, for xi ≥ 0.

Then I∗> = I∗, I∗>I = II∗> = I∗, and I∗I∗ = I . Moreover, we can write

A = UI∗D(|x|)V >.

Now UI∗ is also unitary. Therefore the above factorization looks like a singular value decompo-
sition but for the fact that the elements of |x| might not be in nonincreasing order. But this can
be sorted out by row and column permutations. This shows that the components of |x| are the
singular values of A.

Lemma 7.17. Let A : Rnr×nc → Rm be a linear measurement map and let (U, V ) be a
unitary pair with U ∈ Rnr×nr , V ∈ Rnc×nr . Suppose the two sets of vectors {u1, u2, . . . , unr},
{v1, v2, . . . , vnr} represent the columns of U and V , respectively. Define a matrix AUV ∈
Rm×nr as

AUV =
[
A(u1v

>
1 )|A(u2v

>
2 )| . . . |A(unrv

>
nr )
]
. (7.45)

Let x ∈ Rnr be arbitrary. Then

A(UD(x)V >) = AUV x.

27This proof is by Shashank Ranjan; see [204].
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Proof. We have

A(UD(x)V >) = A
( nr∑
i=1

xiuiv
>
i

)
. (7.46)

Using the linearity of A, (7.46) can be written as

A(UD(x)V >) =

nr∑
i=1

xiA(uiv
>
i )

=
[
A(u1v

>
1 )|A(u2v

>
2 )| . . . |A(unrv

>
nr )
]
x

= AUV x.

Lemma 7.18. Suppose A : Rnr×nc → Rm satisfies the RRIP of rank k with δk := δ. Then, for
a given unitary pair (U, V ), the matrix AUV (as defined in (7.45)) satisfies the RIP of order k
with δk := δ.

Proof. Let x ∈ Σk ⊆ Rnr be arbitrary. Define

X = UD(x)V >.

From Lemma 7.16 , rank(X) = ‖x‖0 ≤ k, and X has the singular values {|x1|, |x2|, . . . ,
|xn1
|}, which implies that X ∈ Mk. Now we make the use of Lemma 7.17 and the RRIP of A,

namely
(1− δ)‖X‖2F ≤ ‖A(X)‖22 = ‖AUV x‖22 ≤ (1 + δ)‖X‖2F . (7.47)

Observe that

‖X‖2F =

nr∑
i=1

σ2
i (X) =

nr∑
i=1

|xi|2 = ‖x‖22.

Hence we can rewrite (7.47) as

(1− δ)‖x‖22 ≤ ‖AUV x‖22 ≤ (1 + δ)‖x‖22. (7.48)

This completes the proof.

Now we present the proof the main theorem of this subsection.

Proof of Theorem 7.14. Let X ∈ Rnr×nc be arbitrary and let X = UΣ(X)V > be the singular
value decomposition of X . Define AUV as in (7.46), and define S = [k].

From Lemma 7.18, it follows that AUV satisfies the RIP of order tk with δtk <
√

(t− 1)/t.
Consequently, from Theorem 3.20,AUV satisfies the RNSP of order k with constants ρ, τ defined
as above. Now let σ(X) denote the vector of singular values of X . Then A(X) = AUV σ(X).
Using Definition 3.14, we get

‖σ(X)S‖1 ≤ ρ‖σ(X)Sc‖1 + τ‖AUV σ(X)‖2. (7.49)

Using the fact that ‖σ(X)S‖1 = θ̄k(X, ‖ ·‖N ), ‖σ(X)Sc‖1 = θk(X, ‖ ·‖N ), and ‖AUV σ(X)‖2
= ‖A(X)‖2 (from Lemma 7.18), the inequality (7.49) can be written as

θ̄k(X, ‖ · ‖N ) ≤ ρθk(X, ‖ · ‖N ) + τ‖A(X)‖2, (7.50)

which is the desired inequality.
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7.3 Probabilistic Recovery Methods
Theorem 7.12 shows clearly the importance of constructing linear mapsA : Rnr×nc → Rm that
satisfy the RRIP. In the case of vector recovery, we have seen that if the measurement matrix
consists of random samples of a sub-Gaussian variable (together with the normalization factor
(1
√
m)), then the resulting matrix satisfies the RIP with high probability. In this section, we

state and prove an analogue of this result for linear maps on the set of matrices. Interestingly,
as of now there are no deterministic procedures for constructing measurement maps that satisfy
the RRIP. It is evident that any linear map A : Rnr×nc → Rm can be represented as a matrix of
dimensionsm×nrnc, just by representing each matrixX ∈ Rnr×nc by a vector v(X) ∈ Rnrnc .
The difficulty however is that the restriction on the rank of X translates into highly nonlinear
constraints on the components of v(X).

Suppose we wish to recover an unknown matrix X ∈ Rnr×nc using m linear measurements.
If A : Rnr×nc → Rm is a linear measurement map, then we can represent A as follows:

A(X) =

 〈A1, X〉F
...

〈Am, X〉F

 , (7.51)

where A1, . . . , Am ∈ Rnr×nc . Now suppose that each matrix Al equals (1/
√
m)Φl, where Φl

consists of nrnc independent samples of a zero-mean, unit-variance random variable Y , which
is sub-Gaussian in the sense of Definition 6.12. Thus there exists a constant c > 0 such that

E[exp(θY )] ≤ exp(cθ2), ∀θ ∈ R. (7.52)

The objective in this section can be stated as follows: Given a rank bound k, an RRIP constant δ,
and a failure probability ξ, determine a lower bound on the number of measurementsm such that
the map A satisfies the RRIP of order k with constant δ, with probability ≥ 1− ξ. The principal
results of this section are Theorems 7.21 and 7.22. For the most part, the contents of this section
mirror those of [56]. However, the actual proof of the RRIP is different and parallels the proof
of the RIP in [19]; it is presented here in Chapter 6.

For a random variable Y that satisfies (7.52), we can define a corresponding constant c̃ as in
(6.43), namely

γ = 2, ζ = 1/(4c), α = γe−ζ + eζ , β = ζ, c̃ :=
β2

2(2α+ β)
. (7.53)

With these definitions, we can state the following analogue of Theorem 6.17.

Theorem 7.19. Suppose matrices Φ1, . . . ,Φm each consist of nrnc independent samples of a
sub-Gaussian random variable Y that satisfies (7.52). Define Al = (1/

√
m)Φl, and define

A : Rnr×nc → Rm as in (7.51). Suppose X ∈ Rnr×nc satisfies ‖X‖F = 1. Then

Pr{|‖A(X)‖22 − 1| > t} ≤ 2 exp(−c̃mt2), (7.54)

where c̃ is defined in (7.53).

The proof is the same as that of Theorem 6.17. Observe that if A ∈ Rm×n and u ∈ Rn, then

Au =

 a1u
...

amu

 , ‖Au‖22 =
∑
i∈[m]

(aiu)2.
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If X ∈ Rnr×nc and A(X) is given by (7.51), then

‖A(X)‖22 =
∑
i∈[m]

(〈Ai, X〉F )2.

So the same reasoning applies as in the proof of Theorem 6.17.
Theorem 7.19 gives a tail probability estimate for one fixed matrixX of unit Frobenius norm.

However, what we need is a bound that is uniform over the set

S(k) := {X ∈M(k) : ‖X‖F = 1},

where as before M(k) denotes the set of all matrices that have rank ≤ k. For this purpose
we follow the same general approach as in Section 6.2. Specifically, we compute the covering
number of the set S(k); however, the details are a little different from those in Section 6.2. We
begin by estimating the covering number of the set S(k) with respect to the Frobenius norm.

Theorem 7.20. Let N(ε) denote the covering number of S(k) with respect to ‖ · ‖F . Then

N(ε) ≤
(

1 +
6

ε

)(nr+nc+1)k

. (7.55)

Remark: The method of proof below is taken from that of [56, Lemma 3.1]. However, the
actual estimate given here is slightly better.

Proof. Clearly S(k) consists of all matrices of the form UΣV >, where U ∈ Rnr×k, U>U = Ik,
V ∈ Rnc×k, and V >V = Ik, and Σ = Diag(σ), where σ ∈ Rk+ and ‖σ‖22 = 1. The approach
is to construct an ε/3 cover for each set (of U , V , and Σ).

We begin with the set {σ ∈ Rk+ : ‖σ‖22 = 1}. This is a subset of the unit sphere (not the
entire unit ball) in Rk. Therefore, by Lemma 6.3, with respect to ‖ · ‖2, this set has an ε/3-cover
of cardinality ≤ (1 + (6/ε))k. Next, let us look at the set {U ∈ Rnr×k : U>U = Ik}. Observe
that

‖U‖1→2 = max
j∈[k]
‖uj‖2 = 1,

because each column of U is normalized. Now the unit sphere in the norm ‖ · ‖1→2 is contained
in the k-fold Cartesian product of the unit sphere in ‖ ·‖2 in Rnr . By Lemma 6.3, this unit sphere
has an ε/3-cover of cardinality≤ (1 + (6/ε))nr , whence the unit sphere in the norm ‖ · ‖1→2 has
an ε/3-cover of cardinality≤ (1+(6/ε))nrk. Now the set {U ∈ Rnr×k : U>U = Ik} is a subset
of this latter unit sphere. Hence this set also has an ε/3-cover of cardinality≤ (1+(6/ε))nrk. By
parallel reasoning, {V ∈ Rnc×k : V >V = Ik} has an ε/3-cover of cardinality≤ (1+(6/ε))nck.

Now we use these to construct an ε-cover for S(k). The claim is that the set of all products
of the form UiΣjV

>
l as Ui,Σj , Vl range over their respective covers forms an ε-cover for S(k).

The cardinality of the set of all such triple products is bounded by the right side of (7.55). Now it
is shown that the set of all such products is indeed an ε-cover for S(k). Suppose X = UΣV > ∈
S(k), and choose U1,Σ1, V1 such that

‖U − U1‖1→2 ≤ ε/3, ‖Σ− Σ1‖F = ‖σ − σ1‖2 ≤ ε/3, ‖V − V1‖1→2 ≤ ε/3,

and define X1 = U1Σ1V
>
1 . Using the identity

abc− a1b1c1 = (a− a1)bc+ a1(b− b1)c+ a1b1(c− c1),

we can write

‖X −X1‖F ≤ ‖(U − U1)ΣV >‖F + ‖U1(Σ− Σ1)V >‖F + ‖U1Σ1(V − V1)>‖F .

We now bound each term separately.
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For the first term, note that right multiplication by V > preserves the Frobenius norm because
V >V = Ik. Therefore

‖(U − U1)ΣV >‖F = ‖(U − U1)Σ‖F .

Next

‖(U − U1)Σ‖2F =
∑
j∈[k]

σ2
j ‖uj − (u1)j‖22 ≤

∑
j∈[k]

σ2
j ‖U − U1‖21→2 ≤ (ε/3)2.

Hence ‖(U − U1)ΣV >‖F ≤ ε/3. By parallel reasoning ‖U1Σ1(V − V1)>‖F ≤ ε/3. As for the
middle term,

‖U1(Σ− Σ1)V >‖F = ‖Σ− Σ1‖F = ‖σ − σ1‖2 ≤ ε/3.

Combining these bounds shows that ‖X −X1‖F ≤ ε.

Now suppose an RRIP constant δ ∈ (0, 1) and a “failure probability” ξ ∈ (0, 1) are specified.
Using the bound (7.55), we can derive a bound on the number of measurements m to ensure that
A of (7.51) satisfies the RRIP of order k with constant δ, with probability ≥ 1− ξ.

Theorem 7.21. Define A : Rnr×nc → Rm as in Theorem 7.19, and define c̃ as in (7.53). If

m ≥ 1

c̃δ2

[
7k(nr + nc + 1) +

5

4
ln

2

ξ

]
, (7.56)

then A of (7.51) satisfies the RRIP of order k with constant δ, with probability ≥ 1− ξ.

Remark: The proof of [56, Theorem 2.3] proceeds along somewhat different lines, and the
resulting bound for the number of samples m is not so explicit as in (7.56). Instead, the proof
given here is an adaptation of that of Theorem 6.1, which is taken from [19].

Proof. Define the adjoint operator A∗ : Rm → Rnr×nc in the standard manner, namely

〈A∗(u), X〉F = 〈u,A(X)〉, ∀X ∈ Rnr×nc , u ∈ Rm.

Define B : Rnr×nc → Rnr×nc by B = A∗A− I , and the constant µ by

µ = sup
Z∈M(k)

‖B(Z)‖F .

If ε ≤ 1, then 1/ε ≥ 1, and 1 + 6/ε ≤ 7/ε. Accordingly, define

d(ε) =

(
7

ε

)(nr+nc+1)k

≥
(

1 +
6

ε

)(nr+nc+1)k

.

Let Sε(k) denote a minimal ε-cover of S(k) with respect to ‖ · ‖F , and note that |Sε(k)| ≤ d(ε)
by Theorem 7.20. Therefore, by the union of events bound, we get

Pr

{
max

Y ∈Sε(k)
|‖A(Y )‖22 − 1| > t

}
≤ 2|Sε(k)| exp(−c̃mt2) ≤ 2d(ε) exp(−c̃mt2).

Now let X ∈ S(k) be arbitrary, and choose Y ∈ Sε(k) such that ‖X − Y ‖F ≤ ε. Observe
that

〈X,B(X)〉F = 〈X, (A∗A− I)(X)〉F = ‖A(X)‖22 − 1.
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Next, note that
〈X,B(X)〉F = 〈Y,B(Y )〉F + 〈X − Y,B(X + Y )〉F . (7.57)

Therefore

|〈X − Y,B(X + Y )〉F | ≤ ‖X − Y ‖F · ‖B(X − Y )‖F
≤ ‖X − Y ‖F · (‖B(X)‖F + ‖B(Y )‖F )

≤ 2µε,

while
|〈Y,B(Y )〉F | = |‖A(Y )‖22 − 1| ≤ t.

Substituting these bounds into (7.57) shows that

|〈X,B(X)〉F | ≤ t+ 2µε, ∀X ∈ S(k). (7.58)

Now take the supremum of the left side with respect to X , and note that

sup
X∈S(k)

〈X,B(X)〉F | = µ

because B is self-adjoint. Therefore (7.58) implies that

µ ≤ t+ 2εµ, or µ ≤ t

1− 2ε
.

Hence
|〈X,B(X)〉F | ≤ t+ 2µε ≤ t+

2tε

1− 2ε
=

t

1− 2ε
, ∀X ∈ S(k).

So we can conclude that

Pr

{
max

X∈Sε(k)
|‖A(X)‖22 − 1| > t/(1− 2ε)

}
≤ 2d(ε) exp(−c̃mt2).

Therefore, given an RRIP constant δ and failure probability ξ, we can take t = (1 − 2ε)δ
where ε is as yet unspecified. Then

Pr

{
max

Y ∈Sε(k)
|‖A(Y )‖22 − 1| > δ

}
≤ 2d(ε) exp(−c̃m(1− 2ε)2δ2). (7.59)

Let us now substitute for d(ε). Then the right side is ≤ ξ provided

2

(
7

ε

)(nr+nc+1)k

exp(−c̃m(1− 2ε)2δ2) ≤ ξ,

or

m ≥ 1

c̃(1− 2ε)2δ2

[
(nr + nc + 1)k ln

7

ε
+ ln

2

ξ

]
. (7.60)

We are free to choose any ε ∈ (0, 0.5) in the above. To get a good bound, let us minimize

f(ε) =
1

(1− 2ε)2
ln

7

ε
,

which is the only ε-dependent part of the bound, with respect to ε. Figure 7.1 shows a plot of
f(ε) versus ε. From this plot it can be seen that if we take ε = 0.05, then f(ε) ≤ 7. Moreover

1

(1− 2ε)2
≤ 1.25 =

5

4
.
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Figure 7.1. Plot of f(ε) versus ε.

Therefore the bound in (7.60) becomes

m ≥ 1

c̃δ2

[
7k(nr + nc + 1) +

5

4
ln

2

ξ

]
,

which is the same as (7.56).

Now we present an improvement of Theorem 7.21 for the case where the underlying random
variable is a normal Gaussian instead of an arbitrary sub-Gaussian variable. The main difference
is that in this case, when ‖X‖F = 1, the quantity m‖A(X)‖22 follows a chi-squared distribution
withm degrees of freedom. Therefore it follows from [153, Lemma 1] that (7.54) can be replaced
by

Pr{|‖A(X)‖22 − 1| > t} ≤ 2 exp(−c(t)m), (7.61)

where28

c(t) =
t2

4
− t3

6
. (7.62)

By using this improved estimate of the tail probability, we can give an alternate bound for the
sample complexity.

Theorem 7.22. Define A : Rnr×nc → Rm as in Theorem 7.19, where the underlying random
variable is normal Gaussian. If

m ≥ 12

δ2

[
7k(nr + nc + 1) +

5

4
ln

2

ξ

]
, (7.63)

then A of (7.51) satisfies the RRIP of order k with constant δ, with probability ≥ 1− ξ.

The proof is entirely parallel to that of Theorem 7.21 until (7.59). At this point, with t =
(1− 2ε)δ, the exponent on the right side changes to

c̃m(1− 2ε)2δ2 ← m

[
(1− 2ε)2δ2

4
− (1− 2ε)3δ3

6

]
,

where (A)← (B) means that (B) replaces(A). Consequently, in (7.60),

1

c̃(1− 2ε)2δ2
←
[

(1− 2ε)2δ2

4
− (1− 2ε)3δ3

6

]−1

.

28Not that there is a typo in the line after [56, Equation (II.3)].
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Now the expression inside the brackets can be written as

(1− 2ε)2δ2

4

(
1− 2(1− 2ε)δ

3

)
.

Next, for ε, δ ∈ (0, 1), we have that

1− 2(1− 2ε)δ

3
≥ 1− 2δ

3
≥ 1

3
.

Therefore
(1− 2ε)2δ2

4

(
1− 2(1− 2ε)δ

3

)
≥ (1− 2ε)2δ2

12
.

So the sample complexity bound (7.60) now becomes

m ≥ 12

δ2

[
7k(nr + nc + 1) +

5

4
ln

2

ξ

]
,

which is the same as (7.60) with c̃ replaced by 1/12. Hence (7.56) gets replaced by (7.63).
Remarks:

1. Note that the estimate (7.63) is rather crude because we wish to permit any δ ∈ (0, 1).
However, large values of δ in the RRIP are not realistic. If we were to restrict δ to belong
to (0, 0.5), for example, then in the above proof

1− 2δ

3
≥ 2

3
,

which would allow us to replace the factor 12 in (7.63) by 6.

2. By Theorem 6.16, a normal Gaussian variable satisfies (7.52) with c = 1/2. If we were
to compute the corresponding constant c̃ using (7.53), we would get c̃ = 0.0201, and
1/c̃ ≈ 50. Hence, if we insist on a bound that holds for all δ ∈ (0, 1), the bound in (7.63)
improves that in (7.56) by roughly a factor of 4. If we are content with a bound that holds
for δ ∈ (0, 0.5), then the bound (7.63) with 12 replaced by 6 improves that in (7.56) by
roughly a factor of 8.

We conclude this section by briefly describing (without proofs) another approach to matrix
recovery.

Suppose X ∈ Rnr×nc is the unknown matrix that we wish to recover using probabilistic
methods. In (7.51), the data consists of the Frobenius inner products 〈A1, X〉F , . . . , 〈Am, X〉F ,
where each Ai is a random matrix in Rnr×nc . In such a case, the computation of the inner
product 〈Ai, X〉F can be time-consuming. In [50], it is suggested to choose each Ai to be a
rank-one matrix of the form Ai = bic

>
i . In this case it is easy to show that

〈bic>i , X〉F = b>i Xci,

which is just a standard triple product. The question studied in [50] is whether such rank-one
projections suffice to recover an unknown matrix X . The answer is shown to be in the affirma-
tive. For this purpose, the RIP is replaced by the robust uniform boundedness (RUB) property.
Complete details can be found in the paper.
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7.4 Matrix Completion: Probabilistic Methods
In this section and the next, the emphasis is on the so-called matrix completion problem, as
opposed to the matrix recovery problem that has been the object of study until now. To state
the matrix completion problem precisely, we begin with some notation. Suppose the unknown
matrixX to be recovered belongs to Rnr×nc , and assume without loss of generality that nr ≤ nc.
If nr > nc, X can be replaced by its transpose. For each index pair (i, j) ∈ [nr] × [nc],
define Ei,j to be the binary matrix with a 1 in position (i, j) and zeros elsewhere. Then the
collection of matrices {Ei,j , (i, j) ∈ [nr]× [nc]} defines an orthonormal basis for Rnr×nc in the
Frobenius inner product. Moreover, 〈Ei,j , X〉F = Xi,j for all X ∈ Rnr×nc . Now suppose a set
Ω ⊆ [nr]× [nc], called the measurement set, is specified. To be specific suppose that |Ω| = m
and that Ω = {(i1, j1), . . . , (im, jm)}. In the matrix completion problem, the m measurements
consist of 〈Ei,j , X〉F = Xi,j for all (i, j) ∈ Ω, or, equivalently, the valuesXi,j for all (i, j) ∈ Ω.
The set of measurements can be equivalently expressed as EΩ.X where

EΩ =
∑

(i,j)∈Ω

Ei,j

has an element of 1 if (i, j) ∈ Ω and 0 otherwise, and A.B denotes the Hadamard product.
Recall that if A,B have the same dimensions, then C = A.B is defined by cij = aijbij for all
(i, j). With these conventions, the matrix completion problem can be stated as follows:

X̂ = arg min rank(Z) s.t. EΩ.Z = EΩ.X. (7.64)

The above problem is a special case of minimizing the rank of an unknown matrix subject to
linear constraints. The general problem is NP-hard, and specializing the constraints to the above
form does not make it any easier—it is still NP-hard. Therefore we replace the rank function by
its convex relaxation, which is the nuclear norm, and replace the problem in (7.64) by

X̂ = arg min ‖Z‖N s.t. EΩ.Z = EΩ.X. (7.65)

The issue, as always, is to find conditions under which the solution to the problem in (7.65) is
the same as that of (7.64). It turns out that there are some new wrinkles in the matrix completion
problem that are not present in the general problem of matrix recovery.

7.4.1 The Coherence of a Matrix

One such key concept is called “coherence,” introduced in [54]. To lead up to this concept,
suppose the unknown matrixX has an entry of 1 at just one location, with the rest of the elements
being equal to zero. Without loss of generality, suppose that X1,1 = 1 while Xi,j = 0 for
(i, j) 6= (1, 1). In this case X has rank one. Moreover, if one were to sample X by computing
an inner product 〈B,X〉F for some random Gaussian matrix B, then with probability one it can
be stated that B1,1 6= 0, so that 〈B,X〉F 6= 0. On the other hand, if we were to study the
matrix completion problem by sampling various elements of X , then all but one of the sampled
elements would equal zero. Consequently, unless (1, 1) belongs to the sample set Ω, the solution
X̂ to (7.64) (or (7.65) for that matter) would be the zero matrix, which would not equal X .

The source of difficulty in this case is that the matrix X has very high coherence. In [54],
two distinct measures of coherence are defined.

Definition 7.23. SupposeX ∈ Rnr×nc has rank r and the reduced singular value decomposition
X = UΣV >, where U ∈ Rnr×r, V ∈ Rnc×r, and Σ ∈ Rr×r is the diagonal matrix of singular
values of X . Let PU = UU> ∈ Rnr×nr denote the orthogonal projection of Rnr onto URnr .
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Finally, let ei ∈ Rnr denote the ith canonical basis vector. Then we define

µ0(U) :=
nr
r

max
i∈[nr]

‖PUei‖22. (7.66)

The quantity µ0(V ) is defined analogously, and

µ0(X) := max{µ0(U), µ0(V )}. (7.67)

Next, we define

µ1(X) :=

√
nrnc
r
‖UV >‖∞, (7.68)

where
‖M‖∞ := max

i∈[nr],j∈[nc]
|Mi,j |.

The coherence µ0(U) measures how closely any one of the nr canonical basis vectors is
aligned with the columns of U . Note that an equivalent characterization of µ0(U) is the follow-
ing: Let U i, i ∈ [nr], denote the ith row of the matrix U . Then

µ0(U) =
nr
r

max
i∈[nr]

‖U i‖22.

It is easy to see that if one of the columns of U equals one of the ei, then ‖PUei‖22 = 1 and
µ0(U) = nr/r. Indeed nr/r is the maximum value for µ0(U). This is the difficulty with the
matrix whose (1, 1) entry is 1 and the rest are zero. The SVD of this rank-one matrix has U = e1,
and, as a result, this matrix has maximum coherence. On the other side, the minimum value for
µ0(U) is 1 and is achieved when every element of U has equal magnitude 1/

√
nr. One example

of a matrix with minimum coherence is provided by the class of Hadamard matrices. Given
two matrices A,B of whatever dimensions, it is possible to define their Kronecker product as
follows: Suppose, to be specific, that A has dimensions k× l and B has dimensions r× s. Then
the Kronecker product A⊗B has dimensions kr × ls and is defined as a11B . . . a1lB

...
...

...
ak1B . . . aklB

 .
The Hadamard matrix H(l) has dimensions 2l × 2l for every integer l ≥ 1 and is defined recur-
sively as follows:

H(1) =

[
1 1
1 −1

]
, H(l) = H(1)⊗H(l − 1).

The elements of H(l) are all equal to ±1, and the columns are orthogonal to each other. There-
fore it readily follows that the normalized matrix (1/2l/2)H(l) is orthogonal and has minimum
coherence of 1. Moreover, every submatrix consisting of all rows and some subset of columns
also has minimum coherence. As for µ1(X), it is easy to derive a quick (and possibly not very
tight) bound. The (ij)th element of UV > can be bounded via Schwarz’s inequality as

|(UV >)ij | =

∣∣∣∣∣∣
∑
k∈[r]

uikvjk

∣∣∣∣∣∣ = |〈V j , U i〉| ≤ ‖V j‖2 · ‖U i‖2

≤

√
µ0(U)µ0(V )

nrnc
r ≤ µ0(X)r

√
nrnc

.
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Note that all of the preceding discussion applies irrespective of whether the sample set Ω is
chosen in a deterministic fashion or in a random fashion. As the title of this section indicates, the
emphasis in the present section is on matrix completion when the elements of the sampling set
Ω are chosen at random. This is in contrast with methods where the sampling set Ω is chosen in
a deterministic fashion, namely corresponding to the edges in a Ramanujan graph; that approach
is studied in the next section. Within probabilistic methods, it is possible to make a further
distinction. Some authors replace the rank function in (7.64) by the nuclear norm because (as
shown in Theorem 1.53) the convex relaxation of the rank function over the unit sphere in the
spectral norm is indeed the nuclear norm. There is, however, another method called “OptSpace”
that does not use nuclear norm minimization. Both methods are discussed here.

7.4.2 Optimality Conditions for Nuclear Norm Minimization

In this subsection we first derive a necessary and sufficient condition for a matrix X to be a
solution of the constrained minimization problem in (7.65). However, this condition is not very
easy to apply. Therefore we present a sufficient condition that guarantees that X is a unique
solution to (7.65).

Theorem 7.24. Suppose X has rank r and let UΣV > be a reduced SVD of X . Choose matrices
such that [U U⊥], [V V⊥] are both square orthogonal matrices. ThenX is a solution of the con-
strained minimization problem in (7.65) if and only if there exists a matrix M ∈ R(nr−r)×(nc−r)

with ‖M‖S ≤ 1, such that if we define Y = UV > + U⊥MV >⊥ , then we have

Yij = 0, ∀(i, j) 6∈ Ω. (7.69)

Proof. Let us convert the constrained minimization problem in (7.65) to Lagrangian form by
defining

J = ‖Z‖N +
∑

(i,j)∈Ω

λij(〈Eij , Z〉F − 〈Eij , X〉F ),

where Eij denotes the matrix with a 1 in position (i, j) and zeros elsewhere. Because this
Lagrangian is convex, a matrix X is a solution of (7.65) if and only if 0 ∈ ∂J(X). Thus it is
just a matter of computing the subdifferential of J at X and checking whether the zero matrix
belongs to the subdifferential.

Now
∂J(X) = ∂‖ · ‖N (X) +

∑
(i,j)∈Ω

λijEij .

We can invoke Corollary 1.65 to see that

∂‖ · ‖N (X) = {UV > + U⊥MV >⊥ , ‖M‖S ≤ 1}.

Therefore
∂J(X) = {UV > + U⊥MV >⊥ +W, ‖M‖S ≤ 1},

where
W =

∑
(i,j)∈Ω

λijEij .

Now X is a solution of (7.65) if and only if the zero matrix belongs to this set. Let us define
Y = UV > + U⊥MV >⊥ , and note that Wij = 0 whenever (i, j) 6∈ Ω. Thus, in order for Y +W
to equal zero, we must have that Yij = 0 whenever (i, j) 6∈ Ω. The values of Yij , (i, j) ∈ Ω do
not matter because we can choose λij = −Yij .
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While the condition in Theorem 7.24 is both necessary as well as sufficient, it is not that
easy to use. Moreover, it guarantees only that X is a solution of (7.65)—not that X is a unique
solution. Now we present a sufficient condition under which the true matrix X is the unique
solution to the nuclear norm minimization problem (7.65). Such sufficient conditions are to be
found in various papers on matrix completion. The next theorem is roughly the same as [207,
Theorem 2] and is stated in this form in [41, Lemma 2]. Note that the theorem is “deterministic”
and there is nothing “random” about the theorem.

To state the theorem, suppose X = UΣV > is the unknown matrix of rank r or less that is to
be recovered, where U ∈ Rnr×r, V ∈ Rnc×r, and Σ is diagonal of dimensions r × r. Define
T ⊆ Rnr×nc to be the subspace spanned by all matrices of the form UB> and CV >. It is easy
to show that the projection operator PT equals

PT Z = UU>Z + ZV V > − UU>ZV V >

= UU>Z + U⊥U
>
⊥ZV V

>

= UU>ZV⊥V
>
⊥ + ZV V >,

where U⊥U>⊥ = Inr − UU> and V⊥V >⊥ = Inc − V V >.

Theorem 7.25. Define α = r/nr. Suppose there exists a Y ∈ Rnr×nc such that the following
hold:

1. Y belongs to the image of EΩ., that is Yij = 0, ∀(i, j) 6∈ Ω.

2. Y satisfies

‖PT Y − UV >‖F ≤
√
α

32
, ‖PT ⊥(Y )‖S <

3

4
. (7.70)

Suppose further that the operator norm of (1/α)PT EΩ. − I when restricted to the subspace T
is no larger than 1/2. In other words

‖(1/α)PT EΩ.Z − Z‖F ≤ (1/2)‖Z‖F , ∀Z ∈ T . (7.71)

Under these assumptions, for any ∆ ∈ Rnr×nc \ {0} such that EΩ.∆ = 0, we have that

‖X + ∆‖N > ‖X‖N , (7.72)

so that X̂ = X is the unique solution to (7.65).

Proof. Suppose EΩ.∆ = 0, so that ‖EΩ.∆‖F = 0. Then

‖EΩ.PT∆‖2F = 〈EΩ.PT∆,PT∆〉F
= 〈PT EΩ.PT∆− αPT∆,PT∆〉F + α〈PT∆,PT∆〉F
≥(a) α‖PT∆‖2F − α/2‖PT∆‖2F = α/2‖PT∆‖2F ,

where (a) follows from (7.71). Now, since ‖EΩ.∆‖F = 0, we have ‖EΩ.PT∆‖F = ‖EΩ.PT ⊥∆‖F .
Therefore,

‖PT ⊥∆‖N ≥ ‖PT ⊥∆‖F ≥ ‖EΩ.PT ⊥∆‖F
≥
√
α/2‖PT∆‖F . (7.73)

Note that (7.73) implies that ‖PT ⊥∆‖N > 0. Suppose that ‖PT ⊥∆‖N = 0. Then (7.73) implies
that ‖PT∆‖F = 0, and in turn ∆ = PT ⊥∆ + PT∆ = 0, which is a contradiction.
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Next, recall that for any matrix M , it is true that

‖M‖N = max
U ′,V ′

〈U ′V ′>,M〉F

over all matrices U ′, V ′ with orthogonal columns. In particular, for a specific ∆, it is possible to
choose U⊥, V⊥ such that [U U⊥], [V V⊥] have orthogonal columns, and

〈U⊥V >⊥ ,PT ⊥∆〉F = ‖PT ⊥∆‖N .

For such a choice, we have

‖X + ∆‖N ≥(a) 〈UV > + U⊥V
>
⊥ , X + ∆〉F

=(b) ‖X‖N + 〈UV > + U⊥V
>
⊥ ,∆〉F

=(c) ‖X‖N + 〈UV > + U⊥V
>
⊥ ,∆〉F − 〈Y,∆〉F

= ‖X‖N + 〈UV > − PT Y,PT∆〉F + 〈U⊥V >⊥ − PT ⊥Y,PT ⊥∆〉F
≥(d) ‖X‖N − ‖UV > − PT Y ‖F ‖PT∆‖F + ‖PT ⊥∆‖N − ‖PT ⊥Y ‖S‖PT ⊥∆‖N
≥ ‖X‖N −

√
α/32‖PT∆‖F + (1− ‖PT ⊥Y ‖S)‖PT ⊥∆‖N , (7.74)

where (a) follows from the characterization of the nuclear norm, (b) follows from 〈U⊥V >⊥ , X〉F =
0, (c) follows from 〈Y,∆〉F = 0, and (d) follows from Hölder’s inequality. Now it follows from
(7.70) and (7.73) that

(1− ‖PT ⊥Y ‖S)‖PT ⊥∆‖N > (1/4)‖PT ⊥∆‖N ≥
√
α/32‖PT∆‖F ,

where we use the fact that ‖PT ⊥∆‖N > 0. Substituting this fact into the last equation in (7.74)
shows that ‖X + ∆‖N > ‖X‖N .

7.4.3 Matrix Completion via Nuclear Norm Minimization

Given that the optimization problem in (7.64) is NP-complete, a logical approach is to replace
the rank function by its convex relaxation (7.65). Specifically, we are interested in the question:
Under what conditions is the true but unknown matrix X the unique solution to the optimization
problem in (7.65)? In this setting one can distinguish between two distinct situations. If one were
to sample m out of the nrnc elements of the unknown matrix X without replacement, then one
is guaranteed that exactly m distinct elements of X are measured. However, the disadvantage
is that the locations of the m samples are not independent, because once the first element has
been selected, there are only nrnc − 1 choices for the second sample, and so on. Thus sampling
without replacement requires quite advanced probabilistic analysis. This is the approach adopted
in [54]. An alternative is to sample the elements ofX with replacement. In this case the locations
of the m samples are indeed independent. However, the price to be paid is that, with some small
probability, there would be duplicate samples, so that after m random draws, the number of
elements ofX that are measured could be smaller thanm. This is the approach adopted in [207].
On balance, the approach of sampling with replacement is easier to analyze. Therefore, in the
present section, we present without proof the main results of [54] and [207], while referring the
reader to the original papers for full details. Note that, when the sampling matrix is generated at
random, the recovery of the unknown matrix can be guaranteed only with high probability that
can be made close to, but not exactly equal to, one.

Theorem 7.26. (See [54, Theorem 1.3].) Suppose X ∈ Rnr×nc has rank r, and let n =
max{nr, nc}. Suppose that m elements of X are sampled (without replacement), and define X̂
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as in (7.65). There exist constants C, c such that, if

m ≥ C max{µ2
1, µ

1/2
0 µ1, µ0n

1/4}nrβ log n (7.75)

for some β > 2, then X̂ = X is the unique minimizer of the optimization problem in (7.65), with
probability at least equal to 1− cn−β . For r ≤ µ−1

0 n1/5 this estimate can be sharpened to

m ≥ Cµ0n
6/5rβ log n (7.76)

with the same probability of success.

Now let us discuss the implications of this theorem. A general matrix of dimensions nr ×nc
has nrnc free parameters. However, because a matrix X of rank r can be factorized as XlXr

where Xl ∈ Rnr×r and Xr ∈ Rr×nc , a rank r matrix has no more than r(nr + nc) free
parameters.29 If nr = nc so that the matrix is square, the number of free parameters in a general
matrix is n2 whereas the number of free parameters in a rank r matrix is no larger than 2rn. Thus
the bounds for the number of measurements m can be compared against both of these numbers
of free parameters.

By taking just the last term inside the maximum operator in (7.75), we get the lower bound

m ≥ Cµ0n
5/4rβ log n.

Given that m would have to grow at least linearly with respect to the number of free parameters
(i.e., m = Ω(nr)), the extra factor here is n1/4 log n. In the other direction, if r = O(n1/2), for
example, then m = O(n7/4), which is not substantially smaller than n2. On the other hand, if
r is kept fixed while n is increased, then m can be quite a bit smaller than n2. The improved
bound in (7.76), where n5/4 is replaced by n6/5, requires that r ≤ n1/5 (because µ0 ≥ 1). Thus,
in order to be useful, the unknown matrix has to have very small rank. To illustrate, suppose
n = 220 ≈ 106. Then r ≤ 24 = 16. If we take a more realistic size of n = 210 = 1, 024, then
r ≤ 22 = 4. Therefore the bounds on the ranks under which Theorem 7.26 is guaranteed to
achieve (probabilistic) recovery are unrealistically low.

Now we present the main result from [207].

Theorem 7.27. (See [207, Theorem 2].) Choose some constant β > 1, and draw

m ≥ 32 max{µ2
1, µ0}r(nr + nc)β log2(2nc) (7.77)

samples from [nr]× [nc] with replacement. Define X̂ as in (7.65). Then, with probability at least
equal to 1− ζ where

ζ = 6 log(nc)(nr + nc)
2−2β + n2−2

√
β

c , (7.78)

the optimization problem has a unique solution X̂ , and X̂ = X .

Comparing the bounds in (7.75) and (7.78) with nr = nc = n, we see that the term
n5/4r log n in the former is replaced by nr log2 nc after ignoring various constants. Also, unlike
in (7.75), the constants in (7.78) are explicitly displayed. Thus, in addition to the proof being
more straightforward, the bound is also better in the case of Theorem 7.27.

The key point to note is that the conditions in Theorems 7.26 and 7.27 are only sufficient
conditions. As with the basis pursuit formulation, it is possible to carry out some simulations on
phase transitions for nuclear norm minimization. This is done in [41], and the simulations show
that these conditions are in reality quite conservative, especially when the locations to be sampled
are selected in a deterministic fashion.

29Actually the number is smaller, but this estimate is good enough for present purposes.
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7.4.4 The OptSpace Algorithm

In this subsection we describe the OptSpace algorithm from [147, 148], a new approach to matrix
completion that does not depend on minimizing the nuclear norm. While the algorithm is easy
to describe, its analysis is quite advanced. Specifically, the algorithm involves optimizing a
nonconvex function on a compact manifold using a steepest descent technique, and thus involves
a great many technical details. For this reason, we describe the algorithm and refer the reader to
the original publications for the analysis.

There are two papers that describe the OptSpace algorithm, namely [147] and [148]. In [147],
it is assumed that the unknown matrix to be completed is “truly” row rank, and not “nearly” low
rank, and also that the measurements are noise-free. Both of these assumptions are removed in
[148]. In the interest of simplicity, we describe only the simpler version of OptSpace as given in
[147].

As before, let X ∈ Rnr×nc be the unknown matrix to be recovered, and let r be a known
upper bound on its rank. Let Ω ⊆ [nr] × [nc] be a measurement set, and let EΩ denote the
corresponding measurement matrix. Let G = EΩ.X denote the set of measurements available to
the learner. The OptSpace algorithm consists of three steps.

Trimming: The first step is to remove entries from columns (or rows) that are over-repre-
sented in the random sampling. If |Ω| is the total number of samples, then |Ω|/nr is the average
number of samples per column. If any column contains more than twice this many samples, then
all entries in the column are set equal to zero, and the resulting “trimmed” matrix is denoted by
G̃.

Projection: Construct the best rank-r projection of the trimmed matrix G̃, say G̃ = U0S0V
>
0 ,

using a singular value decomposition.
Cleaning residual errors: Once the trimmed matrix is projected onto the set of rank r

matrices, the rank-r matrix U0S0V
>
0 is not necessarily a good approximation to the original

measurement matrix G. This is addressed by solving an optimization problem. Define

F(U, S, V ) = ‖EΩ.(G− USV >)‖2F ,

and define the function of U and V alone as

F (U, V ) = min
S∈Rr×r

F(U, S, V ).

Note that, for fixed U, V , the function F(U, S, V ) is quadratic in S. Hence it is straightforward
to compute F (U, V ). However, F (U, V ) is a highly nonlinear function in its arguments. In the
cleaning step, the aim is to minimize F (U, V ) over all matrices U, V with orthonormal columns,
that is, the set of all U, V that satisfy U>U = V >V = Ir. It is suggested in [147] to do this
using steepest descent, starting at (U0, V0).

In [148], the matrix X is not assumed to be exactly of rank r, and it is permitted to have
measurement noise, so that the information available to the learner consists of EΩ.X + W ,
whereW is a noise matrix. The OptSpace algorithm proceeds along similar lines, with just a few
extra modifications to cater to the more general situation.

7.5 Matrix Completion: Deterministic Methods
In the previous section the focus was on matrix completion when the elements to be measured
were chosen at random. In the present section, we study the case where the measurement matrix
is chosen in a deterministic fashion, specifically, as the biadjacency matrix of a Ramanujan graph.
Two types of results are presented. First, it is shown that relatively easily constructed matrices
provide a decent approximation to the unknown matrix. Second, it is shown that, under suitable
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conditions, it is possible to recover the unknown matrix exactly.30 In either case, Ramanujan
bigraphs play a central role, so we begin with a study of this topic.

7.5.1 Ramanujan Bigraphs

Suppose B ∈ {0, 1}nr×nc . Then B can be interpreted as the biadjacency matrix of a bipartite
graph with nr vertices on one side and nc vertices on the other side. By convention, the side
with more vertices is called the “left” side and the other is the “right” side. In what follows, it is
assumed that nr ≤ nc, so that columns ofB correspond to the left side and rows to the right side.
The bipartite graph associated with B (that is, the bipartite graph for which B is the biadjacency
matrix) is said to be left-regular if every left vertex has the same degree, right-regular if every
right vertex has the same degree, and biregular if it is both left-regular and right-regular. Due to
the convention that nr ≤ nc, left-regularity is equivalent to the requirement that every column
of B has the same number of ones, and right-regularity is equivalent to the requirement that
every row has the same number of ones. By a slight abuse of language, we associate left- and
right-regularity with the matrix B itself, as well as the bipartite graph corresponding to B.

Suppose B ∈ {0, 1}nr×nc is biregular with right (or row) degree dr and left (or column)
degree dc. We refer to such graphs as (dr, dc)-biregular. It is clear that nrdr = ncdc, or equiva-
lently nr/dc = nc/dr. Moreover, biregularity implies that

1>nrB = dc1
>
nc , B1nc = dr1nr . (7.79)

It is easy to verify that
√
drdc is the largest singular value of B. This motivates the following

definition.

Definition 7.28. Suppose B ∈ {0, 1}nr×nc is (dr, dc)-biregular. Then the bipartite graph corre-
sponding to B is said to be a Ramanujan bigraph if every nonzero singular value σi of B other
than

√
drdc =: σ1 satisfies the bound

|
√
dr − 1−

√
dc − 1| ≤ σi ≤

√
dr − 1 +

√
dc − 1, (7.80)

or equivalently
|σ2
i − (dr − 1 + dc − 1)| ≤ 2

√
dr − 1

√
dc − 1. (7.81)

It is obvious that if B is a square matrix so that the corresponding bipartite graph is balanced
(and dr = dc), then the inequality (7.80) reduces to (4.28), because the lower bound is trivially
satisfied. Thus when nr = nc, a Ramanujan bigraph is the same as case 2 of Definition 4.13.
The definition of a Ramanujan bigraph in terms of (7.80) is given in [139], while the definition
in terms of (7.81) is given in [220].

Note that in [176], a bipartite graph satisfying only the upper bound in (7.80) is referred to as
an “irregular” Ramanujan graph. Other possible terms are unbalanced or asymmetric Ramanujan
graph.

In the case of d-regular graphs, we have Theorem 4.16, which implies that if we keep d fixed
and let n increase, then 2

√
d− 1 is the best possible bound on the second largest eigenvalue of

the adjacency matrix. An analogous bound for bipartite graphs is proved in [109].

Theorem 7.29. Fix dr, dc, and let nr, nc approach infinity, subject of course to the constraint
that nrdr = ncdc. Let σ2 denote the second largest singular value of B ∈ {0, 1}nr×nc . Then

lim inf σ2 ≥
√
dr − 1 +

√
dc − 1. (7.82)

30Much of the material in this section is a part of the doctoral research of Shantanu Prasad Burnwal at the Indian
Institute of Technology Hyderabad. As such, only the theorems are presented, and the reader is referred to [41] for the
proofs.
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Therefore the upper bound in (7.80) is the best that one can hope for.
In Section 4.3.2, we have presented two explicit constructions of Ramanujan graphs. We

also mentioned some recent results in [175, 176, 177] which show that, for every degree d and
number of vertices n, there exists a d-regular Ramanujan bipartite graph with n vertices. Along
these lines, it is also shown in [176] that, for every pair of integers (dr, dc), both ≥ 3, there exist
infinitely many (dr, dc)-biregular Ramanujan bigraphs. However, there are very few explicit
constructions of Ramanujan bigraphs. The papers [16, 17] present some abstract constructions.
However, these constructions are not so explicit as those in [172, 181].

Against this background, we now present an explicit construction based on LDPC codes.
This construction is presented as [41, Theorem 8] and can be thought of as the first (and thus
far the only) explicit construction of a Ramanujan bigraph. Let q be any prime number, and let
P ∈ {0, 1}q×q denote the “right shift” permutation. Thus Pi,i−1 = 1 for i ≥ 2, Pq,1 = 1,
and the remaining elements are zero. Next, let l be any integer between 2 and q, and define
B(q, l) ∈ {0, 1}lq×q2

as the matrix with the (i, j)th block in {0, 1}q×q equal to P (i−1)(j−1). In
greater detail, B(q, l) equals

B(q, l) =


Iq Iq Iq . . . Iq
Iq P P 2 . . . P q−1

Iq P 2 P 4 . . . P 2(q−1)

...
...

...
. . .

...
Iq P l−1 P 2(l−1) . . . P (l−1)(q−1)

 . (7.83)

Note that P q = Iq . Therefore the various powers of P can be computed modulo q.

Theorem 7.30. The matrix B(q, l) has a singular value of
√
lq, l(q − 1) singular values of

√
q,

and l− 1 singular values of 0. Therefore, whenever 2 ≤ l ≤ q− 1, B(q, l) defines a Ramanujan
bigraph. With l = q, B(q, q) defines a balanced Ramanujan bipartite graph.

The proof can be found in [41].
Next we present the rationale for using the biadjacency matrix of a Ramanujan bigraph as the

measurement matrix EΩ. Suppose we could choose EΩ = 1nr×nc , the matrix of all ones. Then
EΩ.X = X , and we could recover X exactly from the measurements. However, this choice of
EΩ corresponds to measuring every element of X , and there would be nothing “compressed”
about this sensing. Now suppose that EΩ = B, the biadjacency matrix of a (dr, dc)-biregular
graph. Then σ1 =

√
drdc is the largest singular value of B, with corresponding row and column

singular vectors u1 = (1/
√
dr)1nr and v1 = (1/

√
dc)1nc . Let σ2 denote the second largest

singular value of B. Then

B = σ1u1v
>
1 +B2, where ‖B2‖S ≤ σ2,

where ‖ · ‖S denotes the spectral norm of a matrix (i.e., its largest singular value). Using the
formulas for u1 and v1 and rescaling shows that√

nrnc
drdc

B = 1nr×nc +

√
nrnc
drdc

B2.

This formula can be expressed more compactly by defining the constant α as

α :=

√
drdc
nrnc

=
dr
nc

=
dc
nr
,
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where the various equalities follow from the fact that nrdr = ncdc. One can think of α as the
fraction of elements of the unknown matrix X that are sampled. Since 1nr×nc .X = X , we see
that

1

α
B.X = X +M.X,

where M = (1/α)B2. Therefore∥∥∥∥ 1

α
B.X −X

∥∥∥∥
S

= ‖M.X‖S . (7.84)

Now note that

‖M‖S =
σ2

α
= σ2 ·

√
nrnc
drdc

=
σ2

σ1

√
nrnc.

Therefore, the smaller σ2 is compared to σ1, the better the approximation error is between
(1/α)B.X and the unknown matrix X .31 Now, a Ramanujan bigraph is one for which this
ratio is as small as possible.

7.5.2 Some Properties of the Max-Norm and the Nuclear Norm

In this subsection we introduce the so-called max-norm, which provides an alternative to the
nuclear norm as the objective function in the matrix completion problem. The advantage of the
max-norm is that it is possible to establish bounds between the estimated matrix X̂ and the true
but unknown matrix X without invoking the coherence of the unknown matrix. This is shown in
the next subsection. The disadvantage is that, in contrast with nuclear norm minimization, there
are no conditions available under which exact recovery of the unknown matrix is possible. To
lay the foundation for these results, in this subsection we derive several properties of both the
max-norm and the nuclear norm.

Recall from Section 1.2, specifically Table 1.1, that the 2 → ∞ induced norm of a matrix
A ∈ Rnr×nc is given by

‖A‖2→∞ = max
i∈[nr]

‖ai‖2, (7.85)

where ai denotes the ith row of A. We can now define the max-norm.

Definition 7.31. The max-norm of a matrix A ∈ Rnr×nc is denoted by ‖A‖M and is defined by

‖A‖M := min(‖U‖2→∞ · ‖V ‖2→∞) s.t. UV > = A, (7.86)

where the maximum is taken over all integers l and all U ∈ Rnr×l, V ∈ Rnc×l that satisfy
UV > = A.

Note that the max-norm is also referred to as the γ2-norm. It is introduced in [162], where
several of its properties are analyzed.32 Apparently the first paper to propose the use of the max-
norm to address the matrix completion problem is [222]. An excellent review of the rationale
behind the max-norm, including a discussion of why it is a good proxy for the rank of a matrix,
is found in [156].

31Note that nr, nc are the dimensions of the unknown matrix and are therefore fixed.
32Note however that in [162], the factorization is taken as A = XY and the quantity to be minimized is taken as
‖X‖2→∞ · ‖Y ‖1→2. This is clearly equivalent to (7.86), because, as is evident from Table 1.1, we have that ‖Y ‖1→2

= ‖Y >‖2→∞.
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Next we give various interpretations of the max-norm and also relate it to the nuclear norm.
In order to prove these results, we make heavy use of the concept of dual norms.

Definition 7.32. Suppose ‖ · ‖ is a norm on Rnr×nc . Then its dual norm on Rnr×nc , denoted by
‖ · ‖∗, is defined by

‖X‖∗ = max
‖Y ‖≤1

|〈X,Y 〉F | = max
‖Y ‖≤1

〈X,Y 〉F = max
‖Y ‖=1

|〈X,Y 〉F | = max
‖Y ‖=1

〈X,Y 〉F . (7.87)

For instance, as shown in Theorem 1.19, ‖ · ‖∗N = ‖ · ‖S . The following properties of dual
norms are easy to prove.

1. Suppose ‖ · ‖a, ‖ · ‖b satisfy ‖A‖b = γ‖A‖a for all A ∈ Rnr×nc , for some constant γ.
Then

‖X‖∗a = γ‖X‖∗b , ∀X ∈ Rnr×nc . (7.88)

2. Suppose ‖ · ‖a, ‖ · ‖b satisfy ‖A‖a ≤ ‖A‖b for all A ∈ Rnr×nc . Then

‖X‖∗b ≤ ‖X‖∗a, ∀X ∈ Rnr×nc . (7.89)

Next we give geometric interpretations of what the unit balls in the max-norm and the nuclear
norm look like. The discussion is facilitated by some notation. Let B(r, ‖ · ‖) denote the ball of
radius r in the norm ‖ · ‖, centered at the origin. Where warranted, the underlying space will be
displayed as a subscript on B. Next, let Sn denote the set of column vectors α ∈ {−1, 1}n, the
set of “signed” n-vectors. Analogously, define

Snr×nc := {αβ> : α ∈ Snr ,β ∈ Snc},

the set of “signed” rank one matrices or order nr × nc. With these notational conventions,
we begin our analysis of the max-norm and the nuclear norm. The main results are stated in
succession, followed by their proofs.

It is evident from the definition of the nuclear norm that

B(1, ‖ · ‖N ) = Conv({uv> : ‖u‖2 = 1, ‖v‖2 = 1} ∪ {0}).

In words, the set {A : ‖A‖N = 1} is the convex hull of rank-one matrices of the form uv>,
where both u and v have unit `2-norm. The set {A : ‖A‖N ≤ 1} is the convex hull of such
rank-one matrices together with the zero matrix.

A similar characterization of the unit ball in the max-norm is not available at present. How-
ever, one can find both a subset and a superset of B(1, ‖ · ‖M ). These bounds involve a universal
constant known as “Grothendieck’s constant,” denoted by KG. The constant KG is defined in
Theorem 7.33 below, where an upper bound for KG is also provided; see (7.91).

Theorem 7.33. (Grothendieck’s inequality [114].) There exists a universal constant KG such
that, for every set of integers l, nr, nc ≥ 1 and every matrix A ∈ Rnr×nc , we have that

max
‖θi‖2≤1,‖φj‖2≤1

∣∣∣∣∣∣
nr∑
i=1

nc∑
j=1

aij〈θi,φj〉

∣∣∣∣∣∣ ≤ KG max
α∈Snr ,β∈Snc

∣∣∣∣∣∣
nr∑
i=1

nc∑
j=1

aijαiβj

∣∣∣∣∣∣ . (7.90)

Moreover
KG ≤

π

2 ln(1 +
√

2)
≈ 1.7821. (7.91)

Copyright © 2019 Society for Industrial and Applied Mathematics 
From An Introduction to Compressed Sensing - Vidyasagar (9781611976120)



230 Chapter 7. Matrix Recovery and Completion

Note that the maximum on the left side of (7.90) is taken over all unit `2-norm vectors
θ1, . . . ,θnr ,φ1, . . . ,φnc ∈ Rl, where the integer l is arbitrary and can be chosen so as to
achieve the maximum.

Both sides of (7.90) have obvious interpretations as dual matrix norms. Therefore Grothen-
dieck’s inequality is equivalent to the following restatement in terms of matrix norms. Note that
the induced matrix norm ‖ · ‖∞→1 is defined in (1.26) and ‖ · ‖∗∞→1 is its dual.

Theorem 7.34. (See [223, Corollary 2].) For every pair of integers nr, nc ≥ 1, we have that

‖A‖∞→1 ≤ ‖A‖∗M ≤ KG‖A‖∞→1, ∀A ∈ Rnr×nc . (7.92)

Consequently
B(1, ‖ · ‖∗∞→1) ⊆ B(1, ‖ · ‖M ) ≤ KGB(1, ‖ · ‖∗∞→1). (7.93)

Since both ‖ · ‖∞→1 and ‖ · ‖∗M are norms on Rnr×nc , it is not surprising that they are
equivalent. What is surprising however is that the constants in (7.92) are independent of the
dimensions nr and nc.

Theorem 7.34 allows us to state the following result, which states that the unit ball in the
max-norm contains the convex hull of all rank-one sign matrices (plus the zero matrix) and is in
turn contained in the same set expanded by a factor of KG.

Theorem 7.35. We have that

Conv(Snr×nc ∪ {0}) ⊆ B(1, ‖ · ‖M ) ⊆ KGConv(Snr×nc ∪ {0}). (7.94)

Now we introduce yet another norm which is a kind of nuclear norm and relate it to the
max-norm.

Definition 7.36. The norm ‖ · ‖ν on Rnr×nc is defined by

‖X‖ν = min
di∈R

∑
i∈[l]

|di| s.t. X =
∑
i∈[l]

diαiβ
>
i for some αi ∈ Snr ,β ∈ Snc . (7.95)

Thus ‖X‖ν is analogous to the nuclear norm when X is expressed as a sum of rank-one sign
matrices. This is brought out in the next theorem, which gives an alternate characterization of
the nuclear norm. See also Problem 7.3.

Theorem 7.37. Define a norm ‖ · ‖c on Rnr×nc as follows:

‖X‖a := min
dj

∑
j∈[l]

|dj | s.t. X =
∑
j∈[l]

djθjφ
>
j , ‖θj‖2 = 1, ‖φj‖2 = 1, ∀j ∈ [l]. (7.96)

Then ‖ · ‖a = ‖ · ‖N .

Theorem 7.38. ‖ · ‖∞→1 is the dual norm of ‖ · ‖ν . Consequently

‖X‖M ≤ ‖X‖ν ≤ KG‖X‖M . (7.97)

Next we give yet another alternate characterization of the nuclear norm.

Theorem 7.39. (See [223, Lemma 1] or [209, Lemma 1].) We have that

‖X‖N = min(‖B‖F · ‖C‖F ) s.t. X = BC> (7.98)

= min
1

2
(‖B‖2F + ‖C‖2F ) s.t. X = BC>. (7.99)
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Theorem 7.39 allows us to relate the nuclear and max norms.

Theorem 7.40. (See [162, Lemma 3.4].) Let A ∈ Rnr×nc . Then

1
√
nrnc

‖A‖N ≤ ‖A‖M ≤ ‖A‖N . (7.100)

Now that the main results have all been stated, we proceed to prove them.

Proof of Theorem 7.34. Recall that

‖A‖∞→1 = max
‖y‖∞=1

‖Ay‖1.

The maximum of a convex function over a convex set occurs at an extreme point of the convex
set. For the unit ball in the `∞-norm, the extreme points are the sign vectors. Therefore

‖A‖∞→1 = max
y∈Snc

‖Ay‖1.

However, since the dual of the `1-norm is the `∞-norm, it is also true that

‖Ay‖1 = max
‖x‖∞=1

|〈x,Ay〉| = max
‖x‖∞=1

|x>Ay|.

Again by the same argument

‖A‖∞→1 = max
x∈Snr ,y∈Snc

|x>Ay| = max
x∈Snr ,y∈Snc

∣∣∣∣∣∣
nr∑
i=1

nc∑
j=1

aijxiyj

∣∣∣∣∣∣ ,
which is the right side of (7.90) without the coefficient KG.

Next, from the definition of the max-norm, it follows that

B(1, ‖ · ‖M ) = {H = ΘΦ> : ‖Θ‖2→∞ ≤ 1, ‖Φ‖2→∞ ≤ 1}.

This is because if
H = BC>, ‖B‖2→∞ · ‖C‖2→∞ ≤ 1,

then we can always scale B,C so that the product is the same but both matrices have norms less
than one. To put it another way33

B(1, ‖ · ‖M ) = {H = [〈θi,φj〉],θi,φj ∈ Bl(1, ‖ · ‖2)}.

This is because if we partition Θ,Φ as

Θ =

 θ1

...
θnr

 ∈ Rnr×l,Φ =

 φ1

...
φnc

 ∈ Rnc×l,

then ‖Θ‖2→∞ ≤ 1, ‖Φ‖2→∞ ≤ 1} is equivalent to ‖θi‖2 ≤ 1 for i ∈ [nr], ‖φj‖2 ≤ 1 for
j ∈ [nc].

33Note that here and elsewhere, we use the symbol 〈θi,φi〉 to denote the inner product of row vectors. This saves
some cumbersome notation.
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Now, from the definition of the dual norm, it follows that

‖A‖∗M = max
H∈B(1,‖·‖M )

|〈A,H〉F | = max
‖θi‖2,‖φj‖2≤1

∣∣∣∣∣∣
nr∑
i=1

nc∑
j=1

aij〈θi,φj〉

∣∣∣∣∣∣ , (7.101)

which is the left side of (7.90). Hence Grothendieck’s inequality implies that

‖A‖∗M ≤ KG‖A‖∞→1,

which is the right inequality in (7.92). To prove the left inequality in (7.92), choose l = 1, and

α =

 α1

...
αnr

 ,β =

 β1

...
βnc

 , αi, βj ∈ {−1, 1}.

Then ‖α‖2→∞ = 1 and ‖β‖2→∞ = 1. Therefore ‖αβ>‖M ≤ 1. It follows that

‖A‖∗M ≥ |〈A,αβ
>〉| =

∣∣∣∣∣∣
nr∑
i=1

nc∑
j=1

aijαiβj

∣∣∣∣∣∣ .
Since this is true for every choice of signed vectors α,β, it follows that

‖A‖∞→1 ≤ ‖A‖∗M .

This completes the proof of (7.92). Now (7.93) is a ready consequence of (7.92) and properties
(7.88) and (7.89) of dual norms.

Proof of Theorem 7.35. This consists of showing that the unit ball B(1, ‖ · ‖∗∞) is the convex
hull of all signed rank-one matrices and the zero matrix. Note that

‖X‖∗∞ ≤ 1 ⇐⇒ |〈A,X〉F | ≤ 1, ∀A ∈ B(1, ‖ · ‖∞).

Equivalently

‖X‖∗∞ ≤ 1 ⇐⇒ |〈A,X〉F | ≤ 1 whenever |〈A, Y 〉F | ≤ 1, ∀Y ∈ Snr×nc .

This completes the proof.

Proof of Theorem 7.37. Let X = UΣV > be a reduced SVD of X , so that U ∈ Rnr×r, V ∈
Rnc×r have orthonormal columns, and Σ = diag(σ1, . . . , σr). Therefore X =

∑
i∈[r] σiuiv

>
i ,

and moreover, the matrices uiv>i are orthonormal under the Frobenius inner product. Therefore
σi = 〈X,uiv>i 〉F for each i ∈ [r]. Now suppose that

X =
∑
j∈[l]

djθjφ
>
j

for some integer l, real numbers dj , and unit `2-norm vectors θj , φj . Then

σi = 〈uxv>i , X〉F =
∑
j∈[l]

dj〈uiv>i , θjφ>j 〉F =
∑
j∈[l]

dj〈ui, θj〉 · 〈vi, φj〉.
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Therefore ∑
i∈[r]

σi =
∑
j∈[l]

dj
∑
i∈[r]

〈ui, θj〉 · 〈vi, φj〉.

Define
cj :=

∑
i∈[r]

〈ui, θj〉 · 〈vi, φj〉.

Then by Schwarz’s inequality

|cj |2 ≤

∑
i∈[r]

〈ui, θj〉2
∑

i∈[r]

〈vi, φj〉2
 ≤ ‖θj‖22 · ‖φj‖22 ≤ 1,

where we use the fact that both {ui}ri=1 and {vi}ri=1 are orthonormal systems, and both θj and
φj are unit vectors. Thus

∑
i∈[r]

σi =
∑
j∈[l]

djcj =

∣∣∣∣∣∣
∑
j∈[l]

djcj

∣∣∣∣∣∣ ≤
∑
j∈[l]

|dj | · |cj | ≤
∑
j∈[l]

|dj |.

Taking the minimum of the right side with respect to all representations of X in the form (7.96)
shows that ‖X‖N ≤ ‖X‖a.

In the other direction, choose l = r, di = σi, θi = ui, and φi = vi. This shows that
‖X‖a ≤ ‖X‖N .

Proof of Theorem 7.38. By definition, the dual norm of ‖ · ‖ν is given by

‖A‖∗ν = max
‖X‖ν≤1

|〈X,A〉F |.

It is now shown that, for all A ∈ Rnr×nc , two statements are true:

|〈X,A〉F | ≤ ‖A‖∞→1 whenever ‖X‖ν ≤ 1, (7.102)

and
∃X with ‖X‖ν ≤ 1 s.t. 〈X,A〉F = ‖A‖∞→1. (7.103)

These two relationships suffice to show that ‖ · ‖∞→1 is the dual norm of ‖ · ‖ν .
To prove these two claims, recall from (7.93) that

‖A‖∞→1 = max
α∈Snr ,β∈Snc

|α>Aβ|.

Now suppose ‖X‖ν ≤ 1, and choose l, d1, . . . , dl, α1, . . . ,αl ∈ Snr , and β1, . . . ,βl ∈ Snc
such that

X =
∑
i∈[l]

diαiβ
>
i ,
∑
i∈[l]

|di| ≤ 1.

Then

|〈X,A〉F | =

∣∣∣∣∣∣
∑
i∈[l]

di〈αiβ>i , A〉

∣∣∣∣∣∣ ≤
∑
i∈[l]

|di| · |〈αiβ>i , A〉|

≤

∑
i∈[l]

|di|

 · ‖A‖∞→1 ≤ ‖A‖∞→1.

This establishes (7.102).
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To establish (7.103), choose α ∈ Snr ,β ∈ Snc such that α>Aβ = ‖A‖∞→1.34 Let l = 1
and define X = αβ>. Then ‖X‖ν ≤ 1, yet

〈X,A〉F = α>Aβ = ‖A‖∞→1.

This completes the proof that ‖ · ‖ν is the dual norm of ‖ · ‖∞→1.
Now (7.97) follows from (7.92) and the properties of dual norms.

Proof of Theorem 7.39. Suppose X ∈ Rnr×nc has rank r, and let X = UΣV > be its reduced
SVD, so that U ∈ Rnr×r and V ∈ Rnc×r. Now suppose that X = BC> for some B ∈ Rnr×l,
C ∈ Rnc×l. Then, using the facts that U>U = V >V = Ir, we get

Σ = U>XV = U>BC>V = (U>B)(V >C) = GH>,

where G = U>B ∈ Rr×l, H = V >C ∈ Rr×l.
Now it is established that ‖G‖F ≤ ‖B‖F , ‖H‖F ≤ ‖C‖F . Let gj , bj denote the jth columns

ofG,B, respectively, and observe that gj = U>bj . Further,U>U = Ir implies that ‖U>‖S = 1,
so that ‖gj‖2 ≤ ‖bj‖2 for all j ∈ [l]. Finally

‖G‖2F =
∑
j∈[l]

‖gj‖22 ≤
∑
j∈[l]

‖bj‖22 = ‖B‖2F .

By entirely analogous reasoning, it follows that ‖H‖F ≤ ‖C‖F .
Next, it is shown that if Σ = GH> for some G,H ∈ Rr×l, then

‖G‖2F + ‖H‖2F ≥ 2‖σ‖1, (7.104)

‖G‖F + ‖H‖F ≥ ‖σ‖1, (7.105)

where σ ∈ Rr+ is the vector of singular values of X . Let us begin with (7.104). The relation
Σ = GH> implies that 〈gi, hi〉 = σi, where gi, hi denote the ith rows of G,H , respectively.
The same relation also implies that 〈gi, hj〉 = 0 whenever i 6= j, but we do not make any use of
this. By Schwarz’s inequality, it follows that

‖gi‖2 · ‖hi‖2 ≥ 〈gi, hi〉 = σi.

For convenience let αi = ‖gi‖2, βi = ‖hi‖2. Now a simple exercise using Lagrange multipliers
shows that

min(α2
i + β2

i ) s.t. αiβi ≥ σi = 2σi,

corresponding to the choice αi = βi =
√
σi. In other words

〈gi, hi〉 = σi =⇒ ‖gi‖22 + ‖hi‖22 ≥ 2σi.

Therefore GH> = Σ implies that

‖G‖2F + ‖H‖2F =
∑
i∈[r]

(‖gi‖22 + ‖hi‖22) ≥ 2
∑
i∈[r]

σi = 2‖X‖N .

It has already been established that if X = BC>, then ‖G‖F ≤ ‖B‖F , ‖H‖F ≤ ‖C‖F .
Therefore

X = BC> =⇒ ‖B‖2F + ‖C‖2F ≥ 2‖X‖N .
34Note that it is NP-hard to actually find such a pair α,β. But such a pair surely exists.
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To prove (7.105), observe that

‖G‖2F · ‖H‖2F =

∑
i∈[r]

α2
i

∑
j∈[r]

β2
j

 ,

where as before αi = ‖gi‖2, βj = ‖hj‖2. It is again a simple exercise using Lagrange multipliers
to show that

min

∑
i∈[r]

α2
i

∑
j∈[r]

β2
j

 s.t. αiβj ≥ σi = ‖σ‖21,

or equivalently

min

∑
i∈[r]

α2
i

1/2∑
j∈[r]

β2
j

1/2

s.t. αiβj ≥ σi = ‖σ‖1.

Thus
X = BC> =⇒ ‖B‖F · ‖C‖F ≥ ‖G‖F · ‖H‖F ≥ ‖σ‖1.

To complete the proof, for a given matrix X , we select B,C such that the inequalities in
(7.104) and (7.105) become equalities. Let X = UΣV > be the reduced SVD of X , and choose
B = UΣ1/2, C = V Σ1/2. Then, because each column of U and of V has unit `2-norm, it
follows that ‖B‖2F = ‖C‖2F = ‖σ‖1.

Proof of Theorem 7.40. Suppose B ∈ Rnr×l. Then

‖B‖2→∞ = max
i∈[nr]

‖bi‖2 = ‖θ‖∞,

where θ = [‖b1‖2 . . . ‖bnr‖2], while

‖B‖F = ‖θ‖2 ≥ ‖θ‖∞.

Therefore, if X = BC>, then

‖B‖2→∞ · ‖C‖2→∞ ≤ ‖B‖F · ‖C‖F .

The definition of the max-norm and (7.99) now lead to

min
BC>=X

‖B‖2→∞ · ‖C‖2→∞ ≤ min
BC>=X

‖B‖F · ‖C‖F ,

which is the right inequality in (7.100).
To prove the left inequality in (7.100), we prove instead that

‖X‖∗M ≤
√
nrnc‖X‖S , ∀X ∈ Rnr×nc . (7.106)

Because ‖ · ‖S and ‖ · ‖N are dual norms of each other, (7.106) coupled with (7.88) and (7.89)
imply the left inequality in (7.100). To prove (7.106), we prove instead the following equivalent
statement:

‖A‖M ≤ 1 =⇒ 〈X,A〉F ≤
√
nrnc‖X‖S . (7.107)

Accordingly, suppose that ‖A‖M ≤ 1, and choose U ∈ Rnr×l, V ∈ Rnc×l such that

A = UV >, ‖U‖2→∞ ≤ 1, ‖V ‖2→∞ ≤ 1.
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Then

〈X,A〉F = 〈X,UV >〉F =
∑
j∈[l]

〈X,ujv>j 〉

=
∑
j∈[l]

u>j Xvj ≤ ‖X‖S
∑
j∈[l]

‖uj‖2 · ‖vj‖2

≤ ‖X‖S

∑
j∈[l]

‖uj‖22

1/2∑
j∈[l]

‖vj‖22

1/2

= ‖X‖S

 ∑
i∈[nr]

‖ui‖22

1/2 ∑
i∈[nc]

‖vi‖22

1/2

≤
√
nrnc‖X‖S ,

because ‖ui‖22 ≤ 1 for all i, and ‖vi‖22 ≤ 1 for all i. This establishes (7.107).

Problem 7.3. By mimicking the proof of Theorem 7.38, prove the following: Suppose p, q ∈
[1,∞], and define the associated norm

‖X‖ν,p,q := min
dj

∑
j∈[l]

|dj | s.t. X =
∑
j∈[l]

djθjφ
>
j , ‖θj‖p = 1, ‖φj‖∗q = 1, ∀j ∈ [l].

Show that ‖ · ‖ν,p,q is the dual of the induced matrix norm ‖ · ‖p→q .

7.5.3 Error Bounds Using the Max-Norm

In this section we present some bounds on the reconstruction error between the true matrix X
and the matrix X̂ recovered using max-norm minimization. In the literature to date, such esti-
mates have been given for square matrices. The results presented here extend such estimates to
rectangular matrices and also improve upon earlier bounds. The contents of this subsection are
taken from [41].

Let us recall the problem formulation. There is an unknown matrix X ∈ Rnr×nc of rank r
or less, where r is a known upper bound. There is also a measurement set Ω ⊆ [nr] × [nc] and
the associated measurement matrix EΩ ∈ {0, 1}nr×nc defined by

(EΩ)ij =

{
1 if (i, j) ∈ Ω,
0 if (i, j) 6∈ Ω.

The data consists of the values Xij , (i, j) ∈ Ω, or equivalently the Hadamard product EΩ.X .
The objective is to construct an approximation to X .

Throughout this subsection, it is assumed that the matrix EΩ is the biadjacency matrix of
a biregular graph with row degree dr and column degree dc. Therefore 1>nrEΩ = dc1

>
nc and

EΩ1nc = dr1nr . Moreover, the largest singular value of EΩ is σ1 :=
√
drdc, with associated

row and column singular vectors 1nr and 1nc , respectively.
In Theorem 7.41, an estimate is constructed via max-norm minimization, that is,

X̂M = arg min
Z

‖Z‖M s.t. EΩ.Z = EΩ.X, (7.108)

Theorem 7.41 is an extension of [131, Theorem 2] to rectangular matrices.
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Theorem 7.41. Suppose EΩ is (dr, dc)-biregular, and let σ2 denote the second largest singular
value of EΩ (and of course s1 =

√
drdc). Suppose X ∈ Rnr×nc , and define

X̂ := arg min
Z∈Rnr×nc

‖Z‖M s.t. EΩ.Z = EΩ.X. (7.109)

Then
1

nrnc
‖X̂ −X‖2F ≤ 4KG

σ2

σ1
‖X‖2M . (7.110)

Note that there are no assumptions regarding either the coherence or the rank of the unknown
matrix X . Also, the bound given in (7.110) improves the bound in [131, Theorem 2] by a factor
of two, in addition to generalizing the result to rectangular matrices.

Now we present a proof of Theorem 7.41. A key part of the proof, known as the “expander
mixing lemma” in [136, Lemma 2.5], is of independent interest and is stated here as Theorem
7.35 below. This theorem generalizes the result in [136, Lemma 2.5] in two ways. First, the
bound is tighter, and second, the result is applicable also to rectangular graphs. Note that in
[136], the expander mixing lemma is credited to [7].

Theorem 7.42. (Expander mixing lemma for biregular graphs.) Suppose A ∈ {0, 1}nr×nc is
(dr, dc)-biregular. Let |E| = nrdr = ncdc denote the total number of edges, and let σ2 denote
the second largest singular value of A. Finally, for any subset S of right vertices and any subset
T of left vertices, let |E(S, T )| denote the number of edges connecting these subsets. Then∣∣∣∣ |E(S, T )|

|E|
− |S|
nr

|T |
nc

∣∣∣∣ ≤ σ2

|E|
√
|S| · |T |

√(
1− |S|

nr

)(
1− |T |

nc

)
(7.111)

=
σ2

|E|

√
|S| · |Sc| · |T | · |T c|

nrnc
(7.112)

≤ σ2

4σ1
. (7.113)

Remarks: For d-regular graphs with n vertices, the bound in (7.111) becomes∣∣∣∣ |E(S, T )|
|E|

− |S| · |T |
n2

∣∣∣∣ ≤ σ2

dn

√
|S| · |T |

√(
1− |S|

n

)(
1− |T |

n

)
. (7.114)

This can be contrasted with the bound in [136, Lemma 2.5], which, after a little manipulation, is∣∣∣∣ |E(S, T )|
|E|

− |S| · |T |
n2

∣∣∣∣ ≤ σ2

dn

√
|S| · |T |. (7.115)

Clearly, the bound in (7.114) is smaller than that in (7.115), especially as |S|, |T | become large.
In the limit, if |S| = |T | = n, the left side of (7.114) (or (7.115)) becomes zero, as does the bound
on the right side of (7.114), but not the bound in (7.115). Therefore (7.111) is an improvement
over the existing bound. Equation (7.112) is the same as (7.111) but written in a form that is
symmetric in S and Sc, as well as T and T c. Finally, note that the right side of (7.113) can also
be written as σ2/(4σ1).

Proof. Let r denote the rank of A, and write

A = UΣV > =
∑
i∈[r]

σiuiv
>
i .

Copyright © 2019 Society for Industrial and Applied Mathematics 
From An Introduction to Compressed Sensing - Vidyasagar (9781611976120)



238 Chapter 7. Matrix Recovery and Completion

The biregularity assumption implies that

ν1 =
√
drdc, u1 = (1/

√
nr)1nr , v1 = (1/

√
nc)1nc .

Now let 1S ∈ {0, 1}nr , 1T ∈ {0, 1}nc denote the indicator vectors of the sets S and T , respec-
tively, and note that E(S, T ) = 1>SA1T . Carry out an orthogonal expansion

1S =
∑
i∈[r]

αiui + a,1T =
∑
i∈[r]

βivi + b,

where a>A = 0, Ab = 0. Also observe that

α1 = 〈1S , u1〉 =
〈1S ,1nr 〉√

nr
=
|S|
√
nr
, β1 =

|T |
√
nc
.

Next

|E(S, T )| = 1>SA1T =
∑
i∈[r]

σiαiβi

= ν1α1β1 +
r∑
i=2

σiαiβi. (7.116)

Therefore

|E(S, T )| − ν1α1β1 =
r∑
i=2

σiαiβi.

Next, by Schwarz’s inequality, it follows that∣∣∣∣∣
r∑
i=2

σiαiβi

∣∣∣∣∣ ≤
(

r∑
i=2

σ2
i α

2
i

)1/2( r∑
i=2

β2
i

)1/2

≤ σ2

(
r∑
i=2

α2
i

)1/2( r∑
i=2

β2
i

)1/2

.

Note that
r∑
i=2

α2
i = ‖1S‖22 − α2

1 = |S| − |S|
2

nr
= |S|

(
1− |S|

nr

)
,

and similarly
r∑
i=2

β2
i = |T |

(
1− |T |

nc

)
.

This implies that ∣∣∣∣∣
r∑
i=2

σiαiβi

∣∣∣∣∣ ≤ σ2

√
|S| · |T |

(
1− |S|

nr

)1/2(
1− |T |

nc

)1/2

. (7.117)

Substituting this into (7.116) gives∣∣∣∣ |E(S, T )|
|E|

− ν1α1β1

|E|

∣∣∣∣ ≤ σ2

√
|S| · |T |

(
1− |S|

nr

)1/2(
1− |T |

nc

)1/2

.
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The proof is concluded by showing that

ν1α1β1

|E|
=
|S|
nr

|T |
nc
.

Now

ν1α1β1 =

√
drdc
nrnc

|S| · |T |,

while
|E| = nrdr = ncdc =

√
nrdrncdc.

Therefore
ν1α1β1

|E|
=

1√
nrdrncdc

√
drdc
nrnc

|S| · |T | = |S|
nr

|T |
nc
.

This completes the proof of (7.111).
To prove (7.112), observe that |Sc| = nr − |S| and |T c| = nc − |T |. Substituting these into

(7.111) gives (7.112).
To prove (7.113), observe that |S|+ |Sc| = nr and |T |+ |T c| = nc. With these constraints,

we infer that
|S| · |Sc| ≤ n2

r/4, |T | · |T c| ≤ n2
c/4.

Now write |E| =
√
drdcnrnc. Substituting these relations into (7.112) gives (7.113).

The proof of Theorem 7.41 makes use of the following estimate, which might be of indepen-
dent interest.

Theorem 7.43. Suppose EΩ is (dr, dc)-biregular, and let σ2 denote the second largest singular
value of EΩ. Suppose R ∈ Rnr×nc . Then∣∣∣∣∣∣ 1

nrnc

∑
(i,j)∈[nr]×[nc]

Rij −
1

|E|
∑

(i,j)∈EΩ

Rij

∣∣∣∣∣∣ ≤ σ2

σ1
‖R‖ν (7.118)

≤ σ2

σ1
KG‖R‖M . (7.119)

The theorem states that the average value of the elements of an arbitrary matrix R is fairly
well approximated by its average over the vertices of a biregular graph. The bound in (7.119)
improves upon the bound in [131, Theorem 8] by a factor of two, in addition to generalizing the
result to rectangular matrices.

Proof of Theorem 7.43. To simplify notation, we use the shorthand∑
i,j

Rij =
∑

(i,j)∈[nr]×[nc]

Rij ,

and we also use E instead of EΩ.
We begin by proving the theorem for rank-one sign matrices of the form M = αβ>, where

both α,β have only ±1 as elements. Define

A := {i ∈ [nr] : αi = 1}, B := {j ∈ [nc] : βj = 1}.

Then it is clear that α = 1A − 1Ac , β = 1B − 1Bc . Now define J = 1nr1
>
nc (the matrix of all

ones), and observe that 1nr = 1A + 1Ac , 1nc = 1B + 1Bc . Now define M ′ = (1/2)(M + J),
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M = 2M ′ − J . Then some elementary algebra gives M ′ = 1A1
>
B + 1Ac1

>
Bc . We can now

apply the expander mixing lemma Theorem 7.42 to such a matrix, which gives∣∣∣∣∣∣ 1

nrnc

∑
i,j

Mij −
1

|E|
∑

(i,j)∈E

Mij

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

nrnc

∑
i,j

(2M ′ij − 1)− 1

|E|
∑

(i,j)∈E

(2M ′ij − 1)

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣ 1

nrnc

∑
i,j

M ′ij −
1

|E|
∑

(i,j)∈E

M ′ij

∣∣∣∣∣∣
= 2

∣∣∣∣ |A| · |B|nrnc
+
|Ac| · |Bc|
nrnc

− |E(A,B)|
|E|

− |E(Ac, Bc)|
|E|

∣∣∣∣
≤ 2

[∣∣∣∣ |A| · |B|nrnc
− |E(A,B)|

|E|

∣∣∣∣+

∣∣∣∣ |Ac| · |Bc|nrnc
− |E(Ac, Bc)|

|E|

∣∣∣∣]
≤ σ2

σ1
,

where the last step follows from (7.113).
Now let R be an arbitrary matrix, and express R as

∑
l δlMl, where each Ml is a rank-one

sign matrix, and
∑
l |δl| = ‖R‖ν . To simplify notation, let us denote the two averages by

R̄ =
1

nrnc

∑
i,j

Rij , R̄E =
1

|E|
∑
(i,j)

Rij .

Then a routine application of the triangle inequality shows that

|R̄− R̄E | ≤
∑
l

|δl||M̄l − M̄lE | ≤
σ2

σ1

(∑
l

|δl|

)
=
σ2

σ1
‖R‖ν ,

which is (7.118). Now (7.119) follows from (7.97).

The proof of Theorem 7.41 makes use of the fact that the max-norm is multiplicative under
the Hadamard product. See, for example, [156, Theorem 17].

Proof of Theorem 7.41. Apply Theorem 7.43 to the matrix R = (X̂ − X).(X̂ − X), so that
Rij = (x̂ij − xij)2. Then Rij = 0 whenever (i, j) ∈ EΩ because of the constraint in (7.109).
Therefore (7.119) gives

1

nrnc
‖X̂ −X‖2F ≤

σ2

σ1
KG‖R‖M . (7.120)

Next, the multiplicativity of ‖ · ‖M implies that

‖R‖M = ‖X̂ −X‖2M ≤ (‖X̂‖M + ‖X‖M )2 ≤ 4‖X‖2M ,

where we use the fact that ‖X̂‖M ≤ ‖X‖M . Substituting this into (7.120) gives (7.110).

7.5.4 Matrix Completion via Nuclear Norm Minimization

In this subsection we present two distinct sets of results. First, it is shown that a suitably scaled
version of the measured matrix, without any optimization at all, is a reasonable approximation
to the unknown matrix. Second, it is shown that, under suitable conditions, the unknown matrix
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can be recovered exactly via nuclear norm minimization. Only the theorems are stated, and the
reader is referred to [41] for the proofs.

Theorem 7.44. (See [41, Theorem 5].) Suppose the sampling set Ω comes from a (dr, dc)-
regular bipartite graph, and σ2 = σ2(EΩ) denotes the magnitude of the second largest singular
value of EΩ. (Of course σ1 =

√
drdc is the largest singular value.) Suppose X ∈ Rnr×nc is a

matrix of rank r or less, and let µ0 denote its coherence as defined in Definition 7.23. Then∥∥∥∥ 1

α
EΩ.X −X

∥∥∥∥
S

≤ σ2

σ1
µ0r‖X‖S , (7.121)

where ‖ · ‖S denotes the spectral norm (largest singular value) of a matrix.

Remark: Observe that the bound in (7.121) is a product of two terms: σ2/σ1 which depends
on the measurement matrix EΩ, and µ0r‖X‖S which depends on the unknown matrix X .

Corollary 7.45. Suppose the sampling set Ω comes from a (dr, dc)-regular asymmetric Ramanu-
jan graph, Then ∥∥∥∥ 1

α
EΩ.X −X

∥∥∥∥ ≤ µ0r

∣∣∣∣ 1√
dr

+
1√
dc

∣∣∣∣ · ‖X‖S . (7.122)

Now a bit of notation is introduced to state the result on exact recovery via nuclear norm
minimization. Assume that there is a constant θ such that

‖
∑
k∈S

nr
dc

(Uk>Uk)− Ir‖S ≤ θ, ∀S ⊆ [nr], |S| = dc, (7.123)

‖
∑
k∈S

nc
dr

(V k>V k)− Ir‖S ≤ θ, ∀S ⊆ [nc], |S| = dr, (7.124)

where Uk> is shorthand for (Uk)>. Note that if S = [nr], then nr/|S| = 1, and∑
k∈[nr]

Uk>Uk = Ir.

Therefore it is reasonable to assume that (7.123) and (7.124) hold for sufficiently large dr, dc.

Theorem 7.46. (See [41, Theorem 7].) Suppose X ∈ Rnr×nc is a matrix of rank r or less, and
let µ0, θ be as defined above. Suppose EΩ ∈ {0, 1}nr×nc is a biadjacency matrix of a (dr, dc)
biregular graph Ω, and let σ2 denote the second largest singular value of matrix EΩ. Define

φ =
σ2

σ1
µ0r, (7.125)

and suppose that
θ + φ < 1/2, (7.126)(

1 +
4

3

√
r

2

)
φ+ θ < 1. (7.127)

Then X is the unique minimum of (7.65).
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Notes and References
Some important contributions to matrix recovery using rank-one measurements, and probabilistic
methods for matrix completion, are just mentioned in passing in the chapter. The interested
reader is referred to [50] for an analysis of rank-one measurements, to [54, 207] for detailed
analyses of matrix completion using probabilistic sampling, and to [147, 148] for convergence
analysis of the OptSpace algorithm.

Inequality (7.110) can be interpreted as saying the following: Suppose X̂ is obtained using
max-norm minimization, and elements are drawn from both X and X̂ at random, uniformly
distributed over the set [nr] × [nc]. Then the expected value of the error squared is bounded
by the right side of (7.110). While this interpretation is valid, it also negates one of the chief
advantages of max-norm minimization, namely that bounds similar to (7.110) can be derived
even with nonuniform probabilities. Specifically, suppose pij is a probability distribution over
the set [nr]× [nc]. Then it is possible to find upper bounds on the expected value of the error∑

i,j

pij(X̂ij −Xij)
2.

See [131, Theorem 4]. It is shown in [51] that, in the case of nonuniform sampling, nuclear
norm minimization does not perform as well as max-norm minimization, and indeed, max-norm
minimization is minimax-rate optimal in a sense made precise in the paper. While this behavior
had been observed in numerical examples, this paper provides a mathematical justification for
these observations.

There is a paper [28] in which it is claimed that the matrix completion problem can be solved
using a Ramanujan graph to generate the sampling matrix. However, there is one step in the
proof that does not appear to be justified. Thus the contents of Section 7.5.4 are apparently the
first to provide a deterministic method for matrix completion.

Some of the content in this chapter is from the forthcoming Ph.D. theses of the author’s
students Shantanu Prasad Burnwal (see Section 7.5.4) and Shashank Ranjan (see Section 7.2.3).
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