
Chapter 15

Kalman Variations:
Least Squares for
Dynamical Systems

The targets that we track are physical objects that are subject to physical constraints and to
the laws of physics. For example, passenger cars cannot travel at more than 200 km/h, so a
high-confidence localization of a car at time t at ˆ̀provides us with useful information about its
location at time t+ 60 s. One minute after t, the car is almost certainly within a circle of radius
3.3 km; it is almost certainly not at locations that are 5 or more kilometers away from ˆ̀.

This chapter describes a flexible technique, called Kalman filtering and smoothing, that ex-
ploits this insight to produce a wide range of useful estimates. The technique is widely used
for location estimation, but also for a range of other applications. We start with a motivating
example.

15.1 Where Will the Cannonball Land?
A cannon at coordinates

[
0 0 0

]T
is pointed east. It shoots a ball at an elevation angle of 45

degrees. A sensor estimates the velocity of the ball coming out the barrel to be about 28.28 m/s
(20 m/s in both the east and up directions). We assume for the sake of simplicity that there is no
wind and that drag, the slowing-down force that movement through air generates, is negligible.
We also assume that there is no wind. We want to estimate where the ball will fall.

We denote the east-west position of the ball by x(t) and its height by z(t). Mathematically,
the initial conditions are

x(0) = 0 initial horizontal position,
z(0) = 0 initial vertical position,

dx
dt (0) = x′(0) = 20 initial horizontal velocity, and
dz
dt (0) = z′(0) = 20 initial vertical velocity.

We can describe the forces that act on the ball using simple differential equations,

d2x
dt2 (t) = x′′(t) = 0 no horizontal acceleration,
d2z
dt2 (t) = z′′(t) = −9.8 gravity causes vertical deceleration.

These particular equations can be solved analytically, but for more complex cases the numerical
technique that we introduce next is more useful. We discretize time and represent the state of the
ball at discrete times t = 0,∆, 2∆, . . . using vectors ui =

[
xi zi x′i z′i

]T
that approximate

141

Copyright © 2020 Society for Industrial and Applied Mathematics 
From Location Estimation from the Ground Up - Toledo (9781611976281)



142 Chapter 15. Kalman Variations: Least Squares for Dynamical Systems

the position and velocity of the ball at time t = i∆ for some small ∆.10 We relate the position to
the velocity using a finite-difference approximation to the derivatives,

x′((i− 1)∆) ≈ x′i−1 =
xi − xi−1

∆
≈ x(i∆)− x((i− 1)∆)

∆
,

which we rearrange as xi ≈ xi−1 + x′i−1∆. The discretized acceleration/deceleration equations
are

−9.8 = lim
∆→0

z′i − z′i−1

∆
≈ z′(iδ)− z′((i− 1)δ)

∆
.

This gives us four recurrence relations,

x̂i = x̂i−1 + ∆x̂′i−1 ,

ẑi = ẑi−1 + ∆z′i−1 ,

x̂′i = x̂′i−1 ,

ẑ′i = ẑ′i−1 −∆9.8 ,

which we can use to estimate the location and velocity of the ball given the initial conditions
ûo =

[
0 0 20 20

]T
; we can evolve ui forward in time.

However, this type of model is severely restricted. The best way to obtain accurate estimates
of the state vectors is to make more measurements. For example, we might be able to use a radar
to measure the position of the cannonball a few times during its flight. These measurements are
of the true position, not of the position that solves our recurrence relations. The measurements
are also not of the solution to the differential equations, which uses simplified laws of motion that
ignore wind, drag, and so on. It is better to define ůi =

[
x̊i z̊i x̊′i z̊′i

]
as the true position

and velocity at time t = i∆. This implies that our equations are not satisfied exactly, so we add
error terms to compensate:

x̊i = x̊i−1 + ∆x̊′i−1 + εx,i ,

z̊i = z̊i−1 + ∆z̊′i−1 + εz,i ,

x̊′i = x̊′i−1 + εx′,i ,

z̊′i = z̊′i−1 −∆9.8 + εz′,i .

Our measurements might also contain errors, so we add error terms to the initial conditions too,
ůo =

[
0 0 20 20

]T
+ ε0.

15.2 Linear Discrete Dynamical Systems
We generalize the cannonball example as follows. We assume that the instantaneous state of the
system at time i∆ is specified by an n-dimensional vector ůi ∈ Rn and that ůi depends linearly
on ůi−1 and possibly also on a known control vector wi, but that this dependence is not exact.
That is, we assume that ůi is defined by an evolution equation of the form

ůi = Fiůi−1 +Kiwi + ε
(e)
i , (15.1)

where Fi and Ki are matrices and ε(e)i is a noise or error vector. The matrix Fi specifies how

10In this chapter, subscripts denote a time step, so xi denotes the quantity x (a coordinate) at time i∆. Similarly, Ei
is a matrix associated with time step i.
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15.2. Linear Discrete Dynamical Systems 143

ůi−1 influences ůi. The control vectors describe known forces that influence the system. They
can be part of the environment, like gravity in the cannonball example, or actions that we apply,
like pressing the acceleration pedal in a car. It is perfectly acceptable for the Kiwi term to be
zero. Because we assume that we know both Ki and wi, we replace their product from here on
by a vector b(e)i = Kiwi. The noise or error vector ε(e)i admits estimators û that do not satisfy
the evolution equations exactly; we explain later the benefits of this approach.

Our goal is to estimate ů, and to do that, we need observations that contain information
about ů; the known vectors b(e)i contain no such information. We therefore assume that we have
observations b(o)i derived linearly from ůi,

b
(o)
i = Giůi + ε

(o)
i , (15.2)

where Gi is a matrix, and ε(o)i represents measurement noise. This observation equation might
be missing in some time steps i. When it is present, the dimension of b(o)i is typically n or
smaller, but in principle it can be higher. In the analysis of the computational complexity of the
algorithms we assume that the dimension of b(o)i is O(n).

The k evolution equations that relate ůi to ůi−1 for i = 1, . . . , k consist of nk scalar equa-
tions; the number of scalar unknowns in all the ůi’s is n(k+ 1). In principle we could insist that
the estimator û =

[
û1 · · · ûk

]T
satisfy the evolution equations exactly and that errors would

occur only in observation equations. But the (widely used) formulation that we study in this
chapter allows errors in the evolution equations and solves for û in the generalized least-squares
sense. There are two good reasons for this choice. First, solving for û in the least-squares sense
is computationally cheaper than allowing errors only in observation equations. Second, the ε(e)i
terms can compensate for simplified and approximate evolution relations. For example, in the
cannonball example ε(e)i can compensate for the discretization errors (the discrepancy between
the continuous differential equations and the discrete difference equations) and for physical ef-
fects that we did not include in the model, such as wind and drag. If we know that our evolution
equations are fairly accurate, we can express this knowledge by setting cov(ε

(e)
i ) small.

When we solve initial-value problems in which the only observations are functions of ů0, like
the cannonball example, accurate evolution equations are important because errors accumulate.
But Kalman filters and smoothers are used mostly when we have observations at many time steps.
In such situations, allowing for errors in the evolution equations is a useful modeling tool.

We assume that the noise vectors ε(e)i and ε(o)i all have zero mean and known covariance
matrices, and that different noise vectors are uncorrelated. That is, we assume that the constraints

E
(
ε
(e)
i

)
= 0 ,

cov
(
ε
(e)
i

)
= E

(
ε
(e)
i

(
ε
(e)
i

)T)
= C

(e)
i ,

E

(
ε
(e)
i

(
ε
(e)
j

)T)
= 0 for i 6= j

hold for some known C(e)
i , that the same conditions apply to the ε(o)i ’s, and that for any i, j,

E

(
ε
(e)
i

(
ε
(o)
j

)T)
= 0 .

Before moving on, you may want to write down the evolution and observation equations for the
cannonball example.
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144 Chapter 15. Kalman Variations: Least Squares for Dynamical Systems

15.3 A Least-Squares Formulation
We can assemble the evolution and observation equations into one large linear equation:

b
(o)
0

b
(e)
1

b
(o)
1

b
(e)
2
...
...
b
(e)
k

b
(o)
k


=



G0

−F1 I
G1

−F2 I
. . . . . .

. . . . . .
−Fk I

Gk





ů0

ů1

ů2

...
ůk−1

ůk


+



ε
(o)
0

ε
(e)
1

ε
(o)
1

ε
(e)
2
...
...
ε
(e)
k

ε
(o)
k


. (15.3)

We denote this system by b = Au+ ε, with ε having expectation zero and covariance

C =



C
(o)
0

C
(e)
1

C
(o)
1

C
(e)
2

. . .
C

(e)
k

C
(o)
k


.

Under these assumptions, the best (minimum-variance) unbiased linear estimate for ů is

û =
(
ATC−1A

)−1
ATC−1b = arg min

u
‖W (Au− b)‖22 ,

where WTW = C−1. If we assume that ε is Gaussian, then the same û is also the maximum-
likelihood estimator of ů.

15.4 Rank Considerations
Our task is to estimate k + 1 n-dimensional state vectors, concatenated into a single û vector of
dimension (k+1)n. Therefore, we need at least (k+1)n constraints. The evolution equations are
always present; sometimes the Ei’s are all the same and sometime they vary, but they are always
there. This gives us kn constraints. At least n constraints must come from observations. We can
assume that we know the initial conditions, so G0 = I; this provides just enough constraints.
But any n or more constraints that raise the rank to (k + 1)n ensure a unique estimate û; it is
not necessary to assume that we know the initial conditions. Clearly, the more observations we
have, the more accurate the estimate is likely to be. Beyond that, we do not require that there be
observations at every time step, or that all the Gi’s have the same number of rows. Some of them
can be missing altogether, including perhaps G0.

15.5 The Paige–Saunders Algorithm
For small k, we can estimate û using a generic generalized least-squares solver. But for large k,
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there is a much more efficient algorithm. We start by factoring the covariance blocks, C(e)
i and

C
(o)
i , (

W
(e)
i

)T
W

(e)
i =

(
C

(e)
i

)−1

,

and similarly for C(o)
i . We represent W (e)

i and W (o)
i implicitly using the Cholesky factor of

C
(e)
i and C(o)

i if the covariance blocks are given, or explicitly if the inverses are given. We now
decorrelate the constraints by evaluating Wb and WA.

The algorithm now computes the QR factorization of WA = QR in a way that preserves the
sparsity of WA in R. The algorithm applies a sequence of unitary transformations that together
constitute QT to both WA and Wb, such that for any u,

‖WAu−Wb‖2 =
∥∥QTWAu−QTWb

∥∥
2

=
∥∥R−QTWb

∥∥
2
.

The algorithm starts with

WA =



W
(o)
0 G0

−W (e)
1 F1 W

(e)
1

W
(o)
1 G1

−W (e)
2 F2 W

(e)
2 I
. . . . . .

. . . . . .
−W (e)

k Fk W
(e)
2 I

W
(o)
k Gk


.

If G0 has more than n rows, we begin with a QR factorization of W (o)
0 G0 = Q̃0R̃0 to reduce

WA to 

R̃0

0

−W (e)
1 F1 W

(e)
1

W
(o)
1 G1

−W (e)
2 F2 W

(e)
2 I
. . . . . .

. . . . . .
−W (e)

k Fk W
(e)
2 I

W
(o)
k Gk


,

and we permute the block of zero rows to the end,

R̃0

W
(e)
1 F1 W

(e)
1

W
(o)
1 G1

W
(e)
2 F2 W

(e)
2 I
. . . . . .

. . . . . .
W

(e)
k Fk W

(e)
2 I

W
(o)
k Gk

0


.
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146 Chapter 15. Kalman Variations: Least Squares for Dynamical Systems

The first block row consists of n individual rows. If G0 had n or fewer rows, we start the
algorithm here, denoting R̃0 = W

(o)
0 G0. We now compute the QR factorization of the two

nonzero block rows in the first block column, printed in red above, and we apply the same
transformation to the entire two block rows to obtain



R0 R0,1

0 R̄1

W
(o)
1 G1

−W (e)
2 F2 W

(e)
2 I
. . . . . .

. . . . . .
−W (e)

k Fk W
(e)
2 I

W
(o)
k Gk

0


.

The blocksR0,1 and R̄1 are the result of applying the transformation to a zero block and toW (e)
1 .

We now repeat the same steps on the second and third columns. The R̄1 block has n columns
and up to n individual rows (but possibly fewer). If G1 has any rows (that is, if we have any
observations derived from ů1), we compute the QR factorization of the two blocks printed in red
above and permute the zero rows to the end to obtain



R0 R0,1

0 R̃1

−W (e)
2 F2 W

(e)
2 I
. . . . . .

. . . . . .
−W (e)

k Fk W
(e)
2 I

W
(o)
k Gk

0
0


.

Again, if G1 did not have any rows, we skip the last transformation and simply denote R̃1 = R̄1.
We now compute the QR factorization of the blocks in red, transform the two block rows, and
obtain 

R0 R0,1

0 R1 R1,2

0 R̄2

. . . . . .
. . . . . .

−W (e)
k Fk W

(e)
k I

W
(o)
k Gk

0
0


.
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At the end of the process, R will be upper triangular with the following sparsity pattern:



R0 R0,1

0 R1 R1,2

0 R2 R2,3

0
. . . . . .
. . . Rk−1 Rk−1,k

0 R̃k
0

0
0

. . .
0

0



(15.4)

(the number of zero block rows depends on the dimension ofG0 and on the number of additional
Gi’s, so it may be smaller than k + 1). Solving for û is now easy by substitution.

Let’s analyze the computational complexity of the algorithm. The factorization of the co-
variance blocks (or their inverses) and the application W to A costs O(n3) per block row, or
O(kn3) for the entire matrix. Once we have WA, we perform one or two QR factorizations
per block column. The factorizations are of matrices with n columns and O(n) rows. We apply
the transpose of one of the Q factors to another matrix of the same dimensions (two blocks in
the next block column) and apply both Q factors to the vector of transformed observations. The
total cost of each step of the overall QR factorization is therefore Θ(n3), and the total cost of
the entire algorithm is Θ(kn3) operations. A generic QR factorization would perform Θ((kn)3)
operations, a factor of k2 more.

Solving for û requires only Θ(kn2) operations, because there are only Θ(kn2) nonzero ele-
ments in R.

The savings in memory are also dramatic. At any given time, each block column contains at
most three nonzero blocks, so the total amount of memory required is Θ(kn2) words of memory;
a naive representation of the matrices involved requires Θ((kn)2) words. We will see below that
in some important cases, it is possible to reduce the memory requirement even further to only
Θ(n2).

15.6 Smoothing, Interpolation, Filtering, and Prediction
There are several useful ways to use the Paige–Saunders QR factorization algorithm. In the
simplest case, we have observations b(o)0 , b

(o)
1 , . . . , b

(o)
k for every time step and solve for the

generalized least-squares estimator û =
[
û0 û1 · · · ûk

]
. The observations may or may not

include the expectation of ů0. This application of the technique is called Kalman smoothing. It
performs two tasks. The first is to smooth the observations. The evolution equations integrate
information from all the observations into the estimate of every ûi; this tends to smooth the track
and to eliminate some of the observation noise. This effect is useful even if we can estimate
each ůi from the observations b(o)i . The second task is to estimate hidden components of the
state. For example, by Kalman smoothing a sequence of GPS location estimates we can obtain
estimates of the velocity and acceleration of the target, even though we never measure them
directly.

Copyright © 2020 Society for Industrial and Applied Mathematics 
From Location Estimation from the Ground Up - Toledo (9781611976281)



148 Chapter 15. Kalman Variations: Least Squares for Dynamical Systems

If there are no observations in some time steps (b(o)i and Gi have no rows), the corresponding
state estimates ûi are interpolated. The algorithm uses observations from previous and subse-
quent time steps together with the evolution equations to fill in the gaps. There are two common
reasons for not having observations at all time steps. One is a transient failure, perhaps a sensor
that malfunctioned or was turned off to save power. It is often useful to fill in these gaps and to
output estimates ûi at regular time intervals; this tends to simplify additional processing of the
track. Another situation in which there are no observations at many time steps is when the sensor
produces an observation vector every m∆ seconds but we model the system every ∆ seconds to
better approximate the continuous dynamical system.

A more surprising way to use the algorithm is to maintain only two block columns of WA
at any given time, as well as the corresponding entries of Wb. Suppose that we completed the
factorization of WA up to step k, so that the reduced matrix is the (k + 1)n-column R factor
given in (15.4). We now wish to estimate ûk+1; perhaps we already have b(o)k+1, and perhaps we
do not. We extend the reduced WA by one block column and two block rows (only one if there
are no observations for step k + 1):

R0 R0,1

0 R1 R1,2

0 R2 R2,3

0
. . . . . .
. . . Rk−1 Rk−1,k

0 R̃k

−W (e)
k+1Ek+1 W

(e)
k+1I

W
(o)
k+1Gk+1

0
0

0
. . .

0
0



.

We continue with the factorization and produce Rk, Rk,k+1, and R̃k+1. To do that, we only
need R̃k; we don’t need anything else from R. The same is true for the reduced observations;
we only need the last n elements in that vector. This allows us to discard everything but the last
blocks of R and of the reduced observations. Clearly, if we do not keep all the blocks of R and
all the reduced observations, we cannot produce an estimate û =

[
û0 û1 · · · ûk ûk+1

]
,

because solving the triangular system for û is done by back substitution, from ûk+1 to û0. But
we can solve for ûk+1. The overall algorithm produces a sequence of estimates of state vectors
that are each based on past and present observations only, not on future observations. That is, the
estimate for ůi, which we denote in this case by ûi|i, is based on b(o)0 up to b(o)i , but not on b(o)i+1

or later. This use of the algorithm is called Kalman filtering, as opposed to smoothing.
Clearly, nothing prevents us from extending the system to k + 2 before we have b(o)k+1; we

simply treat Gk+1 as having zero rows. This produces a prediction ûk+1|k. When we get b(o)k+1

later, we eliminate the W (o)
k+1Gk+1 to produce R̃k+1, and we can produce ûk+1|k+1 if we need

it. We can extrapolate in this way as far as we need; the only overhead is to keep the part of
the reduced matrix and the reduced observations that might change as new observations come in.
Prediction is useful if we need to rendezvous with the target, or if we need to find control inputs
that will bring it close to a desired state.
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15.7 Computing the Variance of the Estimates
We know from (6.1) that the covariance of the generalized least-squares estimator û is

cov(û) =
(
ATC−1A

)−1
.

We have C−1 = WTW and WA = QR, so by Equation (6.3) cov(û) = R−1R−T . In our
case RTR is a sparse matrix (all but three of its block diagonals are zero, because R is block
bidiagonal), but its inverse is not. This is fairly obvious. If a particular ûi deviates significantly
from its mean, then ûi+1 usually tends to deviate in the same direction, because the evolution
equation keeps them close. Therefore, for large k, the full covariance matrix cov(û) is difficult
to store and expensive to compute.

But it turns out that we can compute the covariance matrices of all the ûi’s, which are the
diagonal blocks of cov(û), without incurring significant costs in either memory or computation.
That is, we will compute

cov(ûi) =
((
RTR

)−1
)
i,i

=
(
R−1R−T

)
i,i
,

where the index i refers to a block, not to a single row and a single column. The technique is a
bit tricky, but the case of i = k (the last state) is easy and shows the way forward. The inverse
R−1 is upper triangular (the inverse of any upper-triangular matrix is upper triangular), so the
only nonzero block in block row k of R−1 is the k, k block. Therefore,

cov(ûk) =
(
R−1R−T

)
k,k

=
∑
j

(
R−1

)
k,j

(
R−T

)
j,k

=
(
R−1

)
k,k

(
R−T

)
k,k

.

Also, because R−1R = I ,

I =
(
R−1R

)
k,k

=
∑
j

(
R−1

)
k,j

(R)j,k

=
(
R−1

)
k,k

(R)k,k .

Therefore, (R−1)k,k = (Rk,k)−1, so

cov(ûk) =
(
R−1R−T

)
k,k

= (Rk.k)
−1

(Rk,k)
−T

.

To evaluate cov(ûi) for i < k, we need to generalize this result. We begin with a lemma that
shows the structures of a diagonal block of the inverse when the corresponding row in the matrix
has only one nonzero block, the diagonal block.

Lemma 15.1. Let S be a square invertible block matrix in which in block row i, only the diagonal
block contains nonzeros,

S =


�������
�������

�
�������
�������
�������
�������

 .
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In the example above i = 3. Then Si,i, depicted in red above, must be nonsingular. Furthermore,
block row i in S−1 must have the same structure, zero outside block column i, and this nonzero
block satisfies (S−1)i,i = (Si,i)

−1.

Proof. The fact that Si,i is invertible is easy; otherwise S would be rank deficient, contradicting
the assumption that it is invertible.

To prove the claims concerning the structure of block row i of S−1, we observe that

I =
(
SS−1

)
i,i

=
∑
k

Si,k
(
S−1

)
k,i

= Si,i
(
S−1

)
i,i

+
∑
k 6=i

0
(
S−1

)
k,i

= Si,i
(
S−1

)
i,i
,

so (S−1)i,i = (Si,i)
−1. To prove that (S−1)i,j for j 6= i observe that

0 =
(
SS−1

)
i,j

=
∑
k

Si,k
(
S−1

)
k,j

= Si,i
(
S−1

)
i,j

+
∑
k 6=i

0
(
S−1

)
k,j

= Si,i
(
S−1

)
i,j

,

so (S−1)i,j = (Si,i)
−10 = 0.

As in the block upper-triangular case, this structure of S−1 gives a simple expression for(
S−1S−T

)
i,i

=
∑
k

(
S−1

)
i,k

(
S−T

)
k,i

=
(
S−1

)
i,i

(
S−T

)
i,i

+
∑
k 6=i

0
(
S−T

)
k,i

= (Si,i)
−1

(Si,i)
−T

.

We now use this insight to develop an efficient algorithm that computes the covariance matrices
of all the ûi’s. The strategy is to transform R using a unitary matrix U so that S = UR has the
structure that we used in the lemma, with only the diagonal block in block row i being nonzero.
The unitary transformation preserves the overall covariance matrix:

(UR)
−1

(UR)
−T

= (UR)
−1
(

(UR)
T
)−1

= R−1U−1
(
RTUT

)−1

= R−1U−1U−TR−T

= R−1
(
UTU

)−1
R−T

= R−1R−T .

This allow us to extract cov(ûi) from

cov(ûi) =
(
R−1R−T

)
i,i

=
(

(UR)
−1

(UR)
−T
)
i,i

= (Si,i)
−1

(Si,i)
−T

.
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We now show how to construct a sequence of unitary matrices U that bring UR to a form
in which the only nonzero in block row k − 1 is the diagonal block, then row k − 2 is brought
into the required structure, then row k − 3, and so on. Each step consists of two phases. The
first phase computes the QR factorization of a two-block submatrix, marked in red below, and
applies the orthonormal factor to two block rows of the entire matrix. The second phase swaps
two block rows, marked in green:
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This brought block row k − 1 to the required form. The next steps are similar. To construct
(R−1R−T )k−1,k−1 we again apply two orthonormal transformations:
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To compute the covariance matrices of the ûi’s, we need to store all the nonzero blocks of R,
because this process is done backwards, just like solving for the ûi. To compute only cov(ûk)
we only need the last block of R. In general, we can compute all the cov(ûi|i)’s without storing
all of R.

The cost to compute all the covariance matrices is again Θ(kn3) operations.

15.8 Notes
The invention of the Kalman filter by Rudolph E. K’alm’an in the late 1950s [38] was a major
breakthrough in tracking algorithms. Duncan and Horn showed that the filter (and smoother)
can be interpreted as a linear least-squares problem [28]. The algorithm that we present in this
book is a variant of an algorithm proposed by Paige and Saunders [50]; this algorithm is more
numerically stable than most other implementations and also conceptually much simpler, at least
for readers with a good understanding of the QR factorization. The original Paige–Saunders
did not apply the QR factorization to entire blocks, but rather specified a sequence of Givens
rotations. Our variant is much simpler to explain and to implement; it does perform a few more
arithmetic operations, but due to the performance of today’s QR factorization codes, it is not
necessarily slower than an implementation of the original algorithm.

The Kalman filter is presented in numerous books (always in a form that is less numerically
stable than the one presented here, and arguably also more complicated). There are even entire
books devoted entirely or mostly to Kalman filtering and smoothing [11, 32].

The Kalman filter can be extended to nonlinear problems in various ways. The most widely
used extension is appropriately called the extended Kalman filter. It is intended for nonlinear
observation equations. It works by using the evolution equations to predict ui from ûi−1, lin-
earizing the observation equations at the prediction ui, and setting ûi to be the minimizer of the
resulting linear least-squares problem. In other words, it uses the evolution equations to predict
ui and then performs one step of the Gauss–Newton algorithm on the observations to improve
that prediction.
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15.9 Problems
15.9.1 Using a Kalman Filter and Smoother

The goal of this problem is to create and solve a Kalman filter model of the cannonball problem.
You will use a MATLAB implementation of the Kalman filter and smoother. The implementa-
tion, called PaigeSaundersKalman, maintains and evolves an object that contains all the data
associated with a filter or smoother. The programming interface of the object is as follows:

f = PaigeSaundersKalman; % create an empty
% Kalman filter/smoother

% provide observations for this step in one of 4 ways
f.observe(Gi,bei, Cei,’c’); % covariance matrix given
f.observe(Gi,bei,invCei,’i’); % or inv(Cei)
f.observe(Gi,bei, Wei,’v’); % or chol(Cei)
f.observe(Gi,bei,invWei,’s’); % or inv(chol(Cei))
f.observe(); % or indicate that there

% are no observations

% provide evolution data for this step
f.evolve (Fi,boi, Coi,’c’); % or use ’i’, ’s’, ’v’ forms

The observe and evolve methods can accept C(o)
i and C(e)

i in four forms: explicitly (c); the
inverse of the covariance matrices (i); W such that WTW = C−1 (v); or the inverse of the
W factor (s). To use the implementation, you create the object, call observe to provide the
observations of the initial state (if there are none, call observe with no arguments), and then call
evolve once and observe once for every step.

The method smooth (with no arguments) performs the backward substitution and returns the
vector of smoothed states û (as a single vector with all the states concatenated). The function
[covs,stddevs]=f.covariances() returns two cell arrays: one with cov(ûi) and the other
with vectors of the standard deviations of ûi.

1. Simulate the cannonball example using state vectors ui =
[
xi zi x′i z′i

]T
that model

the horizontal distance, height, horizontal velocity, and vertical velocity. Use time steps of
∆ = 0.1 s and specify a standard deviation of 10−6 for observations of all the components
of ůo =

[
0 0 20 20

]T
. The standard deviations of the evolution equations should

be
[
10−6 10−6 0.1 0.1

]T
(most of the uncertainty concerns the velocity). Plot the

trajectory and the evolution of both the standard deviations and the velocity. When and
where will the ball hit the z = 0 plane?

2. Simulate the cannonball again, but this time without an observation of the initial state.
Instead, specify the position (but not the velocity) at time steps 4, 5, and 6; these might
be obtained from a radar, for example. Take the positions from the corresponding steps
of the simulation in part 1 of the problem. Specify standard deviations of 0.1 for these
observations.

15.9.2 Accurate Event Timing Using a Pulse-per-Second Signal

A computer uses an internal clock to time various events (e.g., the arrival time of signals from
transmitters in a location-estimation system). The clock is not accurate, but it is stable. That is,
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it may run a little slower or a little faster than real time, and it may have an offset relative to real
time, but its rate changes very slowly.

One of the events that the computer observes is a periodic pulse that a GNSS receiver emits
every second (most GNSS receivers emit such a signal, called a pulse-per-second or PPS signal).
The timing of the rising edge of the ith pulse in a day is a random variable with expectation i and
standard deviation of 100 ns.

We wish to use these pulses to create a data structure that allows us to correct time stamps
of other events. That is, we want to estimate the precise absolute time t at which the computer
observed some event, given that its internal clock showed t̄ when the event occurred. We will
use a Kalman filter to model the state of the internal clock. We denote by t̄i the time shown by
the internal clock at the ith rising edge of the PPS signal.

1. We define the state ůi =
[̊
oi r̊i

]T
of the internal clock in terms of its offset at second i

and its rate during the second starting at i−1 and ending at i. We consider the rate to be the
actual advance in the value showed by the clock during one second. Write the evolution
and observation equations for this model and suggest how to set the covariance matrices
associated with them.

2. Explain how to set the covariance matrix of error in the observation equation.

3. We did not give enough information to set the covariance matrix of the evolution equations.
Suggest a way to decide experimentally whether you set it too high or too low.

4. Suppose that we observed the PPS at seconds 0, 1, 2, . . . , k. Explain how to process the
data in order to convert a time stamp t̄ of the internal clock to an estimate of the absolute
time at which the event occurred.

15.9.3 Kalman Filters for Vehicular Navigation

Navigation systems in cars need estimates of the current location in order to decide on the next
action required to reach the destination. In this problem we explore the use of Kalman filters to
estimate the current location. Our basic observations are GNSS location estimates, at a rate of
one per second (when the sky is not obscured by a tunnel or another structure). The navigation
system can use the raw GNSS locations, but we can do better.

1. Develop evolution and observation equations for a model in which the state had four com-
ponents: two Cartesian metric coordinates of the current location, and two components
of the velocity (speed). We assume that the x axis points east and that the y axis points
north. Assume that the GNSS does not produce speed or direction estimates, so the evo-
lution equations should express the assumption that the car travels at constant speed. Also
assume that the standard deviation of the GNSS coordinate estimates is 10 m. Propose a
way to set the covariance matrices of the error or noise terms in the equation.

2. Extend your model to also include acceleration. This adds two parameters to each state
vector: acceleration in the x and y directions.

3. Suppose that we also have access to the speedometer of the car, so we can observe its
speed. Write the observation equation and explain whether it makes more sense to add it
to the four-dimensional state model or to the six-dimensional state model.

4. This observation equation is not linear. Suggest a way to address this difficulty (there are
at least two different ways).
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15.9.4 Second- and Higher-Order Recurrences

The evolution equation used in this chapter is a first-order recurrence in the sense that ůi depends
on ůi−1 but not on earlier state vectors. We also assumed that the observations b(e)i depend on ůi
but not on earlier state vectors. However, it is possible to extend the algorithms to second-order
recurrences or higher.

1. Show how to include in A blocks that describe explicitly second-order relations. Specify
the second-order evolution and observation equations, and show how to incorporate them
into the global matrix A.

2. Show how to compute the R factor of a second-order A efficiently, and show the sparsity
structure of the R factor.
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