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Preface

This book presents the key ideas and algorithms that are used to estimate an unknown real vector
x from a set of indirect, inexact measurements b1, . . . , bm. The book illustrates and motivates
these ideas and algorithms by showing how they are applied to the estimation of geometric lo-
cations and paths. The estimation techniques that we discuss make two important assumptions.
First, we assume that the quantities that we measure are generated from the unknown vector in a
known way. For example, a GPS receiver at a location xmeasures the arrival times b1, . . . , bm of
signals that were transmitted from known locations (in space) at known times. The exact arrival
times are functions of the unknown location, bi = Mi(x), where Mi is a known function, at
least approximately. Second, we assume that the statistical behavior of measurement errors is
known. For example, we might assume that while our GPS receiver cannot determine Mi(x)
exactly, it can observe or estimate bi = Mi(x) + εi, where ε is a random vector with a known
distribution (again, perhaps only approximately known). The techniques and algorithms that this
book teaches use the vector b, our knowledge of M , and knowledge of the distribution of ε to
estimate x and to assess the accuracy of this estimate.

Estimation problems of this type are important and ubiquitous in science and engineering
because many quantities of interest cannot be measured directly and because measurements, both
direct and indirect, are inexact. The length of a box can be measured directly with a ruler. The
measurement is direct in the sense that we measure the length of the box by comparing it to many
fixed lengths marked on the ruler. In contrast, we measure temperature indirectly. To measure
the temperature of a liquid, we can place the bulb of a mercury-in-glass thermometer (or a less
hazardous modern equivalent) in the liquid and read the temperature from a scale that relates the
volume of mercury to its temperature. In this case, the function M transforms a temperature x to
a volume M(x). In most cases, both direct and indirect measurements of continuous quantities
are inexact. When measuring lengths with a ruler, the inexactness is due to the limited resolution
of markings on the ruler’s edge and from possible changes in the length of the ruler itself (it may
have expanded or shrunk).

Estimation of locations, in particular, is a special case that is important and ubiquitous on its
own. It is an old problem with a fascinating history. In some settings, it still poses significant
challenges today. To appreciate the historical context, think of marine navigators who must
determine their location on an open featureless sea. Mariners were able to estimate latitude from
measurements of the inclined position of stars since the 15th century. They only gained the
ability to accurately estimate longitude in the 18th century, after chronometers (accurate clocks)
were invented. Today, every smartphone includes a GPS receiver that can estimate the position
of the phone from measurements of the arrival times of radio signals transmitted by satellites.
However, GPS receivers do not work well inside buildings, so indoor location estimation remains
an active area of research.

By focusing on location estimation, this book not only covers an important application of
estimation but also teaches estimation without requiring any background in physics, chemistry,
or signal processing. In location estimation, the vector that we need to estimate and the mea-
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x Preface

surements that we use to estimate it are related in simple geometric ways. Location estimation
provides a wealth of interesting and easy-to-model estimation problems.

The background that the book does require includes some linear algebra, calculus, and a
little bit of continuous probability. These topics are normally taught in the first year of most
bachelor degree programs in math, computer science, physics, and engineering. Therefore, the
material that the book covers should be accessible to students in these fields starting from their
second year of study, as well as to more advanced undergraduates, to graduate students, and to
professionals. An appendix enumerates all the mathematical concepts and results that the book
assumes that the reader knows.

The scope of the book is defined roughly by the range of algorithms and estimation tech-
niques that are used in GPS receivers, including high-end ones. The book also covers some
location-estimation techniques that are not used in GPS receivers, mainly when these techniques
provide standalone motivation for key building blocks (e.g., leveling is used to motivate linear
least squares). After reading this book you will understand how GPS receivers work at a deep
algorithmic and mathematical level, you will understand how several other localization systems
work, and you will be able to understand and develop models and algorithms for new location-
estimation systems.

The book focuses on modeling and on algorithms. Most of the theory that explains the
general statistical properties of estimators is omitted.

The book emphasizes recurring themes in estimation and in location estimation, especially
least-squares minimization and the use of orthogonal factorizations, especially the QR and SVD
factorizations. Least-squares minimization is used to solve linear problems (leveling), nonlinear
problems (e.g., GPS), arrival-time estimation, dynamical systems (Kalman filtering and smooth-
ing), and problems with integer parameters. At the same time, the book also highlights the
differences between these problems: linear problems are convex, nonlinear problems can be
(and often are) nonconvex, arrival-time estimation problems are highly nonconvex and require
a grid search, and so on. The QR factorization is another recurring theme. It is used to solve
linear least-squares problems, to compute the correction step in solvers for nonlinear problems,
to perform Kalman filtering and smoothing, and to enable efficient search for integer solutions.

Several topics are presented in the book in a unique way. The QR factorization and the way
that it is used to solve linear least-squares problems is presented in a particularly succinct way.
Estimation of the covariance matrix of an estimator is presented using both the Jacobian of the
model function and using the implicit function approach, which is more accurate. Arrival-time
estimation of known pseudorandom signals is presented in a way that exposes the relationship be-
tween the maximum-likelihood criterion and cross correlation; this makes it clear how to produce
subsample estimates without resorting to the sampling theorem (which is indeed not required).
The significance of the discrete Fourier transform is explained by showing that it diagonalizes
circulant matrices. Kalman filtering and smoothing is presented as a linear least-squares problem
that can be efficiently solved using a structured sparse QR factorization.

Chapters end with notes that direct the reader to original sources and to books that cover the
material in more depth or more breadth, and with problems that the reader is invited to solve.
Many of the problems constitute small programming projects. The text of the problem provides
detailed guidance and background on how to use MATLAB to solve the problem. Some of these
problems focus on modeling, some on algorithms, and some on visualization of the behavior and
results of algorithms. These problems complement the text in the sense that reading the text and
solving the problems prepares the reader to developing new location estimators, all the way from
the model, through the code, to the evaluation of the method. Other problems focus on the theory
and are designed to help readers deepen their understanding of the material. Some problems rely
on data files or MATLAB source-code files that are provided on the book’s website.1

1https://bookstore.siam.org/fa17/bonus

https://bookstore.siam.org/fa17/bonus


Preface xi

I wrote the book intending that it be used as the main textbook in an elective single-semester
course on location estimation in undergraduate or graduate programs in computer science and
applied math. For such programs, the scope, the required background, and the level of rigor
are just right. I have taught three such courses using drafts of the book. I believe that it is also
suitable for electives in other majors, especially if augmented with some additional discipline-
specific material. For example, students of physics or geodesy will probably benefit from some
additional material on geodetic systems and on orbit representation.

Specific chapters, especially those that present material in a unique way, can be used as
supplementary material in other courses. For example, the chapter on leveling can motivate
linear least squares in courses on numerical linear algebra. The material on nonlinear location-
estimation problems can motivate the study of nonlinear optimization algorithms. The material
on cross correlation together with some of the material on arrival-time estimation can be used to
motivate the fast Fourier transform. The chapter on Kalman filtering and smoothing can be used
in courses on robotics and on signal processing.

I am grateful to Nicolàs de Hilster, a collector and scholar of navigation and surveying in-
struments, for allowing me to use images of instruments from his collection.2 The function of
an instrument is often more evident from an image of an early model than from an image of a
modern model. (The old instruments whose images are shown in the book are also beautiful and
display remarkable craftsmanship.) The book also shows a few old maps from the Historical
Map & Chart Collection3 of the Office of Coast Survey, part of the U.S. National Oceanic and
Atmospheric Administration.

2http://www.dehilster.info
3https://historicalcharts.noaa.gov



Notation

Tables 1 and 2 show the usual meaning of letters that are used in mathematical expressions in
this book. As much as possible, each capital or small letter represents at most a single concept.
There is usually no connection between what a small letter represents and what the corresponding
capital represents. For example, M always represents a model function, which maps unknowns
to observable quantities, and m always represents the number of observations or constraints.
Some letters represent more than one concept but using very different typefaces. For example,
I represents the identity matrix, and I represents a Fisher information matrix. In a few cases
keeping the notation reasonably conventional required us to use the same letter for different
concepts in different chapters. For example, we use x to denote a generic (usually unknown)
vector, but in location-estimation problems we use x to denote the first coordinate (x coordinate)
of a location, and we use ` =

[
x y

]T
or ` =

[
x y z

]T
to denote the entire vector of

coordinates.
We use conventional notation from linear algebra, calculus, and probability, such as AT and

A∗ (matrix transpose and conjugate transpose), ∂/∂x (partial derivatives), and E(x) (expecta-
tion). We also use conventional asymptotic notation for the complexity of algorithms, such as
O(n) and Θ(n2); this notation is defined mathematically in virtually every textbook on algo-
rithms, such as [19].

Subscripts usually denote elements of vectors and matrices, so b5 is the fifth element of
the vector b and Ai,j or Aij is the element of the matrix A in row i and column j. Vectors
are always column vectors. We use so-called MATLAB notation for subvectors and submatrices:
xj:k represents elements j through k of the vector x, andA:,j:k represents all the rows in columns
j through k of the matrix A. Row and column indexes usually start from 1, except in Chapter 14,
where they start from 0 because this is more convenient in Fourier transforms. Two chapters, 5
and 15, use block matrix notation, in which we use Bij to denote a submatrix in block row i and
block column j, as in

B =

[
B11 B12

B21 B22

]
.

Here B11 refers to the first k rows and columns of B for some k, and so on. The same block
B11 can also be denoted B1:k,1:k but the former notation is more compact. In a few places we
use a single subscript to denote the index in a sequence of matrices, such as Q1, Q2, . . . , Qk.
Chapter 14 uses subscripts to denote the dimension of matrices, so Fm×m is m-by-m.

We use diag(A) to denote the vector containing the diagonal elements of a matrix A and
diag(x) to denote the diagonal matrix with Ai,i = xi, where x is a vector. For clarity, we
sometimes drop zero entries from a matrix, so

[
1 0
0 1

]
=

[
1

1

]
.

xiii



xiv Notation

Table 1. Greek letters used in mathematical expressions.

α complex amplitude
β phase
γ phase

∆ perturbation or displacement; δ a small perturbation
sampling period

ε vector of error or noise terms
ζ shrinkage bound in LLL algorithm
η satellite clock error

Θ asymptotic growth rate θ an angle
Λ diag(

[
λ1 λ2 · · ·

]
) λ eigenvalue, wavelength in Chapter 16

µ micro, 10−6

ν vector of integer parameters
ξ tropospheric delay
π pi, π = 3.14 . . .
ρ location of reference points

Σ diagonal matrix of singular values σ standard deviation or singular value
τ propagation delay, tropospheric delay
φ objective function
ϕ phase
ψ ionospheric delay

Ω diagonal matrix of FFT multipliers ω root of unity, ω = ωm = e2πi/m

Constants like 0 and 1 denote either a scalar, a vector, or a matrix; the intention is usually
clear from the context. In a few cases, we use bold 0 and 1 to denote vectors of zeros and ones,
to distinguish them from scalar zeros and ones that appear nearby.

Unless marked otherwise, norms refer to the Euclidean norm,

‖r‖ = ‖r‖2 =
√
r2
1 + r2

2 + · · ·+ rn.

We use bac to the denote the floor of a real number a (the largest integer smaller or equal to
a), dae to denote the ceiling of a, and bae the denote the rounding of a, the closest integer to a.

One aspect of the notation is specialized to estimation problems. We decorate the true value
of the quantity or vector that we are trying to estimate with a ring above it (the ring reminds
us that this is the target), for example, x̊. Other values that the quantity of vector might take
(hypotheses) are denoted by the same letter without decoration, x in our example. The value of
an estimator for x̊ is denoted by x̂.
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Table 2. Latin letters used in mathematical expressions.

A matrix, linear part of a model a real amplitude
B matrix b vector of observations
C covariance matrix c propagation speed
C the set of complex numbers
D diagonal matrix d vector of differences or differential, as

in
∫
f(x)dx

E matrix, usually for elimination
E expectation (note the upright typeface) e base of the natural logarithm, e =

2.71 . . .; ei is a unit vector
F matrix f a function, often an estimator x̂ =

f(b); also frequency in Chapters 13
and 16

G matrix g a function
H circulant matrix h height in Chapter 3; vector in Chap-

ter 14; a function elsewhere
I identity matrix i row index, index of a constraint
I Fisher information matrix i

√
−1

J Jacobian (note the upright typeface) j column index, index of an unknown
K matrix k index; number of time stamps in Chap-

ter 15
L lower-triangular matrix ` location vector
L log-likelihood function
M model function m number of constraints
N nonlinear part of model function n number of unknowns
N the set of natural numbers
O asymptotic upper bound o clock offset
P projection matrix p probability density function
Q orthonormal matrix, usually from QR

factorization
q vector of nuisance parameters

R upper-triangular matrix, usually from
QR factorization

r residual or rank

R the set of real numbers
S matrix, often representing weighting

and projection S = (I −QQT )W
s continuous signal (a real/complex

function of time)
S score function (gradient of L)
T transposition, as in AT t time
U orthonormal matrix, usually left singu-

lar vectors
u vector

V orthonormal matrix, usually right sin-
gular vectors

v vector

W weight matrix, WTW = C−1 w vector
x unknown vector or x coordinate
y y coordinate

Z the set of integers z z coordinate
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1-norm, 36
2-norm, 4

acquisition, 127
algorithmic differentiation, 80
aliasing, 140
ambiguity, 4, 158
ARGOS system, 11
assistance, 127
automatic differentiation, 80
azimuth, 2, 7, 10, 85

baseband signal, 121
bearing, 2
BeiDou (GNSS), 13
BFGS, 71
bias, 47, 98
BLUE, see estimator, BLUE

carrier, 121
carrier-phase equation, 156
cellular networks, 14
chain rule, 172
chip, 118
Cholesky factorization, 41
circulant matrix, 133–134
closest vector problem, see

least-squares, integer
compact SVD, see SVD,

compact
control point, 2, 7
coordinate systems, 14
correlation, see cross

correlation
covariance, 107
covariance matrix, 47, 49, 50,

99, 149
Cramer–Rao lower bound, 51,

105–112, 117
critical points, 70
CRLB, see Cramer–Rao lower

bound

cross correlation, 116, 125, 133
CVP, see least-squares, integer

decorrelation, 49, 145
derivative-free optimization, 72
DFT, see discrete Fourier

transform
differencing, 23, 90, 93, 94, 160
differencing, double, 166
differentiability, 68
differential GPS, 88, 94
differential location estimation,

see location estimation,
differential

dilution of precision, 102
directional derivative, 69
discrete Fourier transform,

134–136
DOP, see dilution of precision
Doppler shift, 11, 126
dynamical system, 142

ECEF coordinate system, 15
ECI coordinate system, 15
error estimation, 98
estimation, 4

time of arrival, 115–125
estimator

BLUE, 47–50
maximum likelihood, 50–52,

116
evolution equation, 142

fast Fourier transform, 121,
137–138

FFT, see fast Fourier transform
FIM, see Fisher information

matrix
fine time measurement, 12, 18
Fisher information matrix, 107
FTM, see fine time

measurement

full QR, see QR factorization,
full

full SVD, see SVD, full

Galileo (GNSS), 13
Gauss–Markov theorem, 53
Gauss–Newton method, 72
Gaussian distribution, 52, 109,

116
Gaussian elimination, 30
Givens rotation, 31
global navigation satellite

system, 13
Global Positioning System, 13
GLONASS (GNSS), 13
GNSS, see global navigation

satellite system
dual frequency, 95
time-of-arrival equation, 87

Gold code, 126
GPS, see Global Positioning

System
dual frequency, 95

GPS signals, 125–127
gradient, 68, 81, 84
gradient descent, 70
Gram–Schmidt process, 33

Hessian, 68, 84, 100
Householder reflection, 32
hyperbolic

location estimation, 5
hyperbolic location estimation,

see location estimation,
hyperbolic

hypothesis, 3

implicit function, 99
infinity norm, 36
information matrix, 49
integer least squares, see

least-squares, integer

199
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Jacobian, 68, 83, 98–102

Kalman filter, 141–151
Kalman smoothing, 147

lattice, 161
lattice basis reduction, see LLL

algorithm
least squares

dynamical system, 144
generalized, 50
integer, 161
linear, 22
nonlinear, 67–75
rank deficient, 61

leveling, 19–21, 57–60
Levenberg–Marquardt method,

72, 85
lidar, 11
likelihood function, 51, 105
line search, 70
linear programming, 33
linearization, 72
LLL algorithm, 163–165
localization, 9
location estimation, 4

differential, 88, 156
hyperbolic, 12, 88
time of arrival, 87–90
transmitter, 89–90

log-likelihood function, 106
Loran-C, 96
Loran-C system, 13

map projection, 15, 17
mapping, 10
maximum likelihood, see

estimator, maximum
likelihood

measurement, 3
measurement errors, see errors,

measurement
mixing, 123
model function, 4, 50, 67
modulation, 121
monotonic transformation, 22
Moore–Penrose pseudoinverse,

see pseudoinverse
multilateration, 5, 12, 87

navigation, 9
Nedler–Mead method, 72
Newton’s method, 70, 83
noise, see errors, measurement
nonlinear least squares, see

least squares, nonlinear
nonlinear optimization, 67–75
norm (of a vector), 3, 21
normal equations, 40
NP-hard problem, 161
nuisance parameters, 57, 62, 90

observation, 3
observation equation, 3, 143
OTDOA, see cellular networks
outliers, 53

Paige–Saunders algorithm,
144–151

parameter estimation, 4
phase-shift keying, see PSK,

123, 126
phasor, 123
positive definite matrix, 40
projection, 43

orthogonal, 43
pseudoinverse, 44, 49, 62
pseudorandom sequence, 118
pseudorange, 5, 88
PSK, see phase-shift keying
Pythagorean theorem, 40

QR
rank revealing, 63

QR factorization, 29–33, 91,
163

full, 32
thin, 32

quasi-Newton method, 71

radar, 10
random-sample consensus, 53,

86
rank, 24
rank deficiency, 57–62, 91, 98
RANSAC, see random-sample

consensus
reflection, see Householder

reflection

residual, 21, 97
reverse GPS, 14
rotation, see Givens rotation

saddle point, 70
Schnorr–Euchner search, 162,

166
score function, 106
semidefinite matrix, 47
separability, 90–93, 159
singular value, 60
singular vector, 60
singular-value decomposition,

see SVD
sparse matrix, 33
SVD, 60–63

compact, 60, 90
full, 60
thin, 60

symbolic derivatives, 79

target, 2
Taylor polynomial, 67–70, 98,

101
theodolite, 10
thin QR, see QR factorization,

thin
thin SVD, see SVD, thin
time of arrival, see estimation,

time of arrival, see
location estimation, time
of arrival

time-of-arrival equation
GNSS, 87

tracking, 9, 127
triangulation, 5, 85
trilateration, 4, 12, 67, 112
trust-region method, 71

unbiased estimator, 47
unimodular matrix, 164
UTM map projection, 17

VOR system, 11

WGS84 coordinate system, 15
white noise, 52
WiFi, see fine time

measurement


