Contents

Preface ix
Notation xiii
1 Fundamentals 1
1.1 From Geometric Constraints to Estimation 2
1.2 Other Types of Constraints, Geometric and Otherwise 4
1.3 Nested Estimation Problems 6
1.4 Notes 7
1.5 Problems 7
2 Location-Estimation Systems 9
2.1 Localization, Navigation, and Mapping 9
2.2 Measuring Angles 10
2.3 Measuring Distances 12
2.4 Measuring Time of Arrival and Time Difference of Arrival 12
2.5 Coordinate Systems 14
2.6 Notes 15
2.7 Problems 16
3 From Leveling to Linear Least-Squares Problems 19
3.1 Heights from Differences 20
3.2 Norm Minimization 21
3.3 Monotonic Transformations 22
3.4 Notes 22
3.5 Problems 23
4 Solving Linear Least-Squares Problems with the QR Factorization 29
4.1 Easy Problems 29
4.2 Residual-Norm-Preserving Elimination 30
4.3 Ordering the Eliminations 31
4.4 The Thin QR Factorization 32
4.5 Other Ways to Compute the QR Factorization 32
4.6 Computational Complexity and Sparsity 33
4.7 Notes 33
4.8 Problems 34
$5 \quad$ Projections and Reductions to Linear Equations 39
5.1 The Pythagorean Theorem 39
5.2 The Normal Equations and the Equilibrium Equations 40
5.3 The Cholesky Factorization 41
5.4 Orthogonal Projections 43
5.5 The Pseudoinverse 44
5.6 Notes 44
5.7 Problems 44
6 Estimation through Optimization: Probabilistic Justifications 47
6.1 Best Linear Unbiased Estimators 47
6.2 Generalized Least Squares and Decorrelation 49
6.3 Maximum-Likelihood Estimators 50
6.4 Maximum Likelihood for Additive Gaussian Noise 51
6.5 Outliers and an Algorithm to Detect Them 53
6.6 Notes 53
6.7 Problems 54
7 Rank Deficient Problems and the SVD 57
7.1 A Motivating Example: Too Many Nuisance Parameters 57
7.2 Another Motivating Example: Not Enough Information 58
7.3 The Singular-Value Decomposition 60
7.4 Numerical Issues and the Truncated SVD 60
7.5 Solving Linear Least-Squares Problems with the SVD 61
7.6 Eliminating Nuisance Parameters 62
7.7 Notes 63
7.8 Problems 63
8 Solving Nonlinear Least-Squares Problems 67
8.1 Taylor Polynomials 67
8.2 Recognizing a Minimum and Gradient Descent 69
8.3 Newton's Method 70
8.4 Gauss-Newton Methods 72
8.5 Derivative-Free Optimization: The Nedler-Mead Method 72
8.6 Stopping Criteria 74
8.7 Notes 75
8.8 Problems 75
9 Evaluating Derivatives 79
9.1 Symbolic Derivatives 79
9.2 Matrix Calculus 81
9.3 Correctness of the Newton Step 83
9.4 Derivatives of Transformed Least-Squares Problems 83
9.5 Notes 84
9.6 Problems 85
10 Time-of-Arrival Localization and Separability 87
10.1 GNSS Time-of-Arrival Observation Equations 87
10.2 Time-of-Arrival Transmitter Localization 89
10.3 Separable Nonlinear Least-Squares Problems 90
10.4 Exploiting Separability Using Nonorthogonal Elimination 91
10.5 Notes 93
10.6 Problems 93
11 A Posteriori Error Analysis 97
11.1 Probabilistic Analysis of the Residual 97
11.2 Error Estimation 98
11.3 The Jacobian of a Minimizer 99
11.4 A Gauss-Newton Approximation of the Jacobian 101
11.5 Notes 102
11.6 Problems 103
12 A Priori Analysis: The Cramer-Rao Bound 105
12.1 Gradients of the Likelihood and Its Logarithm 105
12.2 The Fisher Information Matrix and the Cramer-Rao Bound 107
12.3 CRLB for Additive Gaussian Noise 109
12.4 Examples 111
12.5 Notes 113
12.6 Problems 113
13 Arrival-Time Estimation 115
13.1 From Maximum Likelihood to Cross Correlation 115
13.2 Signal Engineering 117
13.3 Algorithms 120
13.4 Modulation and Complex Signals 121
13.5 Arrival-Time Estimation for Complex Signals 124
13.6 GPS Signals 125
13.7 Notes 127
13.8 Problems 128
14 Cross Correlation Using the Fast Fourier Transform 133
14.1 The Structure of Circulant Matrices 134
14.2 The Discrete Fourier Transform and Circulant Matrices 135
14.3 The Fast Fourier Transform 137
14.4 Notes 138
14.5 Problems 138
15 Kalman Variations: Least Squares for Dynamical Systems 141
15.1 Where Will the Cannonball Land? 141
15.2 Linear Discrete Dynamical Systems 142
15.3 A Least-Squares Formulation 144
15.4 Rank Considerations 144
15.5 The Paige-Saunders Algorithm 144
15.6 Smoothing, Interpolation, Filtering, and Prediction 147
15.7 Computing the Variance of the Estimates 149
15.8 Notes 151
15.9 Problems 152
16 Carrier-Phase Observations and Integer Least Squares 155
16.1 GPS Carrier-Phase Constraints 155
16.2 Eliminating the Real Parameters 158
16.3 Integer Least Squares (the Closest Vector Problem) 161
16.4 Searching and Pruning 162
16.5 The LLL Basis Reduction Algorithm 163
16.6 Notes 165
16.7 Problems 166
A Mathematical Background 169
A. 1 Trigonometry and Complex Numbers 169
A. 2 Linear Algebra 169
A. 3 Calculus 171
A. 4 Probability 172
B Solutions 175
Bibliography 195
Index 199

Preface

This book presents the key ideas and algorithms that are used to estimate an unknown real vector x from a set of indirect, inexact measurements b_{1}, \ldots, b_{m}. The book illustrates and motivates these ideas and algorithms by showing how they are applied to the estimation of geometric locations and paths. The estimation techniques that we discuss make two important assumptions. First, we assume that the quantities that we measure are generated from the unknown vector in a known way. For example, a GPS receiver at a location x measures the arrival times b_{1}, \ldots, b_{m} of signals that were transmitted from known locations (in space) at known times. The exact arrival times are functions of the unknown location, $b_{i}=M_{i}(x)$, where M_{i} is a known function, at least approximately. Second, we assume that the statistical behavior of measurement errors is known. For example, we might assume that while our GPS receiver cannot determine $M_{i}(x)$ exactly, it can observe or estimate $b_{i}=M_{i}(x)+\epsilon_{i}$, where ϵ is a random vector with a known distribution (again, perhaps only approximately known). The techniques and algorithms that this book teaches use the vector b, our knowledge of M, and knowledge of the distribution of ϵ to estimate x and to assess the accuracy of this estimate.

Estimation problems of this type are important and ubiquitous in science and engineering because many quantities of interest cannot be measured directly and because measurements, both direct and indirect, are inexact. The length of a box can be measured directly with a ruler. The measurement is direct in the sense that we measure the length of the box by comparing it to many fixed lengths marked on the ruler. In contrast, we measure temperature indirectly. To measure the temperature of a liquid, we can place the bulb of a mercury-in-glass thermometer (or a less hazardous modern equivalent) in the liquid and read the temperature from a scale that relates the volume of mercury to its temperature. In this case, the function M transforms a temperature x to a volume $M(x)$. In most cases, both direct and indirect measurements of continuous quantities are inexact. When measuring lengths with a ruler, the inexactness is due to the limited resolution of markings on the ruler's edge and from possible changes in the length of the ruler itself (it may have expanded or shrunk).

Estimation of locations, in particular, is a special case that is important and ubiquitous on its own. It is an old problem with a fascinating history. In some settings, it still poses significant challenges today. To appreciate the historical context, think of marine navigators who must determine their location on an open featureless sea. Mariners were able to estimate latitude from measurements of the inclined position of stars since the 15 th century. They only gained the ability to accurately estimate longitude in the 18 th century, after chronometers (accurate clocks) were invented. Today, every smartphone includes a GPS receiver that can estimate the position of the phone from measurements of the arrival times of radio signals transmitted by satellites. However, GPS receivers do not work well inside buildings, so indoor location estimation remains an active area of research.

By focusing on location estimation, this book not only covers an important application of estimation but also teaches estimation without requiring any background in physics, chemistry, or signal processing. In location estimation, the vector that we need to estimate and the mea-
surements that we use to estimate it are related in simple geometric ways. Location estimation provides a wealth of interesting and easy-to-model estimation problems.

The background that the book does require includes some linear algebra, calculus, and a little bit of continuous probability. These topics are normally taught in the first year of most bachelor degree programs in math, computer science, physics, and engineering. Therefore, the material that the book covers should be accessible to students in these fields starting from their second year of study, as well as to more advanced undergraduates, to graduate students, and to professionals. An appendix enumerates all the mathematical concepts and results that the book assumes that the reader knows.

The scope of the book is defined roughly by the range of algorithms and estimation techniques that are used in GPS receivers, including high-end ones. The book also covers some location-estimation techniques that are not used in GPS receivers, mainly when these techniques provide standalone motivation for key building blocks (e.g., leveling is used to motivate linear least squares). After reading this book you will understand how GPS receivers work at a deep algorithmic and mathematical level, you will understand how several other localization systems work, and you will be able to understand and develop models and algorithms for new locationestimation systems.

The book focuses on modeling and on algorithms. Most of the theory that explains the general statistical properties of estimators is omitted.

The book emphasizes recurring themes in estimation and in location estimation, especially least-squares minimization and the use of orthogonal factorizations, especially the QR and SVD factorizations. Least-squares minimization is used to solve linear problems (leveling), nonlinear problems (e.g., GPS), arrival-time estimation, dynamical systems (Kalman filtering and smoothing), and problems with integer parameters. At the same time, the book also highlights the differences between these problems: linear problems are convex, nonlinear problems can be (and often are) nonconvex, arrival-time estimation problems are highly nonconvex and require a grid search, and so on. The QR factorization is another recurring theme. It is used to solve linear least-squares problems, to compute the correction step in solvers for nonlinear problems, to perform Kalman filtering and smoothing, and to enable efficient search for integer solutions.

Several topics are presented in the book in a unique way. The QR factorization and the way that it is used to solve linear least-squares problems is presented in a particularly succinct way. Estimation of the covariance matrix of an estimator is presented using both the Jacobian of the model function and using the implicit function approach, which is more accurate. Arrival-time estimation of known pseudorandom signals is presented in a way that exposes the relationship between the maximum-likelihood criterion and cross correlation; this makes it clear how to produce subsample estimates without resorting to the sampling theorem (which is indeed not required). The significance of the discrete Fourier transform is explained by showing that it diagonalizes circulant matrices. Kalman filtering and smoothing is presented as a linear least-squares problem that can be efficiently solved using a structured sparse QR factorization.

Chapters end with notes that direct the reader to original sources and to books that cover the material in more depth or more breadth, and with problems that the reader is invited to solve. Many of the problems constitute small programming projects. The text of the problem provides detailed guidance and background on how to use MATLAB to solve the problem. Some of these problems focus on modeling, some on algorithms, and some on visualization of the behavior and results of algorithms. These problems complement the text in the sense that reading the text and solving the problems prepares the reader to developing new location estimators, all the way from the model, through the code, to the evaluation of the method. Other problems focus on the theory and are designed to help readers deepen their understanding of the material. Some problems rely on data files or MATLAB source-code files that are provided on the book's website. ${ }^{1}$

[^0]I wrote the book intending that it be used as the main textbook in an elective single-semester course on location estimation in undergraduate or graduate programs in computer science and applied math. For such programs, the scope, the required background, and the level of rigor are just right. I have taught three such courses using drafts of the book. I believe that it is also suitable for electives in other majors, especially if augmented with some additional disciplinespecific material. For example, students of physics or geodesy will probably benefit from some additional material on geodetic systems and on orbit representation.

Specific chapters, especially those that present material in a unique way, can be used as supplementary material in other courses. For example, the chapter on leveling can motivate linear least squares in courses on numerical linear algebra. The material on nonlinear locationestimation problems can motivate the study of nonlinear optimization algorithms. The material on cross correlation together with some of the material on arrival-time estimation can be used to motivate the fast Fourier transform. The chapter on Kalman filtering and smoothing can be used in courses on robotics and on signal processing.

I am grateful to Nicolàs de Hilster, a collector and scholar of navigation and surveying instruments, for allowing me to use images of instruments from his collection. ${ }^{2}$ The function of an instrument is often more evident from an image of an early model than from an image of a modern model. (The old instruments whose images are shown in the book are also beautiful and display remarkable craftsmanship.) The book also shows a few old maps from the Historical Map \& Chart Collection ${ }^{3}$ of the Office of Coast Survey, part of the U.S. National Oceanic and Atmospheric Administration.

[^1]
Notation

Tables 1 and 2 show the usual meaning of letters that are used in mathematical expressions in this book. As much as possible, each capital or small letter represents at most a single concept. There is usually no connection between what a small letter represents and what the corresponding capital represents. For example, M always represents a model function, which maps unknowns to observable quantities, and m always represents the number of observations or constraints. Some letters represent more than one concept but using very different typefaces. For example, I represents the identity matrix, and \mathcal{I} represents a Fisher information matrix. In a few cases keeping the notation reasonably conventional required us to use the same letter for different concepts in different chapters. For example, we use x to denote a generic (usually unknown) vector, but in location-estimation problems we use x to denote the first coordinate (x coordinate) of a location, and we use $\ell=\left[\begin{array}{ll}x & y\end{array}\right]^{T}$ or $\ell=\left[\begin{array}{lll}x & y & z\end{array}\right]^{T}$ to denote the entire vector of coordinates.

We use conventional notation from linear algebra, calculus, and probability, such as A^{T} and A^{*} (matrix transpose and conjugate transpose), $\partial / \partial x$ (partial derivatives), and $\mathrm{E}(x)$ (expectation). We also use conventional asymptotic notation for the complexity of algorithms, such as $O(n)$ and $\Theta\left(n^{2}\right)$; this notation is defined mathematically in virtually every textbook on algorithms, such as [19].

Subscripts usually denote elements of vectors and matrices, so b_{5} is the fifth element of the vector b and $A_{i, j}$ or $A_{i j}$ is the element of the matrix A in row i and column j. Vectors are always column vectors. We use so-called MATLAB notation for subvectors and submatrices: $x_{j: k}$ represents elements j through k of the vector x, and $A_{:, j: k}$ represents all the rows in columns j through k of the matrix A. Row and column indexes usually start from 1, except in Chapter 14, where they start from 0 because this is more convenient in Fourier transforms. Two chapters, 5 and 15 , use block matrix notation, in which we use $B_{i j}$ to denote a submatrix in block row i and block column j, as in

$$
B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

Here B_{11} refers to the first k rows and columns of B for some k, and so on. The same block B_{11} can also be denoted $B_{1: k, 1: k}$ but the former notation is more compact. In a few places we use a single subscript to denote the index in a sequence of matrices, such as $Q_{1}, Q_{2}, \ldots, Q_{k}$. Chapter 14 uses subscripts to denote the dimension of matrices, so $F_{m \times m}$ is m-by- m.

We use $\operatorname{diag}(A)$ to denote the vector containing the diagonal elements of a matrix A and $\operatorname{diag}(x)$ to denote the diagonal matrix with $A_{i, i}=x_{i}$, where x is a vector. For clarity, we sometimes drop zero entries from a matrix, so

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & \\
& 1
\end{array}\right]
$$

Table 1. Greek letters used in mathematical expressions.

Constants like 0 and 1 denote either a scalar, a vector, or a matrix; the intention is usually clear from the context. In a few cases, we use bold $\mathbf{0}$ and $\mathbf{1}$ to denote vectors of zeros and ones, to distinguish them from scalar zeros and ones that appear nearby.

Unless marked otherwise, norms refer to the Euclidean norm,

$$
\|r\|=\|r\|_{2}=\sqrt{r_{1}^{2}+r_{2}^{2}+\cdots+r_{n}}
$$

We use $\lfloor a\rfloor$ to the denote the floor of a real number a (the largest integer smaller or equal to a), $\lceil a\rceil$ to denote the ceiling of a, and $\lfloor a\rceil$ the denote the rounding of a, the closest integer to a.

One aspect of the notation is specialized to estimation problems. We decorate the true value of the quantity or vector that we are trying to estimate with a ring above it (the ring reminds us that this is the target), for example, $\stackrel{\circ}{x}$. Other values that the quantity of vector might take (hypotheses) are denoted by the same letter without decoration, x in our example. The value of an estimator for \dot{x} is denoted by \hat{x}.

Table 2. Latin letters used in mathematical expressions.

A	matrix, linear part of a model	a	real amplitude
B	matrix	b	vector of observations
C	covariance matrix	c	propagation speed
\mathbb{C}	the set of complex numbers		
D	diagonal matrix	d	vector of differences or differential, as in $\int f(x) d x$
E	matrix, usually for elimination		
E	expectation (note the upright typeface)	e	base of the natural logarithm, $e=$ $2.71 \ldots ; e_{i}$ is a unit vector
F	matrix	f	a function, often an estimator $\hat{x}=$ $f(b)$; also frequency in Chapters 13 and 16
G	matrix	g	a function
H	circulant matrix	h	height in Chapter 3; vector in Chapter 14 ; a function elsewhere
I	identity matrix	i	row index, index of a constraint
\mathcal{I}	Fisher information matrix	i	$\sqrt{-1}$
J	Jacobian (note the upright typeface)	j	column index, index of an unknown
K	matrix	k	index; number of time stamps in Chapter 15
L	lower-triangular matrix	ℓ	location vector
\mathcal{L}	log-likelihood function		
M	model function	m	number of constraints
N	nonlinear part of model function	n	number of unknowns
\mathbb{N}	the set of natural numbers		
O	asymptotic upper bound	o	clock offset
P	projection matrix	p	probability density function
Q	orthonormal matrix, usually from QR factorization	q	vector of nuisance parameters
R	upper-triangular matrix, usually from QR factorization	r	residual or rank
\mathbb{R}	the set of real numbers		
S	matrix, often representing weighting and projection $S=\left(I-Q Q^{T}\right) W$	s	continuous signal (a real/complex function of time)
\mathcal{S}	score function (gradient of \mathcal{L})		
T	transposition, as in A^{T}	t	time
U	orthonormal matrix, usually left singular vectors	u	vector
V	orthonormal matrix, usually right singular vectors	v	vector
W	weight matrix, $W^{T} W=C^{-1}$	w	vector
		x	unknown vector or x coordinate
		y	y coordinate
\mathbb{Z}	the set of integers	z	z coordinate

Index

1-norm, 36
2-norm, 4
acquisition, 127
algorithmic differentiation, 80
aliasing, 140
ambiguity, 4, 158
ARGOS system, 11
assistance, 127
automatic differentiation, 80
azimuth, $2,7,10,85$
baseband signal, 121
bearing, 2
BeiDou (GNSS), 13
BFGS, 71
bias, 47, 98
BLUE, see estimator, BLUE
carrier, 121
carrier-phase equation, 156
cellular networks, 14
chain rule, 172
chip, 118
Cholesky factorization, 41
circulant matrix, 133-134
closest vector problem, see least-squares, integer
compact SVD, see SVD, compact
control point, 2, 7
coordinate systems, 14
correlation, see cross correlation
covariance, 107
covariance matrix, 47, 49, 50, 99, 149
Cramer-Rao lower bound, 51, 105-112, 117
critical points, 70
CRLB, see Cramer-Rao lower bound
cross correlation, 116, 125, 133
CVP, see least-squares, integer
decorrelation, 49, 145
derivative-free optimization, 72
DFT, see discrete Fourier transform
differencing, 23, 90, 93, 94, 160
differencing, double, 166
differentiability, 68
differential GPS, 88,94
differential location estimation, see location estimation, differential
dilution of precision, 102
directional derivative, 69
discrete Fourier transform, 134-136
DOP, see dilution of precision
Doppler shift, 11, 126
dynamical system, 142
ECEF coordinate system, 15
ECI coordinate system, 15
error estimation, 98
estimation, 4
time of arrival, 115-125
estimator
BLUE, 47-50
maximum likelihood, 50-52, 116
evolution equation, 142
fast Fourier transform, 121, 137-138
FFT, see fast Fourier transform
FIM, see Fisher information matrix
fine time measurement, 12, 18
Fisher information matrix, 107
FTM, see fine time measurement
full QR , see QR factorization, full
full SVD, see SVD, full
Galileo (GNSS), 13
Gauss-Markov theorem, 53
Gauss-Newton method, 72
Gaussian distribution, 52, 109, 116
Gaussian elimination, 30
Givens rotation, 31
global navigation satellite system, 13
Global Positioning System, 13
GLONASS (GNSS), 13
GNSS, see global navigation satellite system
dual frequency, 95
time-of-arrival equation, 87
Gold code, 126
GPS, see Global Positioning System
dual frequency, 95
GPS signals, 125-127
gradient, $68,81,84$
gradient descent, 70
Gram-Schmidt process, 33
Hessian, 68, 84, 100
Householder reflection, 32
hyperbolic
location estimation, 5
hyperbolic location estimation, see location estimation, hyperbolic
hypothesis, 3
implicit function, 99
infinity norm, 36
information matrix, 49
integer least squares, see least-squares, integer

Jacobian, 68, 83, 98-102

Kalman filter, 141-151
Kalman smoothing, 147
lattice, 161
lattice basis reduction, see LLL algorithm
least squares
dynamical system, 144
generalized, 50
integer, 161
linear, 22
nonlinear, 67-75
rank deficient, 61
leveling, 19-21, 57-60
Levenberg-Marquardt method, 72, 85
lidar, 11
likelihood function, 51, 105
line search, 70
linear programming, 33
linearization, 72
LLL algorithm, 163-165
localization, 9
location estimation, 4
differential, 88, 156
hyperbolic, 12, 88
time of arrival, 87-90
transmitter, 89-90
log-likelihood function, 106
Loran-C, 96
Loran-C system, 13
map projection, 15, 17
mapping, 10
maximum likelihood, see estimator, maximum likelihood
measurement, 3
measurement errors, see errors, measurement
mixing, 123
model function, 4, 50, 67
modulation, 121
monotonic transformation, 22
Moore-Penrose pseudoinverse, see pseudoinverse
multilateration, 5, 12, 87
navigation, 9
Nedler-Mead method, 72
Newton's method, 70, 83
noise, see errors, measurement
nonlinear least squares, see least squares, nonlinear
nonlinear optimization, 67-75
norm (of a vector), 3, 21
normal equations, 40
NP-hard problem, 161
nuisance parameters, 57, 62,90
observation, 3
observation equation, 3, 143
OTDOA, see cellular networks
outliers, 53

Paige-Saunders algorithm, 144-151
parameter estimation, 4
phase-shift keying, see PSK, 123, 126
phasor, 123
positive definite matrix, 40
projection, 43
orthogonal, 43
pseudoinverse, 44, 49, 62
pseudorandom sequence, 118
pseudorange, 5, 88
PSK, see phase-shift keying
Pythagorean theorem, 40
QR
rank revealing, 63
QR factorization, 29-33, 91, 163
full, 32
thin, 32
quasi-Newton method, 71
radar, 10
random-sample consensus, 53, 86
rank, 24
rank deficiency, 57-62, 91, 98
RANSAC, see random-sample consensus
reflection, see Householder reflection
residual, 21, 97
reverse GPS, 14
rotation, see Givens rotation
saddle point, 70
Schnorr-Euchner search, 162, 166
score function, 106
semidefinite matrix, 47
separability, 90-93, 159
singular value, 60
singular vector, 60
singular-value decomposition, see SVD
sparse matrix, 33
SVD, 60-63
compact, 60, 90
full, 60
thin, 60
symbolic derivatives, 79
target, 2
Taylor polynomial, 67-70, 98, 101
theodolite, 10
thin QR , see QR factorization, thin
thin SVD, see SVD, thin
time of arrival, see estimation, time of arrival, see location estimation, time of arrival
time-of-arrival equation
GNSS, 87
tracking, 9, 127
triangulation, 5, 85
trilateration, 4, 12, 67, 112
trust-region method, 71
unbiased estimator, 47
unimodular matrix, 164
UTM map projection, 17
VOR system, 11
WGS84 coordinate system, 15
white noise, 52
WiFi, see fine time measurement

[^0]: ${ }^{1}$ https://bookstore.siam.org/fa17/bonus

[^1]: ${ }^{2} h t t p: / / w w w . d e h i l s t e r . i n f o$
 ${ }^{3}$ https://historicalcharts.noaa.gov

