Properties of Bernstein Polynomials

The Bernstein polynomials of degree n are nonnegative on the standard parameter interval $[0, 1]$ and sum to one:

$$
\sum_{k=0}^{n} b^n_k(x) = 1.
$$

Moreover, b^n_k has a unique maximum at $x = \frac{k}{n}$ on $[0, 1]$.

Properties of Bernstein Polynomials

The Bernstein polynomials of degree \(n \) are nonnegative on the standard parameter interval \([0, 1]\) and sum to one:

\[
\sum_{k=0}^{n} b^n_k(x) = 1.
\]

Moreover, \(b^n_k \) has a unique maximum at \(x = \frac{k}{n} \) on \([0, 1]\).

At the interval endpoints 0 and 1, only the first and the last Bernstein polynomials are nonzero, respectively:

\[
\begin{align*}
 b^n_0(0) &= 1, & b^n_1(0) &= \cdots = b^n_n(0) &= 0, \\
 b^n_0(1) &= \cdots = b^n_{n-1}(1) &= 0, & b^n_n(1) &= 1.
\end{align*}
\]

As a consequence, a polynomial in Bernstein form, \(p = \sum_{k=0}^{n} c_k b^n_k \), is equal to \(c_0 \) at \(x = 0 \) and equal to \(c_n \) at \(x = 1 \). This property is referred to as endpoint interpolation.
Ids for Bernstein Polynomials

The Bernstein polynomials b_k^n, $k = 0, \ldots, n$, satisfy the following identities.

Symmetry:

$$b_k^n(1 - x) = b_{n-k}^n(x).$$
Identities for Bernstein Polynomials

The Bernstein polynomials b^n_k, $k = 0, \ldots, n$, satisfy the following identities.

Symmetry:

$$b^n_k(1 - x) = b^n_{n-k}(x).$$

Recursion:

$$b^n_k(x) = x b^{n-1}_{k-1}(x) + (1 - x) b^{n-1}_k(x).$$
Identities for Bernstein Polynomials

The Bernstein polynomials b^n_k, $k = 0, \ldots, n$, satisfy the following identities.

Symmetry:

$$b^n_k(1 - x) = b^n_{n-k}(x).$$

Recursion:

$$b^n_k(x) = x b^{n-1}_{k-1}(x) + (1 - x) b^{n-1}_k(x).$$

Differentiation:

$$(b^n_k)' = n \left(b^{n-1}_{k-1} - b^{n-1}_k \right).$$
Identities for Bernstein Polynomials

The Bernstein polynomials b^n_k, $k = 0, \ldots, n$, satisfy the following identities.

Symmetry:

$$b^n_k(1 - x) = b^n_{n-k}(x).$$

Recursion:

$$b^n_k(x) = x b^{n-1}_{k-1}(x) + (1 - x) b^{n-1}_k(x).$$

Differentiation:

$$(b^n_k)' = n \left(b^{n-1}_{k-1} - b^{n-1}_k \right).$$

Integration:

$$\int_0^1 b^n_k = \frac{1}{n + 1}.$$
Identities for Bernstein Polynomials

The Bernstein polynomials b^n_k, $k = 0, \ldots, n$, satisfy the following identities.

Symmetry:

$$b^n_k(1 - x) = b^n_{n-k}(x).$$

Recursion:

$$b^n_k(x) = x b^{n-1}_{k-1}(x) + (1 - x) b^{n-1}_k(x).$$

Differentiation:

$$\left(b^n_k \right)' = n \left(b^{n-1}_{k-1} - b^{n-1}_k \right).$$

Integration:

$$\int_0^1 b^n_k = \frac{1}{n+1}.$$

We note that $b^{n-1}_{n-1} = b^{n-1}_n = 0$ in the second and third identities, according to the standard convention.