
Non-Intrinsic IEEE Modules

January 9, 2013, July 31, 2013

R. J. Hanson

Abstract

Three non-intrinsic Fortran 2003 modules are implemented. These modules are
IEEE FEATURES, IEEE EXCEPTIONS, and IEEE ARITHMETIC. All codes as-
sume the underlying machine architecture is the Intel or AMD x86. Machine instruc-
tions are used that have appeared since about 1999. The module procedures call C
codes that use in-line assembler for instructions that must maintain the flags, status,
and computation of the remainder function, IEEE REM.

Contents

1 Introduction 1

2 The Module IEEE FEATURES 2

3 The Module IEEE EXCEPTIONS 3
3.1 IEEE STATUS TYPE, IEEE GET STATUS,

and IEEE SET STATUS . 3
3.1.1 Usage . 3
3.1.2 Interface . 3

3.2 IEEE FLAG TYPE, IEEE GET FLAG,
and IEEE SET FLAG . 4
3.2.1 Usage . 4

3.3 IEEE GET HALTING MODE, IEEE SET HALTING MODE 5

4 The Module IEEE ARITHMETIC 5

5 The Test Program IEEE tests gfortran 6

6 Acknowledgments 7

1 Introduction

This brief documentation for the IEEE modules is intended primarily for the team that will
install them as part of the Fortran compiler, known by its common name gfortran. These
notes might be useful to developers when the results are made available in a future compiler
release.
There are sections below that describe additional details of the three modules. Readers
will find the names and specification details in the final draft of the Fortran 2008 standard,
ISO/IEC JTC 1/SC 22/WG 5/N1830. This will be referred to as F2008. Have a copy

of this document available.

Here are four principles that contributed to design and construction of this work:

1. All critical parts of the standard specification are implemented.

2. Every routine and derived type is written in Fortran, as far as possible.

3. Access to machine instructions is obtained by Fortran calling C routines with in-line
assembler for these instructions. The Fortran 2003 standard specification for interop-
erability of Fortran and C is used.

4. Every routine in the modules is thread-safe, based on Fortran OpenMP multi-thread
usage.

As a bonus, a derived type: TYPE(IEEE X87 PRECISION TYPE), is defined. It al-
lows the run-time system to get, test and set the precision that the x87 floating-point unit
employs in its internal arithmetic. Useful choices are: IEEE SINGLE, IEEE DOUBLE and
IEEE DOUBLE EXTENDED.

A test program, IEEE tests gfortran.f90, calls routines from the package and checks
their correctness. This testing software was first developed with the Intel XE 12.0 Fortran
compiler. That allowed the C codes to be developed with Intel formats, compiled with MS
VS C++, and using the in-line assembler. After this was working the in-line assembler codes
were converted to use the gcc C compiler formats.

Certain routines, F2008, Table 14.1, are intended as elemental or pure. These decla-
rations were sacrificed in favor of OpenMP thread-safety. For example a variable that is
threadprivate, with respect to OpenMP, must be specified with a save attribute. But that
attribute is not allowed in elemental or pure routines. It was felt that assuring thread safety,
using threadprivate local variables, was more important than adhering to these declarations.
Users of the package can ignore this issue.

2 The Module IEEE FEATURES

See F2008, 14.2.4.
The module IEEE FEATURES defines the type IEEE FEATURES TYPE, expressing the
need for particular features. Its possible values are those of named constants defined in the
module: IEEE DATATYPE, IEEE DENORMAL, IEEE DIVIDE, IEEE HALTING,
IEEE INEXACT FLAG, IEEE INF, IEEE INVALID FLAG, IEEE NAN, IEEE ROUNDING,
IEEE SQRT, and IEEE UNDERFLOW FLAG. There is an additional constant,
IEEE X87 ACCURACY, indicating support for precision control in the x87 floating- point
unit.

All these features are available by default. So use-associating this module will have no
effect on the performance obtained by additional use-association of the modules
IEEE ARITHMETIC and IEEE EXCEPTIONS.

July 31, 2013 RJH: Non-Intrinsic IEEE Modules Page 2

3 The Module IEEE EXCEPTIONS

See F2008, Table 14.2, and 14.2.4.
The module IEEE EXCEPTIONS defines the following types. IEEE FLAG TYPE is for
identifying a particular exception flag. Its only possible values are those of named constants
defined in the module: IEEE INVALID, IEEE OVERFLOW, IEEE DIVIDE BY ZERO,
IEEE UNDERFLOW, and IEEE INEXACT. The module also defines arrays of these named
constants: IEEE USUAL = [IEEE OVERFLOW, IEEE DIVIDE BY ZERO, IEEE INVALID]
and IEEE ALL = [IEEE USUAL, IEEE UNDERFLOW, IEEE INEXACT].

The inquiry functions IEEE SUPPORT FLAG and IEEE SUPPORT HALTING always
return .TRUE., for all input parameters.

3.1 IEEE STATUS TYPE, IEEE GET STATUS,
and IEEE SET STATUS

3.1.1 Usage

The type IEEE STATUS TYPE is for representing the floating-point status or state. This
object has a C binding and a single private component, an array INTEGER(C INT) ::
STATE(128+27). This component contains the 512 bytes of the SSE together with the
108 bytes of the x87 floating-point unit. This array holds the snapshot of the entire state of
both floating-point units, when IEEE GET STATUS is called. A fragment of an example:

TYPE(IEEE STATUS TYPE) :: SAVE STATE

...

CALL IEEE GET STATUS(SAVE STATE)

! Do some computing, test and set flags, ...

! Return floating point units to initial status.

CALL IEEE SET STATUS(SAVE STATE)

3.1.2 Interface

The subroutine IEEE GET STATUS calls the C routine GET STATES. This C routine copies
the x87 and the SSE states into its integer array component. The machine instruction for
saving the status of the SSE is fxsave s;. The target of the operation is the memory location
int s[128]. The alignment of this array is required by the hardware to have its memory address
divisible by 16. Thus align this intermediate array: int s[128] attribute ((aligned(16)));.
Following the save of the SSE state to s, the contents are then copied to the component of
the derived type SAVE STATE that may not have this alignment constraint. There is no
restriction on the memory address alignment for saving the x87 state: fsave s[27];.

The subroutine IEEE SET STATUS calls the C routine SET STATES with the C binding
name GFORTRAN set states. This C routine reverses the copy into the x87 and the SSE
states from its integer array component. There is a corresponding copy-in, copy-out require-
ment for restoring the status of the SSE. State saving and restore are relatively expensive,
but as they should only be called rarely this should not be an issue.

July 31, 2013 RJH: Non-Intrinsic IEEE Modules Page 3

3.2 IEEE FLAG TYPE, IEEE GET FLAG,
and IEEE SET FLAG

See F2008, 14.3. The exceptions are the following.

• IEEE OVERFLOW occurs when the result for an intrinsic real operation or assignment
has an absolute value greater than a processor-dependent limit, or the real or imaginary
part of the result for an intrinsic complex operation or assignment has an absolute
value greater than a processor-dependent limit. These limits are provided by the
environmental parameters HUGE(X), where X has a KIND value that depends on the
accuracy of the operation.

• IEEE DIVIDE BY ZERO occurs when a real or complex division has a nonzero nu-
merator and a zero denominator.

• IEEE INVALID occurs when a real or complex operation or assignment is invalid;
possible examples are SQRT (X) when X is real and has a nonzero negative value, and
conversion to an integer (by assignment, an intrinsic procedure, or a procedure defined
in an intrinsic module) when the result is too large to be representable.

• IEEE UNDERFLOW occurs when the result for an intrinsic real operation or assign-
ment has an absolute value less than a processor-dependent limit and loss of accuracy is
detected, or the real or imaginary part of the result for an intrinsic complex operation
or assignment has an absolute value less than a processor- dependent limit and loss
of accuracy is detected. These limits are provided by the environmental parameters
TINY(X), where X has a KIND value that depends on the accuracy of the operation.

• IEEE INEXACT occurs when the result of a real or complex operation or assignment
is not exact.

3.2.1 Usage

The Fortran subroutine IEEE GET FLAG(FLAG, YES NO) calls the C routines GETSWX87
and GETSWSSE. The C routines get the status words for the x87 and the SSE. The argument
FLAG is one of the above named exceptions of type IEEE FLAG TYPE. The argument
YES NO is a Fortran logical, indicating that this exception is signaling in either the x87
floating-pint unit or the SSE.

The subroutine IEEE SET FLAG (FLAG, YES NO) calls the C routines GETSWX87 and
GETSWSSE. If changes occur after setting or clearing the exception flags, the C routines
SETCWSSE and SETSWS87 are called. Both the x87 and SSE status flags are set to the same
logical value. The argument FLAG can be scalar or an array. The argument YES NO can
be scalar or an array of Fortran logicals. When an array argument is used for FLAG, any
repeats in the entries will use the flag with the highest index.

A fragment of an example:
LOGICAL DIV BY Z

! ... Do some computing with floating-point divides:

July 31, 2013 RJH: Non-Intrinsic IEEE Modules Page 4

CALL IEEE GET FLAG(IEEE DIVIDE BY ZERO, DIV BY Z)

IF(DIV BY Z) THEN

! ... Take any needed action and clear the flag.

CALL IEEE SET FLAG(IEEE DIVIDE BY ZERO, .FALSE.)

END IF

...

3.3 IEEE GET HALTING MODE, IEEE SET HALTING MODE

This subroutine guides the occurrence of an exception to either quietly set a status flag
or else cause an interrupt that calls an external handler function or terminates the execu-
tion. This is illustrated with an example. Suppose a code is compiled to never tolerate
an INVALID operation. A part of the code is allowed to encounter this exception and not
terminate execution. After this code is finished, and the exception is handled, revert to the
initial halting mode for this exception.

A fragment: LOGICAL :: HALT, INVLD

! ...Save the initial halting mode:

CALL IEEE GET HALTING MODE(IEEE INVALID, HALT)

! ...Allow INVALID exceptions without halting.

CALL IEEE SET HALTING MODE(IEEE INVALID, .FALSE.)

!... Execute code or routines that may set IEEE INVALID

...

CALL IEEE GET FLAG(IEEE INVALID, INVLD)

IF (INVLD) THEN

! ... Take any needed action and clear the flag.

CALL IEEE SET FLAG(IEEE INVALID, .FALSE.)

END IF

! ... Restore the initial halting mode.

CALL IEEE SET HALTING MODE(IEEE INVALID, HALT)

...

Similar coding to that of the above fragment can be used for any of IEEE INVALID,
IEEE OVERFLOW, IEEE DIVIDE BY ZERO, IEEE UNDERFLOW, or IEEE INEXACT.

4 The Module IEEE ARITHMETIC

See F2008, Table 14.2, and section 14.11.
The module IEEE EXCEPTIONS is use-associated by IEEE ARITHMETIC. This is done
because the routine IEEE GET FLAG is called by some of the module subprograms that
implement the procedures listed in F2008, 14.11.1 - 14.11.18. Consequently a user routine
can use-associate just IEEE ARITHMETIC to have access to both modules.

Several of these procedure names are generic and refer to specific module procedures,
depending on the type, kind and rank of their arguments. The inquiry functions F2008,
14,11.24-14.11.27, and 14.11.29-14.11.35, are generic with respect to single and double pre-

July 31, 2013 RJH: Non-Intrinsic IEEE Modules Page 5

cision scalar arguments. They are generic with respect to arrays of these precisions, up to
and including rank 7.

An initial version of this module, and the test program IEEE tests gfortran, contained
INTEGER variables that required the high order bit, number 31, to be set. For exam-
ple the IEEE single precision value for −∞ was initialized to the value ‘FF800000’. But
gfortran and the Nag compiler give a default compiler error. The issue is that the size of
this integer value exceeds huge(1)=2**31-1. That compile error was avoided by initializing
the value to ‘7F800000’, and replacing the role of IEEE −∞ as the intrinsic function value
IBSET(‘7F800000’,31). Similar code changes were made for other IEEE CLASS types that
have bit 31 set.

5 The Test Program IEEE tests gfortran

Testing anything approaching all ways to use the modules is practically impossible. But
several routines are tested, in both single and double precision. The main program unit
IEEE tests gfortran.f90 does a small amount of consistency checking for the following rou-
tines and overloaded comparisons. To test exceptions signaled by the x87 there are C func-
tions S87 and D87 that compute the function d =

√
a/b+ c, for inputs a, b, c. The operations

use the x87. There is an additional x87 function GETPI that returns a value of π, with double
precision accuracy. Printing of the status of results uses subroutine messy, [1].

1. IEEE GET STATUS

2. IEEE SET STATUS

3. IEEE GET HALTING MODE

4. IEEE SET HALTING MODE

5. IEEE GET FLAG

6. IEEE SET FLAG

7. IEEE COPY SIGN

8. IEEE LOGB

9. IEEE NEXT AFTER

10. IEEE REM

11. IEEE RINT

12. IEEE SCALB

13. IEEE GET X87 PRECISION MODE

14. IEEE SET X87 PRECISION MODE

15. Logical comparisons “==’’ and “/=’’

July 31, 2013 RJH: Non-Intrinsic IEEE Modules Page 6

6 Acknowledgments

W. Van Snyder provided insight into aspects of the Fortran 2008 standard. F. T. Krogh
kindly made his gcc and gfortran compilers available. He also provided use of his machine
for testing. Additionally he improved the documentation with several suggestions. Tim
Hopkins made changes to the codes that allowed the Nag Fortran compiler to be successfully
used. Dominique d’Humieres provided a fix for a difference in printed output that resulted
with the IEEE rounding mode set to round toward zero.

References

[1] F. T. Krogh. A Fortran Message Processor. ACM Transactions on Mathematical Soft-
ware, V(N):X–X+5, mmm 201x.

July 31, 2013 RJH: Non-Intrinsic IEEE Modules Page 7

	Introduction
	The Module IEEE_FEATURES
	The Module IEEE_EXCEPTIONS
	 IEEE_STATUS_TYPE, IEEE_GET_STATUS, and IEEE_SET_STATUS
	Usage
	Interface

	 IEEE_FLAG_TYPE, IEEE_GET_FLAG, and IEEE_SET_FLAG
	Usage

	IEEE_GET_HALTING_MODE, IEEE_SET_HALTING_MODE

	The Module IEEE_ARITHMETIC
	The Test Program IEEE_tests_gfortran
	Acknowledgments

