
Chapter 3

Chebyshev
Expansions

The best is the cheapest.
—Benjamin Franklin

3.1 Introduction
In Chapter 2, approximations were considered consisting of expansions around a specific
value of the variable (finite or infinite); both convergent and divergent series were described.
These are the preferred approaches when values around these points (either in R or C) are
needed.

In this chapter, approximations in real intervals are considered. The idea is to approx-
imate a function f(x) by a polynomial p(x) that gives a uniform and accurate description
in an interval [a, b].

Let us denote by Pn the set of polynomials of degree at most n and let g be a bounded
function defined on [a, b]. Then the uniform norm ||g|| on [a, b] is given by

||g|| = max
x∈[a,b]

|g(x)|. (3.1)

For approximating a continuous function f on an interval [a, b], it is reasonable to
consider that the best option consists in finding the minimax approximation, defined as
follows.

Definition 3.1. q ∈ Pn is the best (or minimax) polynomial approximation to f on [a, b] if

||f − q|| ≤ ||f − p|| ∀p ∈ Pn. (3.2)

Minimax polynomial approximations exist and are unique (see [152]) when f is
continuous, although they are not easy to compute in general. Instead, it is a more effective
approach to consider near-minimax approximations, based on Chebyshev polynomials.
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52 Chapter 3. Chebyshev Expansions

Chebyshev polynomials form a special class of polynomials especially suited for
approximating other functions. They are widely used in many areas of numerical analysis:
uniform approximation, least-squares approximation, numerical solution of ordinary and
partial differential equations (the so-called spectral or pseudospectral methods), and so on.

In this chapter we describe the approximation of continuous functions by Chebyshev
interpolation and Chebyshev series and how to compute efficiently such approximations.
For the case of functions which are solutions of linear ordinary differential equations with
polynomial coefficients (a typical case for special functions), the problem of computing
Chebyshev series is efficiently solved by means of Clenshaw’s method, which is also pre-
sented in this chapter.

Before this, we give a very concise overview of well-known results in interpola-
tion theory, followed by a brief summary of important properties satisfied by Chebyshev
polynomials.

3.2 Basic results on interpolation
Consider a real function f that is continuous on the real interval [a, b]. When values of this
function are known at a finite number of points xi, one can consider the approximation by
a polynomial Pn such that f(xi) = Pn(xi). The next theorem gives an explicit expression
for the lowest degree polynomial (the Lagrange interpolation polynomial) satisfying these
interpolation conditions.

Theorem 3.2 (Lagrange interpolation). Given a function f that is defined at n+ 1 points
x0 < x1 < · · · < xn ∈ [a, b], there exists a unique polynomial of degree smaller than or
equal to n such that

Pn(xi) = f(xi), i = 0, . . . , n. (3.3)

This polynomial is given by

Pn(x) =
n∑
i=0

f(xi)Li(x), (3.4)

where Li(x) is defined by

Li(x) = πn+1(x)

(x− xi)π′n+1(xi)
=

∏n
j=0,j �=i(x− xj)∏n
j=0,j �=i(xi − xj)

, (3.5)

πn+1(x) being the nodal polynomial, πn+1(x) =∏n
j=0(x− xj).

Additionally, if f is continuous on [a, b] and n+ 1 times differentiable in (a, b), then
for any x ∈ [a, b] there exists a value ζx ∈ (a, b), depending on x, such that

Rn(x) = f(x)− Pn(x) = f
n+1(ζx)

(n+ 1)! πn+1(x). (3.6)

Proof. The proof of this theorem can be found elsewhere [45, 48].

Li are called the fundamental Lagrange interpolation polynomials.
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3.2. Basic results on interpolation 53

The first part of the theorem is immediate andPn satisfies the interpolation conditions,
because the polynomialsLi are such thatLi(xj) = δij . The formula for the remainder can be
proved from repeated application of Rolle’s theorem (see, for instance, [48, Thm. 3.3.1]).

For the particular case of Lagrange interpolation over n nodes, a simple expression for
the interpolating polynomial can be given in terms of forward differences when the nodes
are equally spaced, that is, xi+1 − xi = h, i = 0, . . . , n− 1. In this case, the interpolating
polynomials of Theorem 3.2 can be written as

Pn(x) =
n∑
i=0

(
s

i

)
�if0, (3.7)

where

s = x− x0

h
,

(
s

i

)
= 1

i!
i−1∏
j=0

(s− j), fj = f(xj),

�fj = fj+1 − fj, �2fj = �(fj+1 − fj) = fj+2 − 2fj+1 + fj, . . . .
(3.8)

This result is easy to prove by noticing that fs = (� + I)sf0, s = 0, 1, . . . , n, and by
expanding the binomial of commuting operators � and I (I being the identity, Ifi = fi).

The formula for the remainder in Theorem 3.2 resembles that for the Taylor formula
of degree n (Lagrange form), except that the nodal polynomials in the latter case contain
only one node, x0, which is repeated n + 1 times (in the sense that the power (x − x0)

n+1

appears). This interpretation in terms of repeated nodes can be generalized; both the Taylor
formula and the Lagrange interpolation formula can be seen as particular cases of a more
general interpolation formula, which is Hermite interpolation.

Theorem 3.3 (Hermite interpolation). Let f be n times differentiable with continuity in
[a, b] and n + 1 times differentiable in (a, b). Let x0 < x1 < · · · < xk ∈ [a, b], and let
ni ∈ N such that n0 + n1 + · · · + nk = n− k. Then, there exists a unique polynomial Pn of
degree not larger than n such that

P(j)n (xi) = f (j)(xi), j = 0, . . . , ni, i = 0, . . . , k. (3.9)

Furthermore, given x ∈ [a, b], there exists a value ζx ∈ (a, b) such that

f(x) = Pn(x)+ f
n+1(ζx)

(n+ 1)! πn+1(x), (3.10)

where πn+1(x) is the nodal polynomial

πn+1(x) = (x− x0)
n0+1 · · · (x− xk)nk+1 (3.11)

in which each node xi is repeated ni + 1 times.

Proof. For the proof we refer to [45].

An explicit expression for the interpolating polynomial is, however, not so easy as for
Lagrange’s case. A convenient formalism is that of Newton’s divided difference formula,
also for Lagrange interpolation (see [45] for further details).
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54 Chapter 3. Chebyshev Expansions

For the case of a single interpolation node x0 which is repeated n times, the corre-
sponding interpolating polynomial is just the Taylor polynomial of degree n at x0. It is very
common that successive derivatives of special functions are known at a certain point x = x0

(Taylor’s theorem, (2.1)), but it is not common that derivatives are known at several points.
Therefore, in practical evaluation of special functions, Hermite interpolation different from
the Taylor case is seldom used.

Lagrange interpolation is, however, a very frequently used method of approximation
and, in addition, will be behind the quadrature methods to be discussed in Chapter 5. For
interpolating a function in a number of nodes, we need, however, to know the values which
the function takes at these points. Therefore, in general we will need to rely on an alternative
(high-accuracy) method of evaluation.

However, for functions which are solutions of a differential equation, Clenshaw’s
method (see §3.6.1) provides a way to compute expansions in terms of Chebyshev poly-
nomials. Such infinite expansions are related to a particular and useful type of Lagrange
interpolation that we discuss in detail in §3.6.1 and introduce in the next section.

3.2.1 The Runge phenomenon and the Chebyshev nodes

Given a function f which is continuous on [a, b], we may try to approximate the function
by a Lagrange interpolating polynomial.

We could naively think that as more nodes are considered, the approximation will
always be more accurate, but this is not always true. The main question to be addressed is
whether the polynomials Pn that interpolate a continuous function f in n+1 equally spaced
points are such that

lim
n→∞ ||f − Pn|| = lim

n→∞ ||Rn|| = 0, (3.12)

where, if f is sufficiently differentiable, the error can be estimated through (3.6).
A pathological example for which the Lagrange interpolation does not converge is

provided by f(x) = |x| in the interval [−1, 1], for which equidistant interpolation diverges
for 0 < |x| < 1 (see [189, Thm. 4.7]), as has been proved by Bernstein.

A less pathological example, studied by Runge, showing the Runge phenomenon,
gives a clear warning on the problems of equally spaced nodes. Considering the problem
of interpolation of

f(x) = 1

1+ x2 (3.13)

on [−5, 5], Runge observed that limn→∞ ||f −Pn|| = ∞, but that convergence takes place
in a smaller interval [−a, a] with a � 3.63.

This bad behavior in Runge’s example is due to the values of the nodal polynomial
πn+1(x), which tends to present very strong oscillations near the endpoints of the interval
(see Figure 3.1).
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Figure 3.1. Left: the function f(x) = 1/(1+x2) is plotted in [−5, 5] together with
the polynomial of degree 10 which interpolates f at x = 0,±1,±2,±3 ± 4,±5. Right:
the nodal polynomial π(x) = x(x− 1)(x− 4)(x− 9)(x− 16)(x− 25).

The uniformity of the error in the interval of interpolation can be considerably improved
by choosing the interpolation nodes xi in a different way. Without loss of generality, we
will restrict our study to interpolation on the interval [−1, 1]; the problem of interpolating
f with nodes xi in the finite interval [a, b] is equivalent to the problem of interpolating
g(t) = f(x(t)), where

x(t) = a+ b
2

+ b− a
2
t (3.14)

with nodes ti ∈ [−1, 1].
Theorem 3.4 explains how to choose the nodes in [−1, 1] in order to minimize uni-

formly the error due to the nodal polynomial and to quantify this error. The nodes are given
by the zeros of a Chebyshev polynomial.

Theorem 3.4. Let xk = cos((k + 1/2)π/(n+ 1)), k = 0, 1, . . . , n. Then the monic
polynomial T̂n+1(x) = ∏n

k=0(x − xk) is the polynomial of degree n + 1 with the smallest
possible uniform norm (3.1) in [−1, 1] in the sense that

||T̂n+1|| ≤ ||qn+1|| (3.15)

for any other monic polynomial qn+1 of degree n+ 1. Furthermore,

||T̂n+1|| = 2−n. (3.16)

The selection of these nodes will not guarantee convergence as the number of nodes
tends to infinity, because it also depends on how the derivatives of the function f behave, but
certainly enlarges the range of functions for which convergence takes place and eliminates
the problem for the example provided by Runge. Indeed, taking as nodes

xk = 5 cos ((k + 1/2)π/11) , k = 0, 1, . . . , 10, (3.17)

instead of the 11 equispaced points, the behavior is much better, as illustrated in Figure 3.2.
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Figure 3.2. Left: the function f(x) = 1/(1 + x2) is plotted together with the
interpolation polynomial for the 11 Chebyshev points (see (3.17)). Right: the interpolation
errors for equispaced points and Chebyshev points is shown.

Before proving Theorem 3.4 and further results, we summarize the basic properties
of Chebyshev polynomials, the zeros of which are the nodes in Theorem 3.4.

3.3 Chebyshev polynomials: Basic properties
Let us first consider a definition and some properties of the Chebyshev polynomials of the
first kind.

Definition 3.5 (Chebyshev polynomial of the first kindTn(x)). The Chebyshev polynomial
of the first kind of order n is defined as follows:

Tn(x) = cos
[
n cos−1(x)

]
, x ∈ [−1, 1], n = 0, 1, 2, . . . . (3.18)

From this definition the following property is evident:

Tn(cos θ) = cos (nθ), θ ∈ [0, π], n = 0, 1, 2, . . . . (3.19)

3.3.1 Properties of the Chebyshev polynomials Tn(x)

The polynomials Tn(x), n ≥ 1, satisfy the following properties, which follow straightfor-
wardly from (3.19).

(i) The Chebyshev polynomials Tn(x) satisfy the following three-term recurrence
relation:

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, 3, . . . , (3.20)

with starting values T0(x) = 1, T1(x) = x.
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Figure 3.3. Chebyshev polynomials of the first kind Tn(x), n = 0, 1, 2, 3, 4, 5.

Explicit expressions for the first six Chebyshev polynomials are

T0(x) = 1, T1(x) = x,
T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x.

(3.21)

The graphs of these Chebyshev polynomials are plotted in Figure 3.3.

(ii) The leading coefficient (of xn) in Tn(x) is 2n−1 and Tn(−x) = (−1)nTn(x).

(iii) Tn(x) has n zeros which lie in the interval (−1, 1). They are given by

xk = cos

(
2k + 1

2n
π

)
, k = 0, 1, . . . , n− 1. (3.22)

Tn(x) has n+ 1 extrema in the interval [−1, 1] and they are given by

x′k = cos
kπ

n
, k = 0, 1, . . . , n. (3.23)

At these points, the values of the polynomials are Tn(x′k) = (−1)k.

With these properties, it is easy to prove Theorem 3.4, which can also be expressed
in the following way.
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58 Chapter 3. Chebyshev Expansions

Theorem 3.6. The polynomial T̂n(x) = 21−nTn(x) is the minimax approximation on [−1, 1]
to the zero function by a monic polynomial of degree n and

||T̂n|| = 21−n. (3.24)

Proof. Let us suppose that there exists a monic polynomial pn of degree n such that
|pn(x)| ≤ 21−n for all x ∈ [−1, 1], and we will arrive at a contradiction.

Let x′k, k = 0, . . . , n, be the abscissas of the extreme values of the Chebyshev poly-
nomial of degree n. Because of property (ii) of this section we have

pn(x
′
0) < 21−nTn(x′0), pn(x

′
1) > 21−nTn(x′1), pn(x

′
2) > 21−nTn(x′2), . . . .

Therefore, the polynomial
Q(x) = pn(x)− 21−nTn(x)

changes sign between each two consecutive extrema of Tn(x). Thus, it changes sign n
times. But this is not possible becauseQ(x) is a polynomial of degree smaller than n (it is
a subtraction of two monic polynomials of degree n).

Remark 1. The monic Chebyshev polynomial T̂n(x) is not the minimax approximation
in Pn (Definition 3.1) of the zero function. The minimax approximation in Pn of the zero
function is the zero polynomial.

Further properties

Next we summarize additional properties of the Chebyshev polynomials of the first kind
that will be useful later. For further properties and proofs of these results see, for instance,
[148, Chaps. 1–2].

(a) Relations with derivatives.

T0(x) = T ′1(x),

T1(x) = 1
4T

′
2(x),

Tn(x) = 1
2

(
T ′n+1(x)

n+ 1 − T
′
n−1(x)

n− 1

)
, n ≥ 2,

(3.25)

(1− x2)T ′n(x) = n [xTn(x)− Tn+1(x)] = n [Tn−1(x)− xTn(x)] . (3.26)

(b) Multiplication relation.

2Tr(x)Tq(x) = Tr+q(x)+ T|r−q|(x), (3.27)

with the particular case q = 1,

2xTr(x) = Tr+1(x)+ T|r−1|(x). (3.28)
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3.3. Chebyshev polynomials: Basic properties 59

(c) Orthogonality relation.∫ 1

−1
Tr(x)Ts(x)(1− x2)−1/2 dx = Nrδrs, (3.29)

with N0 = π and Nr = 1
2π if r �= 0.

(d) Discrete orthogonality relation.

1. With the zeros of Tn+1(x) as nodes: Let n > 0, r, s ≤ n, and let xj =
cos((j + 1/2)π/(n+ 1)). Then

n∑
j=0

Tr(xj)Ts(xj) = Krδrs, (3.30)

where K0 = n+ 1 and Kr = 1
2 (n+ 1) when 1 ≤ r ≤ n.

2. With the extrema of Tn(x) as nodes: Let n > 0, r, s ≤ n, and xj = cos(πj/n).
Then

n∑
j=0

′′Tr(xj)Ts(xj) = Krδrs, (3.31)

where K0 = Kn = n and Kr = 1
2n when 1 ≤ r ≤ n− 1.

The double prime indicates that the terms with suffixes j = 0 and j = n are to be
halved.

(e) Polynomial representation.

The expression of Tn(x) in terms of powers of x is given by (see [38, 201])

Tn(x) =
[n/2]∑
k=0

d
(n)

k x
n−2k, (3.32)

where

d
(n)

k = (−1)k2n−2k−1 n

n− k
(
n− k
k

)
, 2k < n, (3.33)

and
d
(2k)
k = (−1)k, k ≥ 0. (3.34)

(f) Power representation.

The power xn can be expressed in terms of Chebyshev polynomials as follows:

xn = 21−n
[n/2]∑
k=0

′
(
n

k

)
Tn−2k(x), (3.35)

where the prime indicates that the term for k = 0 is to be halved.
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60 Chapter 3. Chebyshev Expansions

The first three properties are immediately obtained from the definition of Chebyshev
polynomials.

Property (c) means that the set of Chebyshev polynomials {Tn(x)} is an orthogonal
set with respect to the weight function w(x) = (1 − x2)−1/2 in the interval (−1, 1). This
concept is developed in Chapter 5, and it is shown that this orthogonality implies the first
discrete orthogonality of property (d); see (5.86). This property, as well as the second
discrete orthogonality, can also be easily proved using trigonometry (see [148, Chap. 4]).
See also [148, Chap. 2] for a proof of the last two properties.

Shifted Chebyshev polynomials

Shifted Chebyshev polynomials are also of interest when the range of the independent
variable is [0, 1] instead of [−1, 1]. The shifted Chebyshev polynomials of the first kind are
defined as

T ∗n (x) = Tn(2x− 1), 0 ≤ x ≤ 1. (3.36)

Similarly, one can also build shifted polynomials for a generic interval [a, b].
Explicit expressions for the first six shifted Chebyshev polynomials are

T ∗0 (x) = 1,

T ∗1 (x) = 2x− 1,

T ∗2 (x) = 8x2 − 8x+ 1,

T ∗3 (x) = 32x3 − 48x2 + 18x− 1,

T ∗4 (x) = 128x4 − 256x3 + 160x2 − 32x+ 1,

T ∗5 (x) = 512x5 − 1280x4 + 1120x3 − 400x2 + 50x− 1.

(3.37)

3.3.2 Chebyshev polynomials of the second, third, and fourth kinds

Chebyshev polynomials of the first kind are a particular case of Jacobi polynomialsP(α,β)n (x)

(up to a normalization factor). Jacobi polynomials, which can be defined through the Gauss
hypergeometric function (see §2.3) as

P(α,β)n (x) =
(
n+ α
n

)
2F1

(−n, n+ α+ β + 1
α+ 1

; 1− x
2

)
, (3.38)

are orthogonal polynomials on the interval [−1, 1] with respect to the weight function
w(x) = (1− x)α(1+ x)β, α, β > −1, that is,∫ 1

−1
P(α,β)r (x)P(α,β)s (x)w(x) dx = Mrδrs. (3.39)

In particular, for the case α = β = −1/2 we recover the orthogonality relation (3.29).
Furthermore,

Tn(x) = 2F1

(−n, n
1/2

; 1− x
2

)
. (3.40)
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As we have seen, an important property satisfied by the polynomials Tn(x) is that,
with the change x = cos θ, the zeros and extrema are equally spaced in the θ variable. The
zeros of Tn(x) (see (3.18)) satisfy

θk − θk−1 = | cos−1(xk)− cos−1(xk−1)| = π/n, (3.41)

and similarly for the extrema.
This is not the only case of Jacobi polynomials with equally spaced zeros (in the θ

variable), but it is the only case with both zeros and extrema equispaced. Indeed, considering
the Liouville–Green transformation (see §2.2.4) with the change of variable x = cos θ, we
can prove that

u(α,β)n (θ) =
(

sin 1
2θ
)α+1/2 (

cos 1
2θ
)β+1/2

P(α,β)n (cos θ), 0 ≤ θ ≤ π, (3.42)

satisfies the differential equation

d2u(α,β)n (θ)

dθ2 +�(θ)u(α,β)n (θ) = 0,

�(θ) = 1
4

(2n+ α+ β + 1)2 +
1
4 − α2

sin2 1
2θ
+

1
4 − β2

cos2 1
2θ

 . (3.43)

From this, we observe that for the values |α| = |β| = 1
2 , and only for these values, �(θ) is

constant and therefore the solutions are trigonometric functions

u(α,β)n = C(α,β) cos(θw(α,β)n + φ(α,β)), w(α,β)n = n+ (α+ β + 1)/2 (3.44)

with C(α,β) and φ(α,β) values not depending on θ. The solutions u(α,β)n , |α| = |β| = 1
2 have

therefore equidistant zeros and extrema. The distance between zeros is

θk − θk−1 = π

n+ (α+ β + 1)/2
. (3.45)

Jacobi polynomials have the same zeros as the solutions u(α,β)n (except that θ = 0, π may
also be zeros for the latter). Therefore, Jacobi polynomials have equidistant zeros for
|α| = |β| = 1

2 . However, due to the sine and cosine factors in (3.42), the extrema of Jacobi
polynomials are only equispaced when α = β = − 1

2 .
The four types of Chebyshev polynomials are the only classical orthogonal (hyper-

geometric) polynomials for which the elementary change of variables x = cos θ makes all
zeros equidistant. Furthermore, these are the only possible cases for which equidistance
takes place, not only in the θ variable but also under more general changes of variable (also
including confluent cases) [52, 53].

Chebyshev polynomials are proportional to the Jacobi polynomials with equispaced
θ zeros. From (3.42) such Chebyshev polynomials can be written as

T α,βn (θ) = C(α,β) cos(θw(α,β)n + φ(α,β))(
sin 1

2θ
)α+1/2 (

cos 1
2θ
)β+1/2 . (3.46)
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62 Chapter 3. Chebyshev Expansions

C(α,β) can be arbitrarily chosen and it is customary to take C(α,β) = 1, except when
α = β = 1

2 , in which case C(α,β) = 1
2 . On the other hand, for each selection of α and β

(with |α| = |β| = 1
2 ) there is only one possible selection of φ(α,β)) in [0, π) which gives

a polynomial solution. This phase is easily selected by requiring that T α,βn (θ) be finite as
θ → 0, π. With the standard normalization considered, the four families of polynomials
T α,βn (θ) (proportional to P(α,β)n ) can be written as

T
(−1/2,−1/2)
n (θ) = cos(nθ) = Tn(x),

T
(1/2,1/2)
n (θ) = sin((n+ 1)θ)

sin θ = Un(x),

T
(−1/2,1/2)
n (θ) =

cos((n+ 1
2 )θ)

cos( 1
2θ)

= Vn(x),

T
(1/2,−1/2)
n (θ) =

sin((n+ 1
2 )θ)

sin( 1
2θ)

= Wn(x).

(3.47)

These are the Chebyshev polynomials of first (T ), second (U), third (V ), and fourth (W )
kinds. The third- and fourth-kind polynomials are trivially related because P(α,β)n (x) =
(−1)nP(β,α)n (−x).

Particularly useful for some applications are Chebyshev polynomials of the second
kind. The zeros of Un(x) plus the nodes x = −1, 1 (that is, the x zeros of u(1/2,1/2)n (θ(x)))
are the nodes of the Clenshaw–Curtis quadrature rule (see §9.6.2). All Chebyshev poly-
nomials satisfy three-term recurrence relations, as is the case for any family of orthogonal
polynomials; in particular, the Chebyshev polynomials of the second kind satisfy the same
recurrence as the polynomials of the first kind. See [2] or [148] for further properties.

3.4 Chebyshev interpolation

Because the scaled Chebyshev polynomial T̂n+1(x) = 2−nTn+1(x) is the monic polynomial
of degree n + 1 with the smallest maximum absolute value in [−1, 1] (Theorem 3.6), the
selection of its n zeros for Lagrange interpolation leads to interpolating polynomials for
which the Runge phenomenon is absent.

By considering the estimation for the Lagrange interpolation error (3.6) under the
condition of Theorem 3.2, taking as interpolation nodes the zeros of Tn+1(x),

xk = cos

((
k + 1

2

)
π

n+ 1

)
, k = 0, . . . , n, (3.48)

and considering the minimax property of the nodal polynomial T̂n+1(x) (Theorem 3.6), the
following error bound can be obtained:

|Rn(x)| = |f (n+1)(ζx)|
(n+ 1)! |T̂n+1(x)| ≤ 2−n

|f (n+1)(ζx)|
(n+ 1)! ≤ 1

2n(n+ 1)! ||f
(n+1)||, (3.49)
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3.4. Chebyshev interpolation 63

where ||f (n+1)|| = maxx∈[−1,1] |f (n+1)(x)|. By considering a linear change of variables
(3.14), an analogous result can be given for Chebyshev interpolation in an interval [a, b].

Interpolation with Chebyshev nodes is not as good as the best approximation (Defini-
tion 3.1), but usually it is the best practical possibility for interpolation and certainly much
better than equispaced interpolation. The best polynomial approximation is characterized
by the Chebyshev equioscillation theorem.

Theorem 3.7 (Chebyshev equioscillation theorem). For any continuous function f in
[a, b], a unique minimax polynomial approximation in Pn (the space of the polynomials of
degree n at most) exists and is uniquely characterized by the alternating or equioscillation
property that there are at least n + 2 points at which f(x) − Pn(x) attains its maximum
absolute value, with alternating signs.

Proof. Proofs of this theorem can be found, for instance, in [48, 189].

Because the function f(x) − Pn(x) alternates signs between each two consecutive
extrema, it has at least n + 1 zeros; therefore Pn is a Lagrange interpolating polynomial,
interpolating f at n + 1 points in [a, b]. The specific location of these points depends on
the particular function f , which makes the computation of best approximations difficult in
general.

Chebyshev interpolation by a polynomial in Pn, interpolating the function f at the
n + 1 zeros of Tn+1(x), can be a reasonable approximation and can be computed in an
effective and stable way. Given the properties of the error for Chebyshev interpolation on
[−1, 1] and the uniformity in the deviation of Chebyshev polynomials with respect to zero
(Theorem 3.6), one can expect that Chebyshev interpolation gives a fair approximation to the
minimax approximation when the variation of f is soft. In addition, the Runge phenomenon
does not occur.

Uniform convergence (in the sense of (3.12)) does not necessarily hold but, in fact,
there is no system of preassigned nodes that can guarantee uniform convergence for any
continuous function f (see [189, Thm. 4.3]). The sequence of best uniform approxima-
tions pn for a given continuous function f does uniformly converge. For the Chebyshev
interpolation we need to consider some additional “level of continuity” in the form of the
modulus of continuity.

Definition 3.8. Let f be a function defined in an interval [a, b]. We define the modulus of
continuity as

ω(δ) = sup
x1,x2∈[a,b]|x1−x2|<δ

|f(x1)− f(x2)|. (3.50)

With this definition, it is easy to see that continuity is equivalent to ω(δ) → 0 as
δ→ 0, while differentiability is equivalent to ω(δ) = O(δ).

Theorem 3.9 (Jackson’s theorem). The sequence of best polynomial approximations
Bn(f) ∈ Pn to a function f , continuous on [−1, 1], satisfies

||f − Bn(f)|| ≤ Kω(1/n), (3.51)

K being a constant.
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64 Chapter 3. Chebyshev Expansions

Proof. For the proof see [189, Chap. 1].

This result means that the sequence of best approximations converges uniformly for
continuous functions. The situation is not so favorable for Chebyshev interpolation.

Theorem 3.10. Let Pn ∈ Pn be the Chebyshev interpolation polynomial for f at n + 1
points. Then

||f − Pn|| ≤ M(n), with M(n) ∼ Cω(1/n) log n, (3.52)

as n→∞, C being a constant.

Proof. For the proof see [189, Chap. 4].

The previous theorem shows that continuity is not enough and that the condition
log(δ)ω(δ) → 0 as δ → 0 is required. This is more demanding than continuity but less
demanding than differentiability. When such a condition is satisfied for a function f it is
said that the function is Dini–Lipschitz continuous.

3.4.1 Computing the Chebyshev interpolation polynomial

Using the orthogonality properties of Chebyshev polynomials, one can compute the Cheby-
shev interpolation polynomials in an efficient way.

First, we note that, because of the orthogonality relation (3.29), which we abbreviate
as 〈Tr, Ts〉 = Nrδrs, the set {Tk}nk=0 is a set of linearly independent polynomials; therefore,
{Tk}nk=0 is a base of the linear vector space Pn.

Now, given the polynomial Pn ∈ Pn that interpolates f at the n+ 1 zeros of Tn+1(x),
because {Tk}nk=0 is a base we can write Pn as a combination of this base, that is,

Pn(x) =
n∑
k=0

′ckTk(x), (3.53)

where the prime indicates that the first term is to be halved (which is convenient for obtaining
a simple formula for all the coefficients ck). For computing the coefficients, we use the
discrete orthogonality relation (3.30). Because Pn interpolates f at the n + 1 Chebyshev
nodes, we have at these nodes f(xk) = Pn(xk). Hence,

n∑
j=0

f(xj)Tk(xj) =
n∑
i=0

′ci
n∑
j=0

Ti(xj)Tk(xj) =
n∑
i=0

′ciKiδik = 1
2 (n+ 1)ck. (3.54)

Therefore, the coefficients in (3.53) can be computed by means of the formula

ck = 2

n+ 1

n∑
j=0

f(xj)Tk(xj), xj = cos
((
j + 1

2

)
π/(n+ 1)

)
. (3.55)
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This type of Chebyshev sum can be efficiently computed in a numerically stable way
by means of Clenshaw’s method discussed in §3.7. The coefficients can also be written in
the form

ck = 2

n+ 1

n∑
j=0

f(cos θj) cos(kθj), θj =
(
j + 1

2

)
π/(n+ 1), (3.56)

which, apart from the factor 2/(n + 1), is a discrete cosine transform (named DCT-II or
simply DCT) of the vector f(cos θj), j = 0, . . . , n.

Interpolation by orthogonal polynomials

The method used previously for computing interpolation polynomials can be used for build-
ing other interpolation formulas. All that is required is that we use a set of orthogonal
polynomials {pn}, satisfying∫ b

a

pn(x)pm(x)w(x) dx = Mnδnm, (3.57)

where Mn �= 0 for all n, for a suitable weight function w(x) on [a, b] (nonnegative and
continuous on (a, b)) and satisfying a discrete orthogonality relation over the interpolation
nodes xk of the form

n∑
j=0

wj,rpr(xj)ps(xj) = δrs, r, s ≤ n. (3.58)

When this is satisfied,1 it is easy to check, by proceeding as before, that the polynomial
interpolating a function f at the nodes xk, k = 0, . . . , n, can be written as

Pn(x) =
n∑
j=0

ajpj(x), aj =
n∑
k=0

wk,jf(xk)pj(xk). (3.59)

In addition, the coefficients can be computed by using a Clenshaw scheme, similar to
Algorithm 3.1.

Chebyshev interpolation of the second kind

For later use, we consider a different type of interpolation, based on the nodes xk =
cos(kπ/n), k = 0, . . . , n. These are the zeros of Un−1(x) complemented with x0 = 1,
xn = −1 (that is, the zeros of u(1/2,1/2)n (cos−1 x); see (3.42)). Also, these zeros are the
extrema of Tn(x).

We write this interpolation polynomial as

Pn(x) =
n∑
k=0

′′ckTk(x), (3.60)

1In Chapter 5, it is shown that this type of relation always exists when the xk are chosen to be the zeros of pn+1
and wk,j = wk are the weights of the corresponding Gaussian quadrature rule.
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and considering the second discrete orthogonality property (3.31), we have

ck = 2

n

n∑
j=0

′′f(xj)Tk(xj), xj = cos(jπ/n), j = 0, . . . , n. (3.61)

This can also be written as

ck = 2

n

n∑
j=0

′′f(cos(jπ/n)) cos(kjπ/n), (3.62)

which is a discrete cosine transform (named DCT-I) of the vector f(cos(jπ/n)), j =
0, . . . , n.

3.5 Expansions in terms of Chebyshev polynomials
Under certain conditions of the interpolated function f (Dini–Lipschitz continuity), Cheby-
shev interpolation converges when the number of nodes tends to infinity. This leads to a
representation of f in terms of an infinite series of Chebyshev polynomials.

More generally, considering a set of orthogonal polynomials {pn} (see (3.57)) and
a continuous function in the interval of orthogonality [a, b], one can consider series of
orthogonal polynomials

f(x) =
∞∑
k=0

ckpk(x). (3.63)

Taking into account the orthogonality relation (3.57), we have

ck = 1

Mk

∫ b

a

f(x)pk(x)w(x) dx. (3.64)

Proofs of the convergence for this type of expansion for some classical cases (Legendre,
Hermite, Laguerre) can be found in [134]. Apart from continuity and differentiability
conditions, it is required that ∫ b

a

f(x)2w(x) dx (3.65)

be finite. Expansions of this type are called generalized Fourier series. The base functions
{pn} can be polynomials or other suitable orthogonal functions.

Many examples exist of the use of this type of expansion in the solution of problems
of mathematical physics (see, for instance, [134]). For the sake of uniform approximation,
Chebyshev series based on the Chebyshev polynomials of the first kind are the most useful
ones and have faster uniform convergence [5]. For convenience, we write the Chebyshev
series as

f(x) =
∞∑
k=0

′ckTk(x) = 1
2c0 +

∞∑
k=1

ckTk(x), −1 ≤ x ≤ 1. (3.66)

With this, and taking into account the orthogonality relation (3.29),

ck = 2

π

∫ 1

−1

f(x)Tn(x)√
1− x2

dx = 2

π

∫ π

0
f(cos θ) cos(kθ) dθ. (3.67)
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3.5. Expansions in terms of Chebyshev polynomials 67

For computing the coefficients, one needs to compute the cosine transform of (3.67). For this
purpose, fast algorithms can be used for computing fast cosine transforms. A discretization
of (3.67) using the trapezoidal rule (Chapter 5) in [0, π] yields

ck ≈ 2

n

n∑
j=0

′′f
(

cos
πj

n

)
cos

πkj

n
, (3.68)

which is a discrete cosine transform. Notice that, when considering this approximation, and
truncating the series at k = n but halving the last term, we have the interpolation polynomial
of the second kind of (3.55).

Another possible discretization of the coefficients ck is given by (3.60). With this
discretization, and truncating the series at k = n, we obtain the interpolation polynomial of
the first kind of degree n.

Chebyshev interpolation can be interpreted as an approximation to Chebyshev series
(or vice versa), provided that the coefficients decay fast and the discretization is accurate. In
other words, Chebyshev series can be a good approximation to near minimax approximations
(Chebyshev), which in turn are close to minimax approximations.

On the other hand, provided that the coefficients ck decrease in magnitude sufficiently
rapidly, the error made by truncating the Chebyshev expansion after the terms k = n, that
is,

En(x) =
∞∑

k=n+1

ckTk(x), (3.69)

will be given approximately by

En(x) ≈ cn+1Tn+1(x), (3.70)

that is, the error approximately satisfies the equioscillation property (Theorem 3.7).
How fast the coefficients ck decrease depends on continuity and differentiability prop-

erties of the function to be expanded. The more regular these are, the faster the coefficients
decrease (see the next section).

Example 3.11 (the Chebyshev expansion of arccos x). Let us consider the Chebyshev ex-
pansion of f(x) = arccos x; f(x) is continuous in [−1, 1] but is not differentiable at x = ±1.
Observing this, we can expect a noticeable departure from the equioscillation property, as
we will see.

For this case, the coefficients can be given in explicit form. From (3.67) we obtain
c0 = π and for k ≥ 1,

ck = 2

π

∫ π

0
θ cos kθ dθ

= 2

π

{[
θ sin kθ

k

]π
0

−
∫ π

0

sin kθ

k
dθ

}
= 2

π

{[
θ sin kθ

k
+ cos kθ

k2

]π
0

}
= 2

π

(−1)k − 1

k2
,

(3.71)
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68 Chapter 3. Chebyshev Expansions

from which it follows that

c2k = 0, c2k−1 = − 2

π

2

(2k − 1)2
. (3.72)

We conclude that the resulting Chebyshev expansion of f(x) = arccos x is

arccos x = π
2
T0(x)− 4

π

∞∑
k=1

T2k−1(x)

(2k − 1)2
. (3.73)

This corresponds with the Fourier expansion

|t| − π
2
= − 4

π

∞∑
k=1

cos(2k − 1)t

(2k − 1)2
, t ∈ [−π, π]. (3.74)

The absolute error when the series is truncated after the term k = 5 is shown in
Figure 3.4. Notice the departure from equioscillation close to the endpoints x = ±1, where
the function is not differentiable. �

In the preceding example the coefficients ck of the Chebyshev expansion can be
obtained analytically. Unfortunately, this situation represents an exception and numerical
methods have to be applied in order to obtain the coefficients ck (see §3.6). In a later section
we give examples of Chebyshev expansions with explicit coefficients for some special
functions (see §3.10).

3.5.1 Convergence properties of Chebyshev expansions

The rate of convergence of the series in (3.74) is comparable with that of the series∑∞
k=1 1/k2, which is not very impressive. The bad convergence is caused by the ana-

lytic property of this function: arccos x is not differentiable at the endpoints ±1 of the
interval.

The useful applications of Chebyshev expansions arise when the expansion converges
much faster. We give two theorems, the proof of which can be found in [148, §5.7]. We
consider expansions of the form (3.66) with partial sum denoted by

Sn(x) = 1

2
c0 +

n∑
k=1

ckTk(x). (3.75)

Theorem 3.12 (functions with continuous derivatives). When a function f has m + 1
continuous derivatives on [−1, 1],wherem is a finite number, then |f(x)−Sn(x)| = O(n−m)
as n→∞ for all x ∈ [−1, 1].
Theorem 3.13 (analytic functions inside an ellipse). When a function f on x ∈ [−1, 1]
can be extended to a function that is analytic inside an ellipse Er defined by

Er =
{
z :

∣∣∣z+√
z2 − 1

∣∣∣ = r} , r > 1, (3.76)
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Figure 3.4. Error after truncating the series in (3.73) after the term k = 5.

then |f(x)− Sn(x)| = O(r−n) as n→∞ for all x ∈ [−1, 1].

The ellipse Er has semiaxis of length (r + 1/r)/2 on the real z-axis and of length
(r − 1/r)/2 on the imaginary axis.

For entire functions f we can take any number r in this theorem, and in fact the rate
of convergence can be of order O(1/n!). For example, we have the generating function for
the modified Bessel coefficients In(z) given by

ezx = I0(z)T0(x)+ 2
∞∑
n=1

In(z)Tn(x), −1 ≤ x ≤ 1, (3.77)

where z can be any complex number. The Bessel functions behave like In(z) = O((z/2)n/n!)
as n → ∞ with z fixed, and the error |ezx − Sn(x)| has a similar behavior. The absolute
error when the series is truncated after the n = 5 term is shown in Figure 3.5.

3.6 Computing the coefficients of a Chebyshev expansion
In general, the Chebyshev coefficients of the Chebyshev expansion of a function f can be
approximately obtained by the numerical computation of the integral of (3.67). To improve
the speed of computation, fast Fourier cosine transform algorithms for evaluating the sums
in (3.68) can be considered. For numerical aspects of the fast Fourier transform we refer
the reader to [226].
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Figure 3.5. Error after truncating the series for e2x in (3.77) after the term n = 5.
Compare with Figure 3.4.

In the particular case when the function f is a solution of an ordinary linear differen-
tial equation with polynomial coefficients, Clenshaw [37] proposed an alternative method,
which we will now discuss.

3.6.1 Clenshaw’s method for solutions of linear differential
equations with polynomial coefficients

The method works as follows.
Let us assume that f satisfies a linear differential equation in the variable x with

polynomial coefficients pk(x),

m∑
k=0

pk(x)f
(k)(x) = h(x), (3.78)

and where the coefficients of the Chebyshev expansion of the function h are known. In
general, conditions on the solution f will be given at x = 0 or x = ±1.

Let us express formally the sth derivative of f as follows:

f (s)(x) = 1
2c
(s)

0 + c(s)1 T1(x)+ c(s)2 T2(x)+ · · · . (3.79)

Then the following expression can be obtained for the coefficients:

2rc(s)r = c(s+1)
r−1 − c(s+1)

r+1 , r ≥ 1. (3.80)
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To see how to arrive to this equation, let us start with

f ′(x)= 1
2c
(1)
0 + c(1)1 T1(x)+ c(1)2 T2(x)+ · · · + c(1)n−1Tn−1(x)

+ c(1)n Tn(x)+ c(1)n+1Tn+1(x)+ · · ·
(3.81)

and integrate this expression. Using the relations in (3.25), we obtain

f(x)= 1

2
c0 + 1

2
c
(1)
0 T1(x)+ 1

4
c
(1)
1 T2(x)+ · · ·

+ 1

2
c
(1)
n−1

(
Tn(x)

n
− Tn−2(x)

n− 2

)
+ 1

2
c(1)n

(
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

)
+ 1

2
c
(1)
n+1

(
Tn+2(x)

n+ 2
− Tn(x)

n

)
+ · · · .

(3.82)

Comparing the coefficients of the Chebyshev polynomials in this expression and the
Chebyshev expansion of f , we arrive at (3.80) for s = 1. Observe that a relation for c0

is not obtained in this way. Substituting in (3.82) given values of f at, say, x = 0 gives a
relation between c0 and an infinite number of coefficients c(1)n .

A next element in Clenshaw’s method is using (3.28) to handle the powers of x
occurring in the differential equation satisfied by f . Denoting the coefficients of Tr(x) in
the expansion of g(x) byCr(g)when r > 0 and twice this coefficient when r = 0, and using
(3.28), we infer that

Cr
(
xf (s)

) = 1
2

(
c
(s)

r+1 + c(s)|r−1|
)
. (3.83)

This expression can be generalized as follows:

Cr
(
xpf (s)

) = 1

2p

p∑
j=0

(
p

j

)
c
(s)

|r−p+2j|. (3.84)

When the expansion (3.79) is substituted into the differential equation (3.78) together
with (3.80), (3.84), and the associated boundary conditions, it is possible to obtain an infinite
set of linear equations for the coefficients c(s)r . Two strategies can be used for solving these
equations.

Recurrence method. The equations can be solved by recurrence for r = N − 1, N −
2, . . . , 0, where N is an arbitrary (large) positive integer, by assuming that c(s)r = 0
for r > N and by assigning arbitrary values to c(s)N . This is done as follows.

Consider r = N in (3.80) and compute c(s)N−1, s = 1, . . . , m. Then, considering
(3.84) and the differential equation (3.78), select r appropriately in order to compute
c
(0)
N−1 = cN−1. We repeat the process by considering r = N − 1 in (3.80) and

computing c(s)N−2, etc. Obviously and unfortunately, the computed coefficients cr will
not satisfy, in general, the boundary conditions, and we will have to take care of these
in each particular case.
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Iterative method. The starting point in this case is an initial guess for cr which satisfies
the boundary conditions. Using these values, we use (3.80) to obtain the values of
c(s)r , s = 1, . . . , m, and then the relation (3.84) and the differential equation (3.78) to
compute corrected values of cr.

The method based on recursions is, quite often, more rapidly convergent than the
iterative method; therefore, and in general, the iterative method could be useful for correcting
the rounding errors arising in the application of the method based on recursions.

Example 3.14 (Clenshaw’s method for the J -Bessel function). Let us consider, as a sim-
ple example (due to Clenshaw), the computation of the Bessel function J0(t) in the range
0 ≤ t ≤ 4. This corresponds to solving the differential equation for J0(4x), that is,

xy′′ + y′ + 16xy = 0 (3.85)

in the range 0 ≤ x ≤ 1 with conditions y(0) = 1, y′(0) = 0. This is equivalent to solving
the differential equation in [−1, 1], because J0(x) = J0(−x), x ∈ R.

Because J0(4x) is an even function of x, the Tr(x) of odd order do not appear in
its Chebyshev expansion. By substituting the Chebyshev expansion into the differential
equation, we obtain

Cr(xy
′′)+ Cr(y′)+ 16Cr(xy) = 0, r = 1, 3, 5, . . . , (3.86)

and considering (3.84),

1
2

(
c′′r−1 + c′′r+1

)+ c′r + 8 (cr−1 + cr+1) = 0, r = 1, 3, 5, . . . . (3.87)

This equation can be simplified. First, we see that by replacing r → r − 1 and r → r + 1
in (3.87) and subtracting both expressions, we get

1
2

(
c′′r−2 + c′′r − c′′r − c′′r+2

)+ (
c′r−1 − c′r+1

)
+ 8 (cr−2 + cr − cr − cr+2) = 0, r = 2, 4, 6, . . . .

(3.88)

It is convenient to eliminate the terms with the second derivatives. This can be done by
using (3.80). In this way,

r
(
c′r−1 + c′r+1

)+ 8 (cr−2 − cr+2) = 0, r = 2, 4, 6, . . . . (3.89)

Now, expressions (3.80) and (3.89) can be used alternatively in the recurrence process, as
follows:

c′r−1 = c′r+1 + 2rcr

cr−2 = cr+2 − 1
8 r
(
c′r−1 + c′r+1

)
 r = N,N − 2, N − 4, . . . , 2. (3.90)

As an illustration, let us take as first trial coefficient c̃20 = 1 and all higher order
coefficients zero. Applying the recurrences (3.90) and considering the calculation with 15
significant digits, we obtain the values of the trial coefficients given in Table 3.1.

Using the coefficients in Table 3.1, the trial solution of (3.85) at x = 0 is given by

ỹ(0) = 1
2 c̃0 − c̃2 + c̃4 − c̃6 + c̃8 − · · · = 8050924923505.5, (3.91)
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3.6. Computing the coefficients of a Chebyshev expansion 73

Table 3.1. Computed coefficients in the recurrence processes (3.90). We take as
starting values c̃20 = 1 and 15 significant digits in the calculations.

r c̃r c̃′r+1

0 807138731281 −8316500240280

2 −5355660492900 13106141731320

4 2004549104041 −2930251101008

6 −267715177744 282331031920

8 18609052225 −15413803680

10 −797949504 545186400

12 23280625 −13548600

14 −492804 249912

16 7921 −3560

18 −100 40

20 1

Table 3.2. Computed coefficients of the Chebyshev expansion of the solution of (3.85).

r cr

0 0.1002541619689529 10−0

2 −0.6652230077644372 10−0

4 0.2489837034982793 10−0

6 −0.3325272317002710 10−1

8 0.2311417930462743 10−2

10 −0.9911277419446611 10−4

12 0.2891670860329331 10−5

14 −0.6121085523493186 10−7

16 0.9838621121498511 10−9

18 −0.1242093311639757 10−10

20 0.1242093311639757 10−12

and the final values for the coefficients cr of the solution y(x) of (3.85) will be obtained by
dividing the trial coefficients by ỹ(0). This gives the requested values shown in Table 3.2.

The value of y(1) will then be given by

y(1) = 1
2c0 + c2 + c4 + c6 + c8 + · · · = −0.3971498098638699, (3.92)

the relative error being 0.57 10−13 when compared with the value of J0(4). �
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Remark 2. Several questions arise in this successful method. The recursion given in (3.90)
is rather simple, and we can find its exact solution; cf. the expansion of the J0 in (3.139).
In Chapter 4 we explain that in this case the backward recursion scheme for computing the
Bessel coefficients is stable. In more complicated recursion schemes this information is not
available. The scheme may be of large order and may have several solutions of which the
asymptotic behavior is unknown. So, in general, we don’t know if Clenshaw’s method for
differential equations computes the solution that we want, and if for the wanted solution the
scheme is stable in the backward direction.

Example 3.15 (Clenshaw’s method for the Abramowitz function). Another but not so
easy example of the application of Clenshaw’s method is provided by MacLeod [146]
for the computation of the Abramowitz functions [1],

Jn(x) =
∫ ∞

0
tne−t

2−x/t dt, n integer. (3.93)

Chebyshev expansions for J1(x) for x ≥ 0 can be obtained by considering the following
two cases depending on the range of the argument x.

If 0 ≤ x ≤ a,
J1(x) = f1(x)−

√
πxg1(x)− x2h1(x) log x, (3.94)

where f1, g1, and h1 satisfy the system of equations

xg′′′1 + 3g′′1 + 2g1 = 0,

x2h′′′1 + 6xh′′1 + 6h′1 + 2xh1 = 0,

xf ′′′1 + 2f1 = 3x2h′′1 + 9xh′1 + 2h1,

(3.95)

with appropriate initial conditions at x = 0. The functions f1, g1, and h1 are expanded in
a series of the form

∑∞
k=0 ckTk(t), where t = (2x2/a2)− 1.

If x > a,

J1(x) ∼
√
π

3

√
ν

3
e−νq1(ν) (3.96)

with ν = 3 (x/2)2/3. The function q1(ν) can be expanded in a Chebyshev series of
the variable

t = 2B

ν
− 1, B = 3

(a
2

)2/3
, (3.97)

and q1 satisfies the differential equation

4ν3q′′′1 − 12ν3q′′1 + (12ν3 − 5ν)q′1 + (5ν + 5)q1 = 0, (3.98)

where the derivatives are taken with respect to ν. The function q1 is expanded in a
series of the form

∑∞
k=0 ckTk(t), where t is given in (3.97).

The transition point a is selected in such a way that a and B are exactly represented.
Also, the number of terms needed for the evaluation of the Chebyshev expansions for a
prescribed accuracy is taken into account.

The differential equations (3.95) and (3.98) are solved by using Clenshaw’s
method. �
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3.7 Evaluation of a Chebyshev sum
Frequently one has to evaluate a partial sum of a Chebyshev expansion, that is, a finite series
of the form

SN(x) = 1
2c0 +

N∑
k=1

ckTk(x). (3.99)

Assuming we have already computed the coefficients ck, k = 0, . . . , N, of the ex-
pansion, it would be nice to avoid the explicit computation of the Chebyshev polynomials
appearing in (3.99), although they easily follow from the relations (3.18) and (3.19). A first
possibility for the computation of this sum is to rewrite the Chebyshev polynomials Tk(x)
in terms of powers of x and then use the Horner scheme for the evaluation of the resulting
polynomial expression. However, one has to be careful when doing this because for some
expansions there is a considerable loss of accuracy due to cancellation effects.

3.7.1 Clenshaw’s method for the evaluation of a Chebyshev sum

An alternative and efficient method for evaluating this sum is due to Clenshaw [36]. This
scheme of computation, which can also be used for computing partial sums involving other
types of polynomials, corresponds to the following algorithm.

Algorithm 3.1. Clenshaw’s method for a Chebyshev sum.
Input: x; c0, c1, . . . , cN .

Output: S̃N(x) =∑N
k=0 ckTk(x).

• bN+1 = 0; bN = cN .

• DO r = N − 1, N − 2, . . . , 1:

br = 2xbr+1 − br+2 + cr.
• S̃N(x) = xb1 − b2 + c0.

Let us explain how we arrived at this algorithm. For simplicity, let us first consider
the evaluation of

S̃N(x) =
N∑
k=0

ckTk(x) = 1
2c0 + SN(x). (3.100)

This expression can be written in vector form as follows:

S̃N(x) = cT t = (c0, c1, . . . , cN)


T0(x)

T1(x)
...

TN(x)

 . (3.101)
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On the other hand, the three-term recurrence relation satisfied by the Chebyshev polynomials
(3.20) can also be written in matrix form,

1
−2x 1

1 −2x 1
1 −2x 1

. . .
. . .

. . .

1 −2x 1





T0(x)

T1(x)

T2(x)

T3(x)
...

TN(x)


=



1
−x
0
0
...

0


, (3.102)

or
At = d, (3.103)

where A is the (N + 1)× (N + 1) matrix of the coefficients of the recurrence relation and
d is the right-hand side vector of (3.102).

Let us now consider a vector bT = (b0, b1, . . . , bN) such that

bTA = cT . (3.104)

Then,
S̃n = cT t = bTAt = bTd = b0 − b1x. (3.105)

For SN , we have

SN = S̃N − 1

2
c0 = (b0 − b1x)− 1

2
(b0 − 2xb1 + b2) = 1

2
(b0 − b2). (3.106)

The coefficients br can be computed using a recurrence relation if (3.104) is interpreted
as the corresponding matrix equation for the recurrence relation (and considering bN+1 =
bN+2 = 0). In this way,

br − 2xbr+1 + br+2 = cr, r = 0, 1, . . . , N. (3.107)

The three-term recurrence relation is computed in the backward direction, starting from
r = N. With this, we arrive at

S̃N = xb1 − b2 + c0, (3.108)

SN = xb1 − b2 + c0

2
. (3.109)

Error analysis

The expressions provided by (3.105) or (3.106), together with the use of (3.107), are simple
and avoid the explicit computation of the Chebyshev polynomials Tn(x) (with the exception
of T0(x) = 1 and T1(x) = x). However, these relations will be really useful if one can
be sure that the influence of error propagation when using (3.107) is small. Let us try to
quantify this influence by following the error analysis due to Elliott [62].
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Let us denote by

Q̂ = Q+ δQ (3.110)

an exact quantity Q computed approximately (δQ represents the absolute error in the com-
putation).

From (3.107), we obtain

b̂n =
[
ĉn + 2x̂b̂n+1 − b̂n+2

]
+ rn, (3.111)

where rn is the roundoff error arising from rounding the quantity inside the brackets. We
can rewrite this expression as

b̂n =
[
ĉn + 2xb̂n+1 − b̂n+2

]
+ ηn + rn, (3.112)

where, neglecting the terms of order higher than 1 for the errors,

ηn = 2(δx)b̂n+1 ≈ 2(δx)bn+1. (3.113)

From (3.107), it is clear that δbn satisfies a recurrence relation of the form

Yn − 2xYn+1 + Yn+2 = δcn + ηn + rn, (3.114)

which is the same recurrence relation (with a different right-hand side) as that satisfied by
bn. It follows that

δb0 − δb1x =
N∑
n=0

(δcn + ηn + rn)Tn(x). (3.115)

On the other hand, because of (3.105), the computed S̃N will be given by

̂̃SN = [
b̂0 − b̂1x̂

]
+ s, (3.116)

where s is the roundoff error arising from computing the expression inside the brackets.
Hence, ̂̃SN = (b0 − xb1)+ (δb0 − x(δb1))− b1(δx)+ s, (3.117)

and using (3.115) it follows that

δ̃SN = (δb0 − xδb1)− b1δx+ s =
N∑
n=0

(δcn + ηn + rn) Tn(x)− b1δx+ s. (3.118)

Let us rewrite this expression as

δ̃SN =
N∑
n=0

(δcn + rn) Tn(x)+ 2δx
N∑
n=0

bn+1Tn(x)− b1δx+ s. (3.119)
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78 Chapter 3. Chebyshev Expansions

At this point, we can use the fact that the bn coefficients can be written in terms of the
Chebyshev polynomials of the second kind Un(x) as follows:

bn =
N∑
k=n
ckUk−n(x). (3.120)

We see that the term
∑N
n=0 bn+1Tn(x) in (3.119) can be expressed as

N∑
n=0

bn+1Tn(x)=
N∑
n=1

bnTn−1(x) =
N∑
n=1

(
N∑
k=n
ckUk−n(x)

)
Tn−1(x)

=
N∑
k=1

ck

(
k∑
n=1

Uk−n(x)Tn−1(x)

)

= 1
2

N∑
k=1

ck(k + 1)Uk−1(x),

(3.121)

where, in the last step, we have used

k∑
n=1

sin(k − n+ 1)θ cos(n− 1)θ = 1
2 (k + 1) sin kθ. (3.122)

Substituting (3.121) in (3.119) it follows that

δ̃SN =
N∑
n=0

(δcn + rn) Tn(x)+ δx
N∑
n=1

ncnUn−1(x)+ s. (3.123)

Since |Tn(x)| ≤ 1, |Un−1(x)| ≤ n, and assuming that the local errors |δcn|, |rn|, |δx|,
|s| are quantities that are smaller than a given ε′ > 0, we have

∣∣δ̃SN ∣∣ ≤ ε′ ((2N + 3)+
N∑
n=1

n2|cn|
)
. (3.124)

In the case of a Chebyshev series where the coefficients are slowly convergent, the
second term on the right-hand side of (3.124) can provide a significant contribution to the
error.

On the other hand, when x is close to±1, there is a risk of a growth of rounding errors,
and, in this case, a modification of Clenshaw’s method [164] seems to be more appropriate.
We describe this modification in the following algorithm.

Algorithm 3.2. Modified Clenshaw’s method for a Chebyshev sum.
Input: x; c0, c1, . . . , cN .

Output: S̃N(x) =∑N
k=0 ckTk(x).

• IF (x ≈ ±1) THEN
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• bN = cN ; dN = bN .

• IF (x ≈ 1) THEN

DO r = N − 1, N − 2, . . . , 1:
dr = 2(x− 1)br+1 + dr+1 + cr.
br = dr + br+1.

• ELSEIF (x ≈ −1) THEN

DO r = N − 1, N − 2, . . . , 1:
dr = 2(x+ 1)br+1 − dr+1 + cr.
br = dr − br+1.

• ENDIF

• ELSE

Use Algorithm 3.1.

• S̃N(x) = xb1 − b2 + c0.

Oliver [165] has given a detailed analysis of Clenshaw’s method for evaluating a
Chebyshev sum, also by comparing it with other polynomial evaluation schemes for the
evaluation of (3.100); in addition, error bounds are derived. Let us consider two expressions
for (3.100),

S̃N(x) =
N∑
n=0

cnTn(x), (3.125)

S̃N(x) =
N∑
n=0

dnx
n, (3.126)

and let ŜN(x) be the actually computed quantity, assuming that errors are introduced at each
stage of the computation process of S̃N(x) using (3.125) (considering Clenshaw’s method)
or (3.126) (considering Horner’s scheme). Then,∣∣∣ŜN(x)− SN(x)∣∣∣ ≤ ε N∑

n=0

ρn(x)|cn| (3.127)

or ∣∣∣ŜN(x)− SN(x)∣∣∣ ≤ ε N∑
n=0

σn(x)|dn|, (3.128)

depending on the choice of the polynomial expression; ε is the accuracy parameter and
ρn and σn are error amplification factors. Reference [165] analyzed the variation of these
factors with x. Two conclusions of this study were that

• the accuracy of the methods of Clenshaw and Horner are sensitive to values of x and
the errors tend to reach their extreme at the endpoints of the interval;

• when a polynomial has coefficients of constant sign or strictly alternating sign, con-
verting into the Chebyshev form does not improve upon the accuracy of the evaluation.
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3.8 Economization of power series
Chebyshev polynomials also play a key role in the so-called economization of power series.
Suppose we have at our disposal a convergent Maclaurin series expansion for the evaluation
of a function f(x) in the interval [−1, 1]. Then, a plausible approximation to f(x)may be the
polynomial pn(x) of degree n, which is obtained by truncating the power series after n+ 1
terms. It may be possible, however, to obtain a “better” nth-degree polynomial approxi-
mation. This is the idea of economization: it involves finding an alternative representation
for the function containing n+ 1 parameters that possesses the same functional form as the
initial approximant. This alternative representation also incorporates information present
in the higher orders of the original power series to minimize the maximum error of the new
approximant over the range of x.

Let SN+1 denote

SN+1 =
N+1∑
i=0

aix
i, (3.129)

the original Maclaurin series for f(x) truncated at order N + 1. Then, one can obtain an
“economic” representation by subtracting from SN+1 a suitable polynomial PN+1 of the
same order such that the leading orders cancel. That is,

CN = SN+1 − PN+1 =
N∑
i=0

a′ix
i, (3.130)

where a′i denotes the resulting expansion coefficient of xi. Obviously, the idea is to choose
PN+1 in such a way that the maximum error of the new Nth order series representation is
significantly reduced. Then, an optimal candidate is

PN+1 = aN+1
TN+1

2N
. (3.131)

The maximum error of this newNth order polynomial CN is nearly the same as the maximum
error of the (N + 1)th order polynomial SN+1 and considerably less than SN .

Of course, this procedure may be adapted to ranges different from [−1, 1] by using
Chebyshev polynomials adjusted to the required range. For example, the Chebyshev poly-
nomials Tk(x/c) (or shifted Chebyshev polynomials T ∗k (x/c)) should be used in the range
[−c, c] (or [0, c]).

3.9 Example: Computation of Airy functions of real
variable

The computation of the Airy functions of real variables Ai(x), Bi(x) and their derivatives
[186] for real values of the argument x is a useful example of application of Chebyshev
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expansions for computing special functions. As is usual, the real line is divided into a
number of intervals and we consider expansions on intervals containing the points −∞
or +∞. An important aspect is selecting the quantity that has to be expanded in terms
of Chebyshev polynomials. The Airy functions have oscillatory behavior at −∞, and
exponential behavior at+∞. It is important to expand quantities that are slowly varying in
the interval of interest.

When the argument of the Airy function is large, the asymptotic expansions given in
(10.4.59)–(10.4.64), (10.4.66), and (10.4.67) of [2] can be considered. The coefficients ck
and dk used in these expansions are given by

c0 = 1, ck =
�(3k + 1

2 )

54k k!�(k + 1
2 )
, k = 0, 1, 2, . . . ,

d0 = 1, dk = −6k + 1

6k − 1
ck, k = 1, 2, 3, . . . .

(3.132)

Asymptotic expansions including the point −∞
We have the representations

Ai(−z) = π−1/2z−1/4
{

sin(ζ + 1
4π) f(z)− cos(ζ + 1

4π) g(z)
}
,

Ai′′(−z) = −π−1/2z1/4
{

cos(ζ + 1
4π) p(z)+ sin(ζ + 1

4π) q(z)
}
,

Bi(−z) = π−1/2z−1/4
{

cos(ζ + 1
4π) f(z)+ sin(ζ + 1

4π) g(z)
}
,

Bi′(−z) = π−1/2z1/4
{

sin(ζ + 1
4π) p(z)− cos(ζ + 1

4π) q(z)
}
,

(3.133)

where ζ = 2
3z

3/2. The asymptotic expansions for the functions f(z), g(z), p(z), q(z) are

f(z) ∼
∞∑
k=0

(−1)kc2kζ
−2k, g(z) ∼

∞∑
k=0

(−1)kc2k+1ζ
−2k−1,

p(z) ∼
∞∑
k=0

(−1)kd2kζ
−2k, q(z) ∼

∞∑
k=0

(−1)kd2k+1ζ
−2k−1,

(3.134)

as z→∞, |ph z| < 2
3π.

Asymptotic expansions including the point +∞
Now we use the representations

Ai(z) = 1
2π

−1/2z−1/4e−ζf̃ (z), A′i(z) = − 1
2π

−1/2z1/4e−ζp̃(z),

Bi(z) = 1
2π

−1/2z−1/4eζg̃(z), B′i(z) = 1
2π

−1/2z1/4eζq̃(z),
(3.135)
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where the asymptotic expansions for the functions f̃ (z), g̃(z), p̃(z), q̃(z) are

f̃ (z) ∼
∞∑
k=0

(−1)kckζ
−k, p̃(z) ∼

∞∑
k=0

(−1)kdkζ
−k,

g̃(z) ∼
∞∑
k=0

ckζ
−k, q̃(z) ∼

∞∑
k=0

dkζ
−k,

(3.136)

as z→∞, with |ph z| < π (for f̃ (z) and p̃(z)) and |ph z| < 1
3π (for g̃(z) and q̃(z)).

Chebyshev expansions including the point −∞
The functions f(z), g(z), p(z), q(z) are the slowly varying quantities in the representations
in (3.133), and these functions are computed approximately by using Chebyshev expansions.
We write z = x. Apossible selection is the x-interval [7,+∞) and for the shifted Chebyshev
polynomials we take the argument t = (7/x)3 (the third power also arises in the expansions
in (3.134)). We have to obtain the coefficients in the approximation

f(x) ≈
m1∑
r=0

arT
∗
r (t), g(x) ≈ 1

ζ

m2∑
r=0

brT
∗
r (t),

p(x) ≈
m3∑
r=0

crT
∗
r (t), q(x) ≈ 1

ζ

m4∑
r=0

drT
∗
r (t).

(3.137)

Chebyshev expansions including the point +∞
Now we consider Chebyshev expansions for the functions f̃ (x), g̃(x), p̃(x), q̃(x), and we
have

f̃ (x) ≈
n1∑
r=0

ãrT
∗
r (t̃), g̃(x) ≈

n2∑
r=0

(−1)rãrT
∗
r (t̃),

p̃(x) ≈
n3∑
r=0

c̃rT
∗
r (t̃), q̃(x) ≈

n4∑
r=0

(−1)rc̃rT ∗r (t̃),

(3.138)

where t̃ = (7/x)3/2.

The number of terms in the Chebyshev expansions mj, nj, j = 1, 2, 3, 4, are deter-
mined for a prescribed accuracy of the functions. The Chebyshev coefficients of functions
defined by convergent power series can be computed by rearrangement of the corresponding
power series expansions using (3.35). For power series that represent asymptotic expan-
sions this method is not available. In the present case we have used the Maple program
chebyshev with default accuracy of 10−10. The first three coefficients of the Chebyshev
expansions (3.137) and (3.138) are given in Table 3.3. For ãr and c̃r, see Table 3.4 for
more—and more precise—values.
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Table 3.3. The first coefficients of the Chebyshev expansions (3.137) and (3.138).

Coef. r = 0 r = 1 r = 2

ar 1.0001227513 0.0001230753 0.0000003270
br 0.0695710154 0.0001272386 0.0000006769
cr 0.9998550220 −0.0001453297 −0.0000003548
dr −0.0973635868 −0.0001420772 −0.0000007225
ãr 0.9972733954 −0.0026989587 0.0000271274
c̃r 1.0038355798 0.0038027377 0.0000322597

3.10 Chebyshev expansions with coefficients in terms of
special functions

As we have seen in §3.6.1, the coefficients in a Chebyshev expansion can be obtained from
recurrence relations when the function satisfies a linear differential equation with polynomial
coefficients. All special functions of hypergeometric type satisfy such a differential equation,
and in §3.6.1 we have explained how the method works for the Bessel function J0(4x) in
the range −1 ≤ x ≤ 1. However, for this particular function we can obtain expansions in
which the coefficients can be expressed in terms of known special functions, which in fact
are again Bessel functions. We have (see [143, p. 37])

J0(ax) =
∞∑
n=0

εn(−1)nJ2
n (a/2) T2n(x),

J1(ax) = 2
∞∑
n=0

(−1)nJn(a/2)Jn+1(a/2) T2n+1(x),

(3.139)

where −1 ≤ x ≤ 1 and ε0 = 1, εn = 2 if n > 0. The parameter a can be any complex
number. Similar expansions are available for J-Bessel functions of any complex order, in
which the coefficients are 1F2-hypergeometric functions, and explicit recursion relations
are available for computing the coefficients. For general integer order, the coefficients are
products of two J-Bessel functions, as in (3.139). See again [143].

Another example is the expansion for the error function,

ea
2x2

erf (ax) = √πe 1
2 a

2
∞∑
n=0

In+ 1
2

(
1
2a

2
)
T2n+1(x), −1 ≤ x ≤ 1, (3.140)

in which the modified Bessel function is used. Again, a can be any complex number.
The expansions in (3.139) and (3.140) can be viewed as expansions near the origin.

Other expansions are available that can be viewed as expansions at infinity, and these may
be considered as alternatives for asymptotic expansions of special functions. For example,
for the confluent hypergeometric U-functions we have the convergent expansion in terms
of shifted Chebyshev polynomials (see (3.36)):

(ωz)aU(a, c, ωz) =
∞∑
n=0

Cn(z)T
∗
n (1/ω), z �= 0, |ph z| < 3

2π, 1 ≤ ω ≤ ∞. (3.141)
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84 Chapter 3. Chebyshev Expansions

Furthermore, a, 1+a− c �= 0,−1,−2, . . . . When equalities hold for these values of a and
c, the Kummer U-function reduces to a Laguerre polynomial. This follows from

U(a, c, z) = z1−cU(1+ a− c, 2− c, z) (3.142)

and
U(−n, α+ 1, z) = (−1)nn!Lαn(z), n = 0, 1, 2, . . . . (3.143)

The expansion (3.141) is given in [143, p. 25]. The coefficients can be represented
in terms of generalized hypergeometric functions, in fact, MeijerG-functions, and they can
be computed from the recurrence relation

2Cn(z)

εn
= 2(n+ 1)A1Cn+1(z)+ A2Cn+2(z)+ A3Cn+3(z), (3.144)

where b = a+ 1− c, ε0 = 1
2 , εn = 1 (n ≥ 1), and

A1 = 1− (2n+ 3)(n+ a+ 1)(n+ b+ 1)

2(n+ 2)(n+ a)(n+ b) − 2z

(n+ a)(n+ b) ,

A2 = 1− 2(n+ 1)(2n+ 3− z)
(n+ a)(n+ b) ,

A3 = − (n+ 1)(n+ 3− a)(n+ 3− b)
(n+ 2)(n+ a)(n+ b) .

(3.145)

For applying the backward recursion algorithm it is important to know that

∞∑
n=0

(−1)nCn(z) = 1, |ph z| < 3
2π. (3.146)

This follows from

lim
ω→∞(ωz)

aU(a, c, ωz) = 1 and T ∗n (0) = (−1)n. (3.147)

The standard backward recursion scheme (see Chapter 4) for computing the coeffi-
cients Cn(z) works only for |ph z| < π, and for ph z = ±π a modification seems to be
possible; see [143, p. 26].

Although the expansion in (3.141) converges for all z �= 0 in the indicated sector, it is
better to avoid small values of the argument of theU-function. Luke gives an estimate of the
coefficients Cn(z) of which the dominant factor that determines the speed of convergence
is given by

Cn(z) = O
(
n2(2a−c−1)/3 e−3n

2
3 z

1
3
)
, n→∞, (3.148)

and we see that large values of �z1/3 improve the convergence. For example, if we denote
ζ = ωz and we want to use the expansion for |ζ| ≥ R(> 0), we should choose z and ω
(ω ≥ 1) such that z and ζ have the same phase, say θ. We cannot choose zwith modulus larger
than R, and an appropriate choice is z = Reiθ . Then the expansion gives an approximation
of the U-function on the half-ray with |ζ| ≥ R with phase θ, and the coefficients Cn(z) can
be used for all ζ on this half-ray. For a single evaluation we can take ω = 1.
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Table 3.4. Coefficients of the Chebyshev expansion (3.153).

n Cn(z) Dn(z)

0 0.99727 33955 01425 1.00383 55796 57251
1 −0.00269 89587 07030 0.00380 27374 06686
2 0.00002 71274 84648 −0.00003 22598 78104
3 −0.00000 05043 54523 0.00000 05671 25559
4 0.00000 00134 68935 −0.00000 00147 27362
5 −0.00000 00004 63150 0.00000 00004 97977
6 0.00000 00000 19298 −0.00000 00000 20517
7 −0.00000 00000 00938 0.00000 00000 00989
8 0.00000 00000 00052 −0.00000 00000 00054
9 −0.00000 00000 00003 0.00000 00000 00003

The expansion in (3.141) can be used for all special cases of the KummerU-function,
that is, for Bessel functions (Hankel functions and K-modified Bessel function), for the
incomplete gamma function �(a, z), with special cases the complementary error function
and exponential integrals.

Example 3.16 (Airy function). For the Airy function Ai(x) we have the relations

ξ
1
6 U( 1

6 ,
1
3 , ξ) = 2

√
πx

1
4 e

1
2 ξAi(x),

ξ−
1
6 U(− 1

6 ,− 1
3 , ξ) = −2

√
πx−

1
4 e

1
2 ξAi′(x),

(3.149)

where ξ = 4
3x

3
2 . For the expansions of the functions f̃ (x) and p̃(x) in (3.138) we take

ω = (x/7)3/2 and z = 4
3 73/2 = 24.69 . . . . To generate the coefficients with this value of z

we determine the smallest value of n for which the exponential factor in (3.148) is smaller
than 10−15. This gives n = 8.

Next we generate for both U-functions in (3.149) the coefficients Cn(z) by using
(3.144) in the backward direction, with starting values

C̃19(z) = 1, C̃20(z) = 0, C̃21(z) = 0. (3.150)

We also compute for normalization

S =
18∑
n=0

(−1)nC̃n(z) = −0.902363242772764 1025, (3.151)

where the numerical value is for the Ai case. Finally we compute

Cn(z) = C̃n(z)/S, n = 0, 1, 2, . . . , 9. (3.152)
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This gives the coefficients Cn(z) of the expansions

2
√
πx

1
4 e

2
3 x

3/2
Ai(x) ≈

9∑
n=0

CnT
∗
n

(
(7/x)3/2

)
,

−2
√
πx

1
4 e

2
3 x

3/2
Ai′(x) ≈

9∑
n=0

DnT
∗
n

(
(7/x)3/2

)
,

(3.153)

x ≥ 7, of which the coefficients are given in Table 3.4.
The values of the coefficients in the first three rows of Table 3.4 correspond approxi-

mately with the same as those of the coefficients ãr and c̃r in Table 3.3. �
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