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Abstract

We study approximations of optimization problems with probabilistic
constraints in which the original distribution of the underlying random vector
is replaced with an empirical distribution obtained from a random sample. We
show that such a sample approximation problem with risk level larger than the
required risk level will yield a lower bound to the true optimal value with
probability approaching one exponentially fast. This leads to an a priori
estimate of the sample size required to have high confidence that the sample
approximation will yield a lower bound. We then provide conditions under
which solving a sample approximation problem with a risk level smaller than
the required risk level will yield feasible solutions to the original problem with
high probability. Once again, we obtain a priori estimates on the sample size
required to obtain high confidence that the sample approximation problem
will yield a feasible solution to the original problem. Finally, we present
numerical illustrations of how these results can be used to obtain feasible
solutions and optimality bounds for optimization problems with probabilistic
constraints.

1. Introduction

A set of suppliers I and a set of customers D with IDI = m. The suppliers have limited
capacity M; for i @ 1. There is a transportation cost ¢ for shipping a unit of product
from supplier i @I to customer j @ D. The customer demands are random and are
represented by a random vector d taking values in R™. We assume we must choose the
shipment quantities before the customer demands are known. We enforce the
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probabilistic constraint
P{ZXﬁ 2d;, j.1,2,...,m}21-. (1)
Y

Where x;; @0 is the amount shipped from supplier i @I to customer j @D. The
objective is to minimize distribution costs subject to (1), and the supply capacity
constraints

> x, M, , Viel (2)
aD

2. Test

A test is conducted with 40 suppliers and 50 customers. The supply capacities and
cost coefficients were randomly generated using normal and uniform distributions
respectively. The demand is assumed to have a joint normal distribution. The mean
vector and covariance matrix were randomly generated. We considered two cases for
the covariance matrix: a low variance and a high variance case.

In the low variance case, the standard deviation of the one-dimensional marginal
random demands is 10% of the mean on average. In the high variance case, the
covariance matrix of the low variance case is multiplied by 25, yielding standard
deviations of the one-dimensional marginal random demands being 50% of the mean
on average. In both cases, we consider a single risk level @=0.05.

We remark that for this particular choice of distribution, the feasible region defined
by the probabilistic constraint is convex [23]. However, the dimension of the random
vector d is m = 50, and so evaluating P{y @&d} for a single vector y @ R™ is difficult.
Hence, applying variations of standard convex programming techniques will not
likely be efficient. However, generating random samples from the joint normal
distribution is easy so that generating (non-convex) sample approximation problems
can be accomplished.

Once a sample approximation is solved yielding solution x, we use a single very
large sample (N° = 250,000), to estimate P{y* @d} where y* @ R™ is the vector given

by y; .inj forj@D.
Y

dNO

Letting d'; @ : @ ; be the realizations of this large sample, we calculate

NO

Zn(yzdi’ and use the normal approximation to the binomial distribution to
]

construct an upper bound @ on the true solution risk P{y* @d}, which is valid with
confidence 0.999. Henceforth for this experiment, if we say a solution is feasible at
risk level @, we mean @€ @, and so it is feasible at this risk level with confidence
0.999. We used such a large sample to get a good estimate of the true risk of the
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solutions generated, but we note that because this sample was so large, generating this

NO
sample and calculating Zn(yzdi’ often took longer than solving the sample
]

approximation itself.

3. Solution

We solved the sample approximation problem using a mixed-integer programming
formulation, augmented with a class of strong valid inequalities. We refer the reader
to [19, 18] for details of this formulation and the valid inequalities, as well as detailed
computational results for solving the sample approximation problems. However, we
mention that in contrast to the probabilistic set cover problem, solving the sample
approximation problem with the largest sample size we consider (N = 10000) and
largest @ (0.05) takes a nontrivial amount of time, in some cases as long as 30
minutes. On the other hand, for N = 5000, the worst case was again @ = 0.05 and
usually took less than 4 minutes to solve.

4. Low Variance Case
Table 1 : Solution results for low variance PTP sample problems with @= 0.05.
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We begin by presenting results for the instance in which the distribution of demand
has relatively low variance. For generating feasible solutions, we tested @= 0 with
various sample size N and report the results for the sample sizes, which yielded the
best results. Once again, this means we use a relatively small sample size for the case
@@= 0, as compared to the cases with @> (0. We tested several values of @> 0 and
varying sample size. In contrast to the PSC case, we found that taking @= @ or even
@close to @did not yield feasible solutions, even with a large sample size. Thus, we
report results for several different values of @ in the range 0.03 to 0.036. The reason
we report results for this many different values of @ is to illustrate that within this
range, the results are not extremely sensitive to the choice of @ (results for more
values of @ can be found in [18]).
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Table 2 : Lower bounds for low variance PTP sample problems with @= @& = 0.05.
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Table 1 gives the characteristics of the solutions generated for the different values
of @ and N. We observe that as in the case of the PSC, the average cost of the
feasible solutions obtained using @> 0 is always less than the minimum cost of the
feasible solutions obtained with @= 0. However, for this instance, the minimum cost
solution obtained using @= 0 is not so significantly worse than the minimum cost
solutions using different values of @> 0, being between 0.40% and 0.58% more
costly. As in the case of the PSC, using @> 0 and large N significantly reduced the
variability of the risk and cost of the solutions generated.

We next investigated the quality of the lower bounds that can be obtained for PTP
by solving sample approximation problems. As in the case of the PSC, we obtained
lower bounds by generating and solving 10 sample approximation problems with @=
@ = 0.05. By taking the lowest value of all the optimal values we obtain a lower
bound valid with confidence 0.999, taking the second smallest yields a lower bound,
which is valid with confidence 0.989, etc. The results for different values of N are
given in Table 2. For reference, the percentage gap between these lower bounds and
the best feasible solution found (with cost 2.0066) is also given. Using N@3000 we
obtain lower bounds that are valid with confidence 0.999 and are within one percent
of the best feasible solution, indicating that for this low variance instance, the lower
bounding scheme yields good evidence that the solutions we have found are good
quality.

5. High Variance Case
Table 3 : Solution results for high variance PTP sample problems with @= 0.05.
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Table 3 gives the characteristics of the solutions generated for the high variance
instance. In this case, the maximum cost of a feasible solution generated using any
combination of @> 0 and N was less than the minimum cost of any feasible solution
generated using @= 0. The minimum cost feasible solution generated with @= 0 was
between 0.87% and 1.6% more costly than the best feasible solution generated for the
different combinations of @> 0 and N. Thus, it appears that for the high variance
instance, using @> 0 in a sample approximation is more important for generating
good feasible solutions than for the low variance instance.

Table 4 : Lower bounds for high variance PTP sample problems with @=@& = 0:05.
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Table 4 gives the lower bounds for different confidence levels and sample sizes, as
well as the gaps between these lower bounds and the best feasible solution found. In
this case, solving 10 instances with sample size N = 1000 yields a lower bound that is
not very tight, 5.11% from the best solution cost at confidence level 0.999. Increasing
the sample size improves the lower bound, but even with N = 10000, the gap between
the lower bound at confidence 0.999 and the best solution found is 1.83%. Thus, it
appears that for the high variance instance, the sample approximation scheme exhibits
considerably slower convergence, in terms of the lower bounds, the feasible solutions
generated, or both.

6. Conclusion

We have studied a sample approximation scheme for probabilistically constrained
optimization problems and demonstrated how this scheme can be used to generate
optimality bounds and feasible solutions for very general optimization problems with
probabilistic constraints. We have also conducted a preliminary computational study
of this approach. This study demonstrates that using sample approximation problems
that allow a choice of which sampled constraints to satisfy can yield good quality
feasible solutions. In addition, the sample approximation scheme can be used to
obtain lower bounds, which are valid with high confidence. We found that good lower
bounds could be found in the case of finite (but possibly exponential) feasible region
and distribution, and also in the case of continuous feasible region and distribution,
provided the distribution has reasonably low variance. With continuous feasible
region and distribution, if the distribution has high variance the lower bounds were
relatively weak. Future work in this area will include conducting more extensive
computational tests, and also extending the theory to allow generation of samples,
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which are not necessarily independent and identically distributed. For example, the
use of variance reduction techniques such as Latin hypercube sampling or Quasi-
Monte Carlo sampling may yield significantly faster convergence.
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