A Simple Solution of a Problem of Korman

Solution of Problem 00-001 by Michael Renardy (Virginia Polytechnic Institute and State University).

The necessity of the condition follows by integrating the differential equation over the interval $[0,1]$: If there is a solution u, then

$$
f(\infty)<\int_{0}^{1} f(u(x)) d x=\int_{0}^{1} g(x) d x<f(-\infty)
$$

To see the sufficiency, consider the initial value problem

$$
u^{\prime \prime}+f(u)-g(x)=0, \quad u(0)=a, u^{\prime}(0)=0
$$

It is easy to see that, as $a \rightarrow \infty$,

$$
u^{\prime}(1)=\int_{0}^{1} u^{\prime \prime}(x) d x=\int_{0}^{1}\{g(x)-f(u(x))\} d x \rightarrow \int_{0}^{1} g(x) d x-f(\infty) .
$$

Similarly,

$$
u^{\prime}(1) \rightarrow \int_{0}^{1} g(x) d x-f(-\infty)
$$

as $a \rightarrow-\infty$. If (3) holds, then the intermediate value theorem implies the existence of a value a for which $u^{\prime}(1)=0$.

