A Family of Infinite Series

Problem 01-001, by Jonathan M. Borwein (CECM, Simon Fraser University, Burnaby, BC, Canada).

This proposal is motivated by a recent problem in the American Mathematical Monthly [2] proposed by Donald E. Knuth. Knuth's problem is to evaluate

$$
\sum_{k=1}^{\infty}\left(\frac{k^{k}}{k!e^{k}}-\frac{1}{\sqrt{2 \pi k}}\right)
$$

While the series

$$
S:=\sum_{k=0}^{\infty} \frac{k^{k}}{k!e^{k}}
$$

diverges, hence Knuth's correction factor, the series

$$
S_{N}:=\sum_{k=0}^{\infty} \frac{k^{k}}{(k+N)!e^{k}}
$$

converges for all positive integers N. It occurred to me to ask whether this sum had a nice closed form. For $N=1$, the sum is $1.7182818284590452354 \ldots$ This is clearly $e-1$. Emboldened by this I used the integer relation methods. Algorithms such as PSLQ and LLL attempt to determine if n floating point numbers are dependent over the rationals (see the interface at www.cecm.sfu.ca/projects/IntegerRelations/). Such techniques are described at length in a forthcoming book [1].

I soon discovered that S_{N} was a rational polynomial in e of degree N for the first 10 cases. It remained to prove the following:

Proposed Problem. Prove that $S_{N}=P_{N}(e)$, where P_{N} is a rational polynomial in e of degree N, and determine the coefficients of P_{N}.

REFERENCES

[1] D.H. Bailey, J.m. Borwein, and K. Devlin, The Experimental Mathematician: A Computational Guide to the Mathematical Unknown, A.K. Peters, Ltd., Natick, MA, to appear.
[2] Donald E. Knuth, Problem 10832, Amer. Math. Monthly, 107 (2000), p. 863.

Status. This proposer has solved this problem. Other solutions are invited.

