Brownian Motion and Characterization of Domains

Problem 01-003, *by* LUCIO R. BERRONE (Universidad Nacional de Rosario, Rosario, Argentina).

(i) Let Ω be a plane domain limited by a regular Jordan curve Γ . For every Lebesgue measurable subset E of Γ and every point $z \in \Omega$, consider the probability P(E; z) that a Brownian particle starting its motion at z hits the boundary Γ (for the first time) at a point belonging to E. Now let C be a constant such that $0 < C < |\Gamma|$ and set the following optimization problem:

(1)
$$\sup\{P(E;z) : |E| = C\},\$$

where $|\cdot|$ denotes the Lebesgue measure on the boundary Γ . The problem asks for a characterization of the domains Ω such that *single arcs* of the boundary are optimal subsets for (1) for every $z \in \Omega$ and every $0 < C < |\Gamma|$. In other words, naming a "*C*-window" of the domain Ω to a measurable subset *E* of Γ of length *C*, we look for the domains Ω such that the probability P(E; z) is maximized by "single" *C*-windows for arbitrary $z \in \Omega$ and $0 < C < |\Gamma|$.

(ii) The same as (i) but for the case of an *n*-dimensional domain Ω .

Status. The proposer has solved (i), but (ii) is open.