Brownian Motion and Characterization of Domains

Problem 01-003, by Lucio R. Berrone (Universidad Nacional de Rosario, Rosario, Argentina).
(i) Let Ω be a plane domain limited by a regular Jordan curve Γ. For every Lebesgue measurable subset E of Γ and every point $z \in \Omega$, consider the probability $P(E ; z)$ that a Brownian particle starting its motion at z hits the boundary Γ (for the first time) at a point belonging to E. Now let C be a constant such that $0<C<|\Gamma|$ and set the following optimization problem:

$$
\begin{equation*}
\sup \{P(E ; z):|E|=C\} \tag{1}
\end{equation*}
$$

where $|\cdot|$ denotes the Lebesgue measure on the boundary Γ. The problem asks for a characterization of the domains Ω such that single arcs of the boundary are optimal subsets for (1) for every $z \in \Omega$ and every $0<C<|\Gamma|$. In other words, naming a " C-window" of the domain Ω to a measurable subset E of Γ of length C, we look for the domains Ω such that the probability $P(E ; z)$ is maximized by "single" C-windows for arbitrary $z \in \Omega$ and $0<C<|\Gamma|$.
(ii) The same as (i) but for the case of an n-dimensional domain Ω.

Status. The proposer has solved (i), but (ii) is open.

