A Double Recurrence

Problem 01-004, by A. M. Dawes (University of Western Ontario, London, ON, Canada). The doubly indexed sequence $d_{m, n}$ is defined by initial conditions

$$
d_{1, n}=\frac{1}{2^{n-1}} \quad(n \geq 1) \quad \text { and } \quad d_{m, 1}=\frac{2^{m}-1}{2^{m-1}} \quad(m \geq 1)
$$

and recurrence

$$
d_{m, n}=\frac{d_{m-1, n}+d_{m, n-1}}{2} \quad \text { for } \quad m, n>1
$$

(a) Find an expression for $d_{m, n}$.
(b) In particular, find the value of $d_{m, m}$.
(c) Find the sum of row m in the matrix $\left(d_{m, n}\right)$; i.e., find $\sum_{j=1}^{\infty} d_{m, j}$.

Status. This proposer has a solution. Others are invited.

