Solution of Problem 01-004 by A.M. Dawes (University of Western Ontario, London, ON, Canada).

Solution of (a). Consider the diagonal $m+n=k$, where $k \geq 2$. On this diagonal, each $d_{m, n}$ can be written as $a_{m, n} / b_{m, n}$ where $a_{m, n}$ is a positive integer and $b_{m, n}=2^{m+n-2}=2^{k-2}$.

This form for the denominator $b_{m, n}$ follows immediately from the initial conditions and the recurrence; we will show by induction on k that, for the numerator,

$$
a_{i, k-i}=\sum_{j=0}^{i-1}\binom{k-1}{j}, \quad 1 \leq i \leq k-1
$$

Basis $(m+n=2): d_{1,1}=1=\sum_{j=0}^{0}\binom{1}{j} / 2^{2-2}$.
Induction step $(m+n=k+1)$: for $i=1$, we have $a_{1, k}=1=\sum_{j=0}^{0}\binom{k}{j}$; for $i=k$, we find $a_{k, 1}=2^{k}-1=\sum_{j=0}^{k-1}\binom{k}{j}$. For $1<i<k$, we use the induction hypothesis on the diagonal $m+n=k$ and the recurrence

$$
\begin{aligned}
a_{i, k+1-i} & =a_{i-1, k+1-i}+a_{i, k+1-i-1} \\
& =\sum_{j=0}^{i-2}\binom{k-1}{j}+\sum_{j=0}^{i-1}\binom{k-1}{j} \\
& =\sum_{j=0}^{i-1}\binom{k}{j} \quad \text { as required } .
\end{aligned}
$$

Therefore $d_{m, n}=\sum_{j=0}^{m-1}\binom{m+n-1}{j} / 2^{m+n-2}$.
Solution of (b). In particular,

$$
a_{m, m}=\sum_{j=0}^{m-1}\binom{2 m-1}{j}=\frac{1}{2} \sum_{j=0}^{2 m-1}\binom{2 m-1}{j}=\frac{1}{2} \cdot 2^{2 m-1}=2^{2 m-2}=b_{m, m} .
$$

Therefore $d_{m, m}=1$.
Solution of (c). Consider the partial sums of the rows, i.e., let $e_{m, n}=\sum_{j=1}^{n} d_{m, j}$ for $n \geq 1$. Claim. These partial sums satisfy the recurrence

$$
e_{m, n}=1+\frac{e_{m-1, n}+e_{m, n-1}}{2} \quad \text { for } m, n>1
$$

with initial conditions

$$
\begin{aligned}
& e_{1, n}=\sum_{j=1}^{n} \frac{1}{2^{j-1}}=2-\frac{1}{2^{n-1}} \\
& e_{m, 1}=d_{m, 1}=\frac{2^{m}-1}{2^{m-1}}=2-\frac{1}{2^{m-1}} .
\end{aligned}
$$

Proof of claim. The initial conditions are immediate; and for $m, n>1$ we have

$$
\begin{aligned}
e_{m, n} & =\sum_{j=1}^{n} d_{m, j}=d_{m, 1}+\sum_{j=2}^{n} d_{m, j} \\
& =2-\frac{1}{2^{m-1}}+\frac{1}{2} \sum_{j=2}^{n} d_{m-1, j}+\frac{1}{2} \sum_{j=2}^{n} d_{m, j-1} \\
& =2-\frac{1}{2^{m-1}}+\frac{e_{m-1, n}}{2}-\frac{d_{m-1,1}}{2}+\frac{e_{m, n-1}}{2} \\
& =1+\frac{e_{m-1, n}+e_{m, n-1}}{2} .
\end{aligned}
$$

Assuming convergence, we may now find the sums. Let l_{m} denote the limit of the partial sums of row m. Note first that the sum of the first row is 2, i.e., $l_{1}=\sum_{j=1}^{\infty} d_{1, j}=2$. Then for row $m+1$ we find $l_{m+1}=1+\left(l_{m}+l_{m+1}\right) / 2$, and it follows that $l_{m}=2 m$ for $m \geq 1$.

It remains to prove convergence; it suffices to show by induction on m that in each row the partial sums are bounded by $2 m$. This is already done for row 1 . For row $m+1$, proceed by induction on n :

$$
e_{m+1, n}=1+\frac{e_{m, n}+e_{m+1, n-1}}{2}
$$

By the induction hypothesis on $m, e_{m, n} \leq 2 m$; by the induction hypothesis on $n, e_{m+1, n-1} \leq$ $2(m+1)$; therefore $e_{m+1, n} \leq 1+(m+m+1)=2(m+1)$.

Editorial note. An alternative solution is provided by the method of generating functions. It is convenient to extend the array $\left[a_{m, n}\right]=\left[2^{m+n-2} d_{m, n}\right]$ by setting

$$
a_{0, n}=0, \quad n \geq 0 \quad \text { and } \quad a_{m, 0}=2^{m-1}, \quad m \geq 1 .
$$

With this choice, the recurrence $a_{m, n}=a_{m-1, n}+a_{m, n-1}$ holds for all $m, n \geq 1$. Let

$$
F(x, y)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m, n} x^{m} y^{n}
$$

Note that

$$
\sum_{m=1}^{\infty} a_{m, 0} x^{m} y=\sum_{m=1}^{\infty} 2^{m-1} x^{m} y=\frac{x y}{1-2 x}
$$

Thus

$$
\begin{aligned}
F(x, y) & =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(a_{m-1, n}+a_{m, n-1}\right) x^{m} y^{n} \\
& =x F(x, y)+\frac{x y}{1-2 x}+y F(x, y)
\end{aligned}
$$

so $F(x, y)=x y(1-2 x)^{-1}(1-x-y)^{-1}$. For all $m, n \geq 1$,

$$
\begin{aligned}
a_{m, n} & =\left[x^{m} y^{n}\right] \frac{x y}{(1-2 x)(1-x-y)} \\
& =\left[x^{m} y^{n}\right] \frac{x y}{(1-2 x)(1-x)} \sum_{p=0}^{\infty}\left(\frac{y}{1-x}\right)^{p} \\
& =\left[x^{m}\right] \frac{x}{(1-2 x)(1-x)^{n}} \\
& =\left[x^{m}\right] \frac{x}{(1-x)^{n+1}} \sum_{q=0}^{\infty}\left(\frac{x}{1-x}\right)^{q} \\
& =\sum_{q=0}^{m-1}\binom{m+n-1}{m-1-q}=\sum_{k=0}^{m-1}\binom{m+n-1}{k}
\end{aligned}
$$

The last line uses the familiar fact that $\left[z^{k}\right](1-z)^{-a}=\binom{k+a-1}{k}$. This gives the desired result for part (a):

$$
d_{m, n}=\frac{1}{2^{m+n-2}} \sum_{k=0}^{m-1}\binom{m+n-1}{k}
$$

For part (b), one can use the residue calculus to extract the diagonal terms of the generating function. If $|z|$ is sufficiently small and $C=\{w:|w|=r\}$ where $r<\frac{1}{2}$, the diagonal part of the generating function is

$$
\sum_{m=1}^{\infty} a_{m, m} z^{m}=\frac{1}{2 \pi i} \int_{C} \frac{F(w, z / w)}{w} d w=\frac{z}{2 \pi i} \int_{C} \frac{d w}{(1-2 w)\left(w-w^{2}-z\right)}
$$

The only contribution comes from the pole at $w=(1-\sqrt{1-4 z}) / 2$, and straightforward calculation gives

$$
\sum_{m=1}^{\infty} a_{m, m} z^{m}=\frac{z}{1-4 z}
$$

Hence $a_{m, m}=4^{m-1}$ and $d_{m, m}=1$. Part (c) is brief. The generating function for $d_{m, n}$ is

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} d_{m, n} x^{m} y^{n}=4 F\left(\frac{x}{2}, \frac{y}{2}\right)=\frac{x y}{(1-x)(1-(x+y) / 2)}:=G(x, y)
$$

Thus

$$
\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} d_{m, n}\right) x^{m}=G(x, 1)=\frac{2 x}{(1-x)^{2}}
$$

and one finds

$$
\sum_{n=1}^{\infty} d_{m, n}=\left[x^{m}\right] \frac{2 x}{(1-x)^{2}}=2 m, \quad m \geq 1
$$

