
Alternative Solution of a Double Recurrence

Solution of Problem 01-004 by T. R. Watts (Wool, Wareham, Dorset, England).

Solution of (a). To get a feel for the problem we first calculate the first few numbers

dm,n and represent them in the matrix (m is the number of a row and n the number of a

column):
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The fractions are not reduced to their lowest terms in order that patterns may be spotted

more easily. Motivated by the numerical calculations we define the numbers em,n by the

equation

em,n = 2m+n−2dm,n.

It follows easily from the recurrence relation for dm,n that em,n satisfies the recurrence

em,n = em−1,n + em,n−1

for m,n > 1. The initial conditions for dm,1 and d1,n imply that

e1,n = 1 and em,1 = 2m − 1

for all m and n. Then, for m > 1, we obtain

em,n = em,1 +
n∑

j=2

(em,j − em,j−1)

= em,1 − em−1,1 +
n∑

j=1

em−1,j

= 2m−1 +
n∑

j=1

em−1,j.



This formula may be used to calculate em,n (and consequently dm,n) recursively from em−1,n.

So

e2,n = 2 +
n∑

j=1

e1,j = n + 2, and therefore d2,n =
n + 2

2n
,

and

e3,n = 22 +
n∑

j=1

e2,j = 4 +
n∑

j=1

(j + 2) =
n2 + 5n + 8

2
,

and therefore

d3,n =
n2 + 5n + 8

2n+2
.

In order to derive similar expressions for dm,n for larger values of m, it is necessary to evaluate

the sums

n∑
j=1

jk

for k = 0, . . . ,m − 2. It is well known that these sums can be expressed as polynomials of

degree k + 1 in the variable n, where the coefficients of powers of n are given in terms of

Bernoulli numbers (rational numbers that may be computed recursively).

We have shown that

dm,n =
polynomial in n

2m+n−2
,

where the coefficients of the polynomial in the numerator depend on m and the Bernoulli

numbers and the polynomial for row m can be determined from the polynomial for row m−1

by a simple recursion.

Solution of (b). We shall show that dm,n + dn,m = 2 for all m and n, which immediately

implies that dm,m = 1 for all m. Defining the numbers fm,n by the equation

fm,n = dm,n + dn,m,

for all m and n, it is easily shown that fm,n satisfies the same recurrence as dm,n and from

the initial conditions defining d1,n and dm,1 it follows that

f1,n = fm,1 = 2

for all positive integers m and n. The identity fm,n = 2 is then immediate (and may be

formally proved by induction).



Solution of (c). Let the sum of row m be Sm, so that

Sm =
∞∑
j=1

dm,j = lim
N→∞

Sm,N , where Sm,N =
N∑
j=1

dm,j.

When m,N > 1, it follows from the recurrence relation satisfied by dm,n that

2Sm,N = 2dm,1 +
N∑
j=2

(dm−1,j + dm,j−1)

= 2dm,1 + Sm−1,N − dm−1,1 + Sm,N − dm,N ,

which simplifies to

Sm,N = Sm−1,N + 2 − dm,N .

In the answer to part (a) it was shown that

dm,N =
polynomial in N

2m+N−2

for any fixed m. This implies that dm,N → 0 as N → ∞. It then follows that the infinite

series Sm converges if the infinite series Sm−1 converges. But S1 is a convergent geometric

series with sum

S1 =
∞∑
j=1

d1,j =
∞∑
j=1

1

2j−1
= 2.

Therefore, by induction, Sm is convergent for all m > 1 and

Sm = Sm−1 + 2,

so that Sm = 2m for all positive m.

Editorial note. This solution is of special interest since it shows that the correct results for

parts (b) and (c) can be found without first having the explicit form for dm,n given by the

proposer.


