Rolewicz's Problem

Problem 01-005, *by* BOGDAN CHOCZEWSKI (Faculty of Applied Mathematics, University of Mining and Metallurgy (AGH), Krakow, Poland), ROLAND GIRGENSOHN (Institute of Biomathematics and Biometry, GSF-Forschungszentrum, Neuherberg, Germany), *and* ZYGFRYD KOMINEK (Institute of Mathematics, Silesian University, Katowice, Poland).

The problem is motivated by the study of Rolewicz [3] (cf. also Pallaschke–Rolewicz [1]) of Fréchet Φ -differentiability of real-valued mappings of a metric space (X, d).

Let Φ be a family of real-valued functions defined on X. A function $F: X \to \mathbb{R}$, lower semicontinuous on X, is said to be Φ -convex if there exists a $\Phi_0 \subset \Phi$ such that

$$F(x) = \sup \{ \phi(x) : \phi \in \mathbf{\Phi}_0, \phi \le F \}, \qquad x \in X.$$

A function $\phi_0 \in \Phi$ is called the Φ -subgradient of the function F at $x_0 \in X$ if

$$F(x) - F(x_0) \ge \phi_0(x) - \phi_0(x_0) , \qquad x \in X.$$

Let $\alpha : [0, +\infty) \to [0, +\infty)$ be a continuous function such that $\alpha(0) = 0$ and $\alpha(t) > 0$ for t > 0. Let $F : X \to \mathbb{R}$ be a Φ -convex function. The function $\varphi_0 \in \Phi$ such that

(1)
$$F(x) - F(x_0) \ge \varphi_0(x) - \varphi_0(x_0) + \alpha(d(x, x_0)), \quad x \in X,$$

is called a strong Φ -subgradient of the function F at the point x_0 with the modulus $\alpha(\cdot)$ and the set of all of them is said to be the strong Φ -subdifferential with modulus $\alpha(\cdot)$ of F at x_0 .

Having denoted

$$\mathbf{\Phi}^{\alpha} =: \{ \varphi + \alpha \circ d(\cdot, x_1), \ \varphi \in \mathbf{\Phi}, \ x_1 \in X \},\$$

we observe that if φ is a strong Φ -subgradient of a function f at a point x_0 with the modulus $\alpha(\cdot)$, then $\phi := \varphi + \alpha \circ d(\cdot, x_0)$ is a Φ^{α} -subgradient of f at x_0 . However, the converse statement is no longer true; cf. Rolewicz [3]. Therefore, conditions are wanted for the two subdifferentials to be equal. The following result to this effect is also found in [2].

PROPOSITION 1. Let H be a Hilbert space, $\Phi = H^* = H$, and $\alpha(t) = ct^2$ for $t \in \mathbb{R}$ with a constant c > 0. Then (the metric in H is that induced by the scalar product) for every x_0 the function $\alpha \circ d(\cdot, x_0)$ has at an arbitrary $y \in X$ a Φ -subdifferential ϕ_y at y such that

(2)
$$\alpha(d(z, x_0)) - \alpha(d(y, x_0)) + \phi_y(z) - \phi_y(y) \ge \alpha(d(z, y)) , \quad z \in X.$$

(The statement of the proposition, which in [3] is denoted by $(^*_*)$, is in a sense dual to the condition (\star) found in [2].)

The question arises whether in this case those quadratic functions are the only functions that satisfy inequality (2). To answer the question it is enough to consider (cf. Rolewicz [2]) the case where $X = \mathbb{R}$, d(x, y) = |x - y|, and to solve the following. (We now write finstead of α in (2).)

Problem (P) (Rolewicz). Find all even, nonnegative, and differentiable functions $f : \mathbb{R} \to \mathbb{R}$ satisfying the inequality

(P)
$$f(t) - f(s) - f'(s)(t-s) \ge f(t-s), \qquad t, s \in \mathbb{R}.$$

REFERENCES

- [1] D. PALLASCHKE AND S. ROLEWICZ, Foundations of Mathematical Optimization, Math. Appl. 388, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1997.
- [2] S. ROLEWICZ, $On \alpha(\cdot)$ -monotone multifunctions, Studia Math., 141 (2000), pp. 263–272.
- [3] S. ROLEWICZ, Φ -convex functions in metric spaces, Int. J. Math. Sci. (Kluwer/Plenum), to appear.

Status. We have found a very short proof that every solution is of the form $f(x) = Cx^2$ with a constant $C \ge 0$.