Rolewicz's Problem

Problem 01-005, by Bogdan Choczewski (Faculty of Applied Mathematics, University of Mining and Metallurgy (AGH), Krakow, Poland), Roland Girgensohn (Institute of Biomathematics and Biometry, GSF-Forschungszentrum, Neuherberg, Germany), and Zygfryd Kominek (Institute of Mathematics, Silesian University, Katowice, Poland).

The problem is motivated by the study of Rolewicz [3] (cf. also Pallaschke-Rolewicz [1]) of Fréchet $\boldsymbol{\Phi}$-differentiability of real-valued mappings of a metric space (X, d).

Let $\boldsymbol{\Phi}$ be a family of real-valued functions defined on X. A function $F: X \rightarrow \mathbb{R}$, lower semicontinuous on X, is said to be $\boldsymbol{\Phi}$-convex if there exists a $\boldsymbol{\Phi}_{0} \subset \boldsymbol{\Phi}$ such that

$$
F(x)=\sup \left\{\phi(x): \phi \in \mathbf{\Phi}_{0}, \phi \leq F\right\}, \quad x \in X
$$

A function $\phi_{0} \in \boldsymbol{\Phi}$ is called the $\boldsymbol{\Phi}$-subgradient of the function F at $x_{0} \in X$ if

$$
F(x)-F\left(x_{0}\right) \geq \phi_{0}(x)-\phi_{0}\left(x_{0}\right), \quad x \in X .
$$

Let $\alpha:[0,+\infty) \rightarrow[0,+\infty)$ be a continuous function such that $\alpha(0)=0$ and $\alpha(t)>0$ for $t>0$. Let $F: X \rightarrow \mathbb{R}$ be a $\boldsymbol{\Phi}$-convex function. The function $\varphi_{0} \in \boldsymbol{\Phi}$ such that

$$
\begin{equation*}
F(x)-F\left(x_{0}\right) \geq \varphi_{0}(x)-\varphi_{0}\left(x_{0}\right)+\alpha\left(d\left(x, x_{0}\right)\right), \quad x \in X, \tag{1}
\end{equation*}
$$

is called a strong $\boldsymbol{\Phi}$-subgradient of the function F at the point x_{0} with the modulus $\alpha(\cdot)$ and the set of all of them is said to be the strong $\boldsymbol{\Phi}$-subdifferential with modulus $\alpha(\cdot)$ of F at x_{0}.

Having denoted

$$
\boldsymbol{\Phi}^{\alpha}=:\left\{\varphi+\alpha \circ d\left(\cdot, x_{1}\right), \varphi \in \boldsymbol{\Phi}, x_{1} \in X\right\}
$$

we observe that if φ is a strong $\boldsymbol{\Phi}$-subgradient of a function f at a point x_{0} with the modulus $\alpha(\cdot)$, then $\phi:=\varphi+\alpha \circ d\left(\cdot, x_{0}\right)$ is a $\boldsymbol{\Phi}^{\alpha}$-subgradient of f at x_{0}. However, the converse statement is no longer true; cf. Rolewicz [3]. Therefore, conditions are wanted for the two subdifferentials to be equal. The following result to this effect is also found in [2] .

Proposition 1. Let H be a Hilbert space, $\boldsymbol{\Phi}=H^{*}=H$, and $\alpha(t)=c t^{2}$ for $t \in \mathbb{R}$ with a constant $c>0$. Then (the metric in H is that induced by the scalar product) for every x_{0} the function $\alpha \circ d\left(\cdot, x_{0}\right)$ has at an arbitrary $y \in X a \boldsymbol{\Phi}$-subdifferential ϕ_{y} at y such that

$$
\begin{equation*}
\alpha\left(d\left(z, x_{0}\right)\right)-\alpha\left(d\left(y, x_{0}\right)\right)+\phi_{y}(z)-\phi_{y}(y) \geq \alpha(d(z, y)), \quad z \in X \tag{2}
\end{equation*}
$$

(The statement of the proposition, which in [3] is denoted by $\binom{*}{*}$, is in a sense dual to the condition (\star) found in [2].)

The question arises whether in this case those quadratic functions are the only functions that satisfy inequality (2). To answer the question it is enough to consider (cf. Rolewicz [2]) the case where $X=\mathbb{R}, d(x, y)=|x-y|$, and to solve the following. (We now write f instead of α in (2).)

Problem (P) (Rolewicz). Find all even, nonnegative, and differentiable functions f : $\mathbb{R} \rightarrow \mathbb{R}$ satisfying the inequality

$$
\begin{equation*}
f(t)-f(s)-f^{\prime}(s)(t-s) \geq f(t-s), \quad t, s \in \mathbb{R} \tag{P}
\end{equation*}
$$

REFERENCES

[1] D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization, Math. Appl. 388, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1997.
[2] S. Rolewicz, On $\alpha(\cdot)$-monotone multifunctions, Studia Math., 141 (2000), pp. 263-272.
[3] S. Rolewicz, Φ-convex functions in metric spaces, Int. J. Math. Sci. (Kluwer/Plenum), to appear.

Status. We have found a very short proof that every solution is of the form $f(x)=C x^{2}$ with a constant $C \geq 0$.

