A Short Solution of Rolewicz's Problem

Solution of Problem 01-005 by Michael Renardy (Department of Mathematics, Virginia Tech).

By setting $t=s=0$, we find $f(0) \leq 0$, and since f was assumed nonnegative, $f(0)=0$. We fix t at a positive, and, respectively, negative value, and let s tend to zero. This yields

$$
\lim _{s \rightarrow 0} f^{\prime}(s)=0
$$

and hence

$$
\lim _{s \rightarrow 0} \frac{f(s)}{s}=0
$$

Setting $s=-h$, we find

$$
\frac{f(t+h)-f(t)}{h} \leq \frac{-f(h)+f^{\prime}(h)(t+h)}{h}
$$

for $h>0$ and

$$
\frac{f(t+h)-f(t)}{h} \geq \frac{-f(h)+f^{\prime}(h)(t+h)}{h}
$$

for $h<0$. We let h tend to zero to obtain

$$
f^{\prime}(t)=t \lim _{h \rightarrow 0} \frac{f^{\prime}(h)}{h}=: C t
$$

Consequently, $f(t)=C t^{2} / 2$.

