Solution of Rolewicz's Problem

Solution of Problem 01-005 by Bogdan Choczewski (Faculty of Applied Mathematics, University of Mining and Metallurgy (AGH), Krakow, Poland), Roland Girgensohn (Institute of Biomathematics and Biometry, GSF-Forschungszentrum, Neuherberg, Germany), and Zygfryd Kominek (Institute of Mathematics, Silesian University, Katowice, Poland).

1. Problem. We shall solve the following problem.

Problem (P). (Rolewicz). Find all nonnegative and differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the inequality

$$
\begin{equation*}
f(t)-f(s)-f^{\prime}(s)(t-s) \geq f(t-s), \quad t, s \in \mathbb{R} \tag{P}
\end{equation*}
$$

(cf. [2] and [4], where the problem was originally stated, under the additional assumption that f be even).

It turns out that the assumption is not needed; every solution of Problem (P) is automatically a quadratic function (and therefore even).

We also find all pairs $(f, g), f, g: \mathbb{R} \rightarrow \mathbb{R}$, satisfying the functional inequality obtained from (P) by replacing $f^{\prime}(s)$ by $g(s)$ as well as those which satisfy the related functional equation (without any regularity assumptions on f and g).
2. Solution. We are going to prove the following theorem.

Theorem 1. The only solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ of problem (P) are given by the formula

$$
\begin{equation*}
f(x)=C x^{2}, \quad x \in \mathbb{R} \tag{S}
\end{equation*}
$$

where C is a nonnegative constant.
Proof. If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a solution to (P), then

$$
f(0)=f^{\prime}(0)=0
$$

(put $t=s=0$ in (P) to get $f(0)=0$ and then $s=0$ in (P) to obtain $f^{\prime}(0) t \leq 0, t \in \mathbb{R}$, yielding $\left.f^{\prime}(0)=0\right)$. Thus

$$
\begin{equation*}
\lim _{s \rightarrow 0} \frac{f(s)}{s}=0 \tag{1}
\end{equation*}
$$

Denote $h:=t-s \in \mathbb{R}$ and rewrite (P) as

$$
\begin{equation*}
f^{\prime}(s) \cdot h \leq f(s+h)-f(s)-f(h), \quad s, h \in \mathbb{R} \tag{2}
\end{equation*}
$$

Now assume $s>0$ to get that

$$
\begin{equation*}
\frac{f^{\prime}(s)}{s} h \leq \frac{f(s+h)-f(h)}{s}-\frac{f(s)}{s}, \quad h \in \mathbb{R}, s>0 . \tag{3}
\end{equation*}
$$

Thanks to (1), when $s \rightarrow 0+$, the RHS tends to $f^{\prime}(h)$. Thus, the LHS is bounded from above, and

$$
2 C:=\limsup _{s \rightarrow 0+} \frac{f^{\prime}(s)}{s}
$$

exists. From (3) we get

$$
\begin{equation*}
2 C h \leq f^{\prime}(h), \quad h \in \mathbb{R} . \tag{4}
\end{equation*}
$$

Now assume that $s<0$ in (2), which gives us

$$
\frac{f^{\prime}(s)}{s} h \geq \frac{f(s+h)-f(h)}{s}-\frac{f(s)}{s}, \quad h \in \mathbb{R}, s<0 .
$$

As before, this implies that

$$
2 D:=\liminf _{s \rightarrow 0-} \frac{f^{\prime}(s)}{s}
$$

exists and that

$$
\begin{equation*}
2 D h \geq f^{\prime}(h), \quad h \in \mathbb{R} \tag{5}
\end{equation*}
$$

Inequalities (4) and (5) together now imply that $C h \leq D h$ for all $h \in \mathbb{R}$, and thus $C=D$. Now using (4) and (5) once more, we have $f^{\prime}(h)=2 C h$ for all $h \in \mathbb{R}$, and taking $f(0)=0$ into account we get (S), which was to be proved.

Remark. The proof of Theorem 1 is due to the second author. Earlier the other authors had proved (S) with the aid of the following proposition.

Proposition 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an even, nonnegative, and differentiable function with $f(1)=1$, satisfying inequality (P). Then we have the following assertions.
(a) Either f is given by (S) with $C=1$ or there are an $\varepsilon>0$ and $a, b \in \mathbb{R}, \frac{1}{2}<a<b$, such that $f^{\prime}(x)>2 x+\varepsilon, x \in[a, b]$.
(b) If there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converging to zero, $x_{n}>0, n \in \mathbb{N}$, such that $f^{\prime}\left(x_{n}\right) \geq$ $2 x_{n}, n \in \mathbb{N}$, then f is given by (S) with $C=1$.

The first author was able to derive (S) from (P) having additionally assumed that f is even, twice differentiable in a neighborhood of the origin, and it satisfies an initial condition; cf. [1].
3. Pexider-type functional inequality. In connection with (P) let us consider the following inequality:

$$
\begin{equation*}
f(t)-f(s)-g(s)(t-s) \geq f(t-s), \quad t, s \in \mathbb{R} \tag{Q}
\end{equation*}
$$

We start with a simple lemma.
Lemma 1. A pair (f, g) of functions, each mapping \mathbb{R} into \mathbb{R}, where f is differentiable in $\mathbb{R}, f(0)=0$, and g is arbitrary, satisfies inequality (Q) if and only if

$$
\begin{equation*}
g(t)=f^{\prime}(t)-f^{\prime}(0), \quad t \in \mathbb{R} \tag{6}
\end{equation*}
$$

and f satisfies the inequality

$$
f(t)-f(s)-\left[f^{\prime}(s)-f^{\prime}(0)\right](t-s) \geq f(t-s), \quad t, s \in \mathbb{R}
$$

Proof. Let f and g, regular as required, satisfy (Q). For $t>s$ inequality (Q) may be written in the form

$$
\begin{equation*}
\frac{f(t)-f(s)}{t-s}-g(s) \geq \frac{f(t-s)}{t-s} \tag{7}
\end{equation*}
$$

whereas for $t<s$ we have the inequality opposite to (7). Since f is differentiable, we get $f^{\prime}(s)-g(s)=f^{\prime}(0)$, which is (6), and f satisfies $\left(\mathrm{P}^{\prime}\right)$. The converse implication is obvious.

Theorem 1 and Lemma 1 together yield the following result.
Theorem 2. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a nonnegative and differentiable function with $f^{\prime}(0)=0$, $g: \mathbb{R} \rightarrow \mathbb{R}$ is arbitrary, and they both satisfy inequality (Q), then there is a $C \geq 0$ such that

$$
f(t)=C t^{2}, \quad g(t)=2 C t, \quad t \in \mathbb{R}
$$

In the case where f in (Q) is an odd function we have the following theorem.
Theorem 3. A pair (f, g) of functions, each mapping \mathbb{R} into \mathbb{R}, where f is differentiable in \mathbb{R} and odd, and g is arbitrary, satisfies inequality (Q) if and only if there is a $C \in \mathbb{R}$ such that

$$
\begin{equation*}
f(t)=C t, \quad g(t)=0, \quad t \in \mathbb{R} \tag{8}
\end{equation*}
$$

Proof. We have $f(0)=0$ as f is odd. Thus the lemma works. Since now f^{\prime} in $\left(\mathrm{P}^{\prime}\right)$ is even, on putting $-s$ in place of s in $\left(\mathrm{P}^{\prime}\right)$ we get

$$
f(t)+f(s)-\left[f^{\prime}(s)-f^{\prime}(0)\right](t+s) \geq f(t+s), \quad s, t \in \mathbb{R}
$$

With $t=0$ here we arrive at $\left[f^{\prime}(s)-f^{\prime}(0)\right] \cdot s \leq 0, s \in \mathbb{R}$.
On the other hand, with $-t$ in place of t in $\left(\mathrm{P}^{\prime}\right)$ we obtain

$$
\left[f^{\prime}(s)-f^{\prime}(0)\right](t+s) \geq f(t)+f(s)-f(t+s), \quad t, s \in \mathbb{R}
$$

Letting $t=0$ here yields $\left[f^{\prime}(s)-f^{\prime}(0)\right] \cdot s \geq 0, s \in \mathbb{R}$.
Consequently, $f^{\prime}(s)=f^{\prime}(0)$, in turn $f(s)=f^{\prime}(0) s+B$. But $B=0$ as f is odd. Finally, by (6), $g(s)=0, s \in \mathbb{R}$. Thus (8) holds with $C=f^{\prime}(0)$. The converse implication is obvious.
4. Pexider-type functional equation. For the functional equation (cf. inequality (Q))

$$
\begin{equation*}
f(t)-f(s)-g(s)(t-s)=f(t-s), \quad t, s \in \mathbb{R} \tag{E}
\end{equation*}
$$

we have the following result.
Theorem 4. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be functions fulfilling equation (E). Then there exist a real constant C and an additive function $a: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f(x)=a(x)+C x^{2}, \quad g(x)=2 C x, \quad x \in \mathbb{R} \tag{9}
\end{equation*}
$$

Conversely, the system of functions defined by (9), where a is an additive function and $C \in \mathbb{R}$, is a solution of (E).

Proof. Setting $s=0$ in (E) we get

$$
f(0)=g(0)=0 .
$$

Put $t+s$ instead of t in (E). We have

$$
\begin{equation*}
f(t+s)-f(t)-f(s)=g(s) t, \quad t, s \in \mathbb{R} \tag{10}
\end{equation*}
$$

Since the LHS of this equality is symmetric with respect to t and s, so is its RHS. Thus

$$
g(s) t=g(t) s, \quad t, s \in \mathbb{R}
$$

Therefore there exists a constant $C \in \mathbb{R}$ such that $g(x)=2 C x, x \in \mathbb{R}$. Moreover, now (10) has the form

$$
\begin{equation*}
f(t+s)-f(t)-f(s)=2 C t s, \quad t, s \in \mathbb{R} \tag{11}
\end{equation*}
$$

We define the function $a: \mathbb{R} \rightarrow \mathbb{R}$ by the formula

$$
a(x):=f(x)-C x^{2}, \quad x \in \mathbb{R} .
$$

According to (11) we obtain $a(t+s)-a(t)-a(s)=2 C t s-C(t+s)^{2}+C s^{2}+C t^{2}=0$ for all $t, s \in \mathbb{R}$, which means that a is an additive function. The other part of the proof is evident.

Since every Lebesgue measurable additive function $a: \mathbb{R} \rightarrow \mathbb{R}$ is linear (cf. [3], for example), Theorem 4 has the following corollary.

Corollary 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Lebesgue measurable function, and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be an arbitrary function. Then the pair of function (f, g) is a solution of functional equation (E) if and only if there exist a real constants C and b such that

$$
f(x)=C x^{2}+b x, \quad g(x)=2 C x, \quad x \in \mathbb{R}
$$

REFERENCES

[1] B. Choczewski, Note on a functional-differential inequality, in Functional Equations Results and Advances, Z. Daróczy and Zs. Páles, eds., dedicated to the Millennium of The Hungarian State, Kluwer Academic Publishers, Boston/Dordrecht/London, 2001, pp. 21-24.
[2] B. Choczewski, R. Girgensohn, Z. Kominek, Rolewicz's Problem, in Problems \& Solutions, SIAM, Philadelphia, 2001; available online from http://www.siam.org/ journals/problems/01-005.htm.
[3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Polish Scientific Publishers and Uniwersytet Ślạski, Warszawa/Kraków/Katowice, 1985.
[4] S. Rolewicz, On $\alpha(\cdot)$-monotone multifunctions, Studia Math., 141 (2000), pp. 263-272.

