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1. Problem. We shall solve the following problem.

Problem (P). (Rolewicz). Find all nonnegative and differentiable functions f : R → R

satisfying the inequality

(P ) f(t) − f(s) − f ′(s)(t− s) ≥ f(t− s), t, s ∈ R

(cf. [2] and [4], where the problem was originally stated, under the additional assumption

that f be even).

It turns out that the assumption is not needed; every solution of Problem (P) is auto-

matically a quadratic function (and therefore even).

We also find all pairs (f, g), f, g : R → R, satisfying the functional inequality obtained

from (P) by replacing f ′(s) by g(s) as well as those which satisfy the related functional

equation (without any regularity assumptions on f and g).

2. Solution. We are going to prove the following theorem.

Theorem 1. The only solutions f : R → R of problem (P) are given by the formula

(S) f(x) = Cx2, x ∈ R,

where C is a nonnegative constant.

Proof. If a function f : R → R is a solution to (P), then

f(0) = f ′(0) = 0

(put t = s = 0 in (P) to get f(0) = 0 and then s = 0 in (P) to obtain f ′(0)t ≤ 0, t ∈ R,

yielding f ′(0) = 0). Thus

lim
s→0

f(s)

s
= 0.(1)

Denote h := t− s ∈ R and rewrite (P) as

f ′(s) · h ≤ f(s + h) − f(s) − f(h), s, h ∈ R.(2)



Now assume s > 0 to get that

f ′(s)
s

h ≤ f(s + h) − f(h)

s
− f(s)

s
, h ∈ R, s > 0.(3)

Thanks to (1), when s → 0+, the RHS tends to f ′(h). Thus, the LHS is bounded from

above, and

2C := lim sup
s→0+

f ′(s)
s

exists. From (3) we get

2Ch ≤ f ′(h), h ∈ R.(4)

Now assume that s < 0 in (2), which gives us

f ′(s)
s

h ≥ f(s + h) − f(h)

s
− f(s)

s
, h ∈ R, s < 0.

As before, this implies that

2D := lim inf
s→0−

f ′(s)
s

exists and that

2Dh ≥ f ′(h), h ∈ R.(5)

Inequalities (4) and (5) together now imply that Ch ≤ Dh for all h ∈ R, and thus C = D.

Now using (4) and (5) once more, we have f ′(h) = 2Ch for all h ∈ R, and taking f(0) = 0

into account we get (S), which was to be proved.

Remark. The proof of Theorem 1 is due to the second author. Earlier the other authors

had proved (S) with the aid of the following proposition.

Proposition 1. Let f : R → R be an even, nonnegative, and differentiable function with

f(1) = 1, satisfying inequality (P). Then we have the following assertions.

(a) Either f is given by (S) with C = 1 or there are an ε > 0 and a, b ∈ R, 1
2
< a < b,

such that f ′(x) > 2x + ε , x ∈ [a, b].

(b) If there exists a sequence (xn)n∈N converging to zero, xn > 0, n ∈ N, such that f ′(xn) ≥
2xn, n ∈ N, then f is given by (S) with C = 1.



The first author was able to derive (S) from (P) having additionally assumed that f is

even, twice differentiable in a neighborhood of the origin, and it satisfies an initial condition;

cf. [1].

3. Pexider-type functional inequality. In connection with (P) let us consider the

following inequality:

(Q) f(t) − f(s) − g(s)(t− s) ≥ f(t− s), t, s ∈ R.

We start with a simple lemma.

Lemma 1. A pair (f, g) of functions, each mapping R into R, where f is differentiable in

R, f(0) = 0, and g is arbitrary, satisfies inequality (Q) if and only if

g(t) = f ′(t) − f ′(0), t ∈ R,(6)

and f satisfies the inequality

(P ′) f(t) − f(s) − [f ′(s) − f ′(0)](t− s) ≥ f(t− s), t, s ∈ R.

Proof. Let f and g, regular as required, satisfy (Q). For t > s inequality (Q) may be written

in the form

f(t) − f(s)

t− s
− g(s) ≥ f(t− s)

t− s
(7)

whereas for t < s we have the inequality opposite to (7). Since f is differentiable, we get

f ′(s)−g(s) = f ′(0), which is (6), and f satisfies (P′). The converse implication is obvious.

Theorem 1 and Lemma 1 together yield the following result.

Theorem 2. If f : R → R is a nonnegative and differentiable function with f ′(0) = 0,

g : R → R is arbitrary, and they both satisfy inequality (Q), then there is a C ≥ 0 such that

f(t) = C t2 , g(t) = 2C t, t ∈ R.

In the case where f in (Q) is an odd function we have the following theorem.

Theorem 3. A pair (f, g) of functions, each mapping R into R, where f is differentiable

in R and odd, and g is arbitrary, satisfies inequality (Q) if and only if there is a C ∈ R such

that

f(t) = C t, g(t) = 0, t ∈ R.(8)



Proof. We have f(0) = 0 as f is odd. Thus the lemma works. Since now f ′ in (P′) is even,

on putting −s in place of s in (P′) we get

f(t) + f(s) − [f ′(s) − f ′(0)](t + s) ≥ f(t + s), s, t ∈ R.

With t = 0 here we arrive at [f ′(s) − f ′(0)] · s ≤ 0, s ∈ R.

On the other hand, with −t in place of t in (P′) we obtain

[f ′(s) − f ′(0)](t + s) ≥ f(t) + f(s) − f(t + s), t, s ∈ R.

Letting t = 0 here yields [f ′(s) − f ′(0)] · s ≥ 0, s ∈ R.

Consequently, f ′(s) = f ′(0), in turn f(s) = f ′(0)s+B. But B = 0 as f is odd. Finally, by

(6), g(s) = 0, s ∈ R. Thus (8) holds with C = f ′(0). The converse implication is obvious.

4. Pexider-type functional equation. For the functional equation (cf. inequality (Q))

(E) f(t) − f(s) − g(s)(t− s) = f(t− s), t, s ∈ R,

we have the following result.

Theorem 4. Let f, g : R → R be functions fulfilling equation (E). Then there exist a real

constant C and an additive function a : R → R such that

f(x) = a(x) + Cx2, g(x) = 2Cx, x ∈ R.(9)

Conversely, the system of functions defined by (9), where a is an additive function and C ∈ R,

is a solution of (E).

Proof. Setting s = 0 in (E) we get

f(0) = g(0) = 0.

Put t + s instead of t in (E) . We have

f(t + s) − f(t) − f(s) = g(s)t, t, s ∈ R.(10)

Since the LHS of this equality is symmetric with respect to t and s, so is its RHS. Thus

g(s)t = g(t)s, t, s ∈ R.

Therefore there exists a constant C ∈ R such that g(x) = 2Cx, x ∈ R. Moreover, now (10)

has the form

f(t + s) − f(t) − f(s) = 2Cts, t, s ∈ R.(11)



We define the function a : R → R by the formula

a(x) := f(x) − Cx2, x ∈ R.

According to (11) we obtain a(t + s) − a(t) − a(s) = 2Cts − C(t + s)2 + Cs2 + Ct2 = 0

for all t, s ∈ R, which means that a is an additive function. The other part of the proof is

evident.

Since every Lebesgue measurable additive function a : R → R is linear (cf. [3], for

example), Theorem 4 has the following corollary.

Corollary 1. Let f : R → R be a Lebesgue measurable function, and let g : R → R be an

arbitrary function. Then the pair of function (f, g) is a solution of functional equation (E)

if and only if there exist a real constants C and b such that

f(x) = Cx2 + bx, g(x) = 2Cx, x ∈ R.
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