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Problem summary. Generalized amicable orthogonal designs, if they exist, are families

{Xj}sj=1 and {Y j}tj=1 consisting of m × n matrices that satisfy (1) below. The entries are

allowed to be arbitrary complex numbers, and H denotes the conjugate transpose.

(i) XjX
H
j = I, Y jY

H
j = I ∀ j,

(ii) XjX
H
k = −XkX

H
j , j �= k,

(iii) Y jY
H
k = −Y kY

H
j , j �= k,

(iv) XjY
H
k = Y kX

H
j ∀ j, k.

(1)

(a) Prove that for every m there is an n ≥ m for which a generalized orthogonal design

exists of order (m,n) and size n.

(b) Is it true that for every m there is an n ≥ m for which a generalized amicable orthogonal

design ({Xj}sj=1, {Y j}tj=1) exists with s + t = 2n?

In this document, the special case n = m of problem (b) is solved. The case of n > m

remains an open issue.

The proposed solution of problem (b) can be obtained through a new orthogonal design

called an amicable complex orthogonal design (ACOD). Before discussing ACODs, a related

orthogonal design called a complex orthogonal design (COD) is first reviewed.

Definition 1 (see [1]). A COD of order n and type (h1, . . . , hr) (hj positive integers) on

the real commuting variables c1, . . . , cr is an n × n matrix C, with entries from

{0, ε1c1, . . . , εrcr|εj = ±1,±i} (i =
√−1) satisfying

CCH =

⎛
⎝

r∑
j=1

hj c
2
j

⎞
⎠ In.(2)

Also, C can be expressed as

C = Z1c1 + · · · + Zrcr,(3)



where the Zj are n× n matrices with elements {0,±1,±i} satisfying

(i) ZjZ
H
j = hjIn, 1 ≤ j ≤ r,

(ii) ZjZ
H
k + ZkZ

H
j = 0, 1 ≤ j �= k ≤ r.

(4)

Theorem 1 (see [1, Theorem 4]). Let τ(n) denote the maximum number of variables r

in a COD of order n. Then τ(n) ≤ H(n), where H(n) = 2a + 2 if n = 2ab with b odd.

Next we define a ACOD by following the approach adopted in [2] to define an amicable

orthogonal design (AOD) from an orthogonal design (OD).

Definition 2. Let the matrices A = X1a1 + · · · + Xsas and B = Y 1b1 + · · · + Y tbt be

CODs of the same order n, where COD A is of type (f1, . . . , fs) on the variables {a1, . . . , as}
and COD B is of type (g1, . . . , gt) on the variables {b1, . . . , bt}. Then A and B are said to

be an ACOD if

ABH = BAH .(5)

A necessary and sufficient condition for an ACOD to exist is that there exists a family

of matrices {X1, . . . ,Xs; Y 1, . . . ,Y t} satisfying

(i) XjX
H
j = fjIn, 1 ≤ j ≤ s,

Y kY
H
k = gkIn, 1 ≤ k ≤ t,

(ii) XjX
H
k + XkX

H
j = 0, 1 ≤ j �= k ≤ s,

(iii) Y jY
H
k + Y kY

H
j = 0, 1 ≤ j �= k ≤ t,

(iv) XjY
H
k = Y kX

H
j , 1 ≤ j ≤ s, 1 ≤ k ≤ t,

(6)

where Xj and Y k are all {0,±1,±i} matrices of order n.

It should be noted that (6) corresponds to the square case (n = m) of (1). Hence the

existence and an upper bound on the maximum number of variables s+ t of an ACOD would

help to solve problem (b) stated above.

Proposition 1. Assume that the CODs A = X1a1+ · · ·+Xsas and B = Y 1b1+ · · ·+Y tbt
as defined in Definition 2 exist. By letting

Zj = Xj, 1 ≤ j ≤ s,

Zs+k = iY k, 1 ≤ k ≤ t, i =
√−1,

(7)

a COD C = Z1c1 + · · ·+ Zrcr with r = s+ t variables of type (f1, . . . , fs, g1, . . . , gt) will be

formed by Zj (1 ≤ j ≤ s + t).



Proof. It can be shown that (7) satisfies all the constraints of (4). For example, 4 (ii) can

be verified as follows:

ZjZ
H
s+k + Zs+kZ

H
j = Xj(iY k)

H + (iY k)X
H
j

= −iXjY
H
k + iY kX

H
j

= 0, 1 ≤ j ≤ s, 1 ≤ k ≤ t.

Proposition 2. The total number of variables s+t of an ACOD is bounded above by H(n).

Proof. From Proposition 1 it is clear that whenever an ACOD with s + t variables exists, a

COD with r = s+ t variables will exist. Furthermore, it was been stated in Theorem 1 that

the maximum number of variables of a COD is bounded by H(n), that is, max(r) ≤ H(n).

Hence the maximum total number of variables of an ACOD is also bounded by H(n), that is,

max(s+ t) ≤ H(n) = 2a+ 2 if n = 2ab with b odd. As a result, Proposition 2 is proved.

Proposition 2 proves that when n = m we have max(s + t) = 2a + 2, where n = 2ab and

b is odd. Since n > a + 1, we have max(s + t) < 2n, so for the case n = m, a generalized

amicable orthogonal design ({Xj}sj=1, {Y j}sj=1) does not exist with s+ t = 2n. This answers

the question in part (b) of the problem.
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