## All in the Family

Solution of Problem 01-001 by David Borwein (University of Western Ontario, London, ON, Canada).

For an integer $N>0$, let

$$
Q_{N}:=\sum_{n=-N}^{\infty} \frac{n^{n} e^{-n}}{(N+n)!}
$$

On expanding $e^{-n}$ in powers of $n$ and then changing the order of summation, we obtain

$$
\begin{aligned}
Q_{N} & =\sum_{n=-N}^{\infty} \frac{n^{n}}{(N+n)!} \sum_{k=n}^{\infty} \frac{(-n)^{k-n}}{(k-n)!}=\sum_{k=-N}^{\infty}(-1)^{k} \sum_{n=-N}^{k} \frac{(-1)^{n} n^{k}}{(N+n)!(k-n)!} \\
& =\sum_{k=-N}^{-1}(-1)^{k} \sum_{n=-N}^{k} \frac{(-1)^{n} n^{k}}{(N+n)!(k-n)!},
\end{aligned}
$$

since, for integral $k \geq 0$,

$$
\begin{aligned}
\sum_{n=-N}^{k} \frac{(-1)^{n} n^{k}}{(N+n)!(k-n)!} & =\frac{1}{(N+k)!} \sum_{n=-N}^{k}\binom{N+k}{N+n}(-1)^{n} n^{k} \\
& =\frac{(-1)^{N}}{(N+k)!} \sum_{n=0}^{N+k}\binom{N+k}{n}(-1)^{n}(n-N)^{k}=0
\end{aligned}
$$

The final identity is a consequence of the familiar result

$$
\sum_{n=0}^{m}(-1)^{n}\binom{m}{n} n^{r}=0 \text { for } r=0,1 \ldots, m-1
$$

which can easily be verified by observing that

$$
\left(\frac{d}{d x}\right)^{r}\left(1-e^{x}\right)^{m}=\sum_{n=0}^{m}(-1)^{n}\binom{m}{n} n^{r} e^{n x}=0 \text { when } x=0 \text { and } 0 \leq r<m .
$$

It follows that

$$
\begin{aligned}
Q_{N} & =\sum_{k=1}^{N} \sum_{n=k}^{N} \frac{(-1)^{n} n^{-k}}{(N-n)!(n-k)!}=\sum_{n=1}^{N} \frac{(-1)^{n}}{(N-n)!} \sum_{k=1}^{n} \frac{n^{-k}}{(n-k)!} \\
& =\sum_{n=1}^{N} \frac{(-1)^{n}}{(N-n)!n^{n}} \sum_{k=0}^{n-1} \frac{n^{k}}{k!},
\end{aligned}
$$

a rational number, and hence that

$$
\begin{aligned}
S_{N} & =Q_{N}-\sum_{n=-N}^{-1} \frac{n^{n} e^{-n}}{(N+n)!}=Q_{N}-\sum_{n=1}^{N} \frac{(-1)^{n} e^{n}}{(N-n)!n^{n}} \\
& =: P_{N}(e)
\end{aligned}
$$

as desired.

